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Abs t rac t .  We introduce delegation schemes wherein a user may dele- 
gate certain rights to himself, but may not safely delegate these rights 
to others. In our motivating application, a user has a primary (long- 
term) key that receives some personalized access rights, yet the user may 
reasonably wish to delegate these rights to new secondary (short-term) 
keys he creates to use on his laptop when traveling, to avoid having to 
store his primary secret key on the vulnerable laptop. We propose sev- 
eral cryptographic schemes, both generic ones under general assumptions 
and more specific practical ones, that fulfill these somewhat conflicting 
requirements, without relying on special-purpose (e.g., tamper-proof) 
hardware. 
This is an extended abstract of our work [19]. 

1 I n t r o d u c t i o n  

In a networked world, users are represented by their public keys. A message 
whose digital signature verifies with a user's public key is assumed to have been 
signed by that  user. Hence, users have to maintain the secrecy of their signing 
keys. In real life, however, they may wish to use relatively insecure computing 
devices, e.g., networked UNIX machines or laptops, for digital transactions. How 
can a user make use of such insecure devices while preserving the secrecy of his 
secret key? 

One natural  solution is for the user to use the secret key of his primary 
(long-term) key pair only on secure computing devices, and to create secondary 
(temporary, short-term) key pairs as needed for use on less secure devices. The 
user delegates a restricted amount of authority from the primary key pair to 
such a secondary key pair by signing a delegation certificate. This is simply a 
s tatement  of the form "the secondary public-key (key2) can be used instead of 
the primary public-key (keyl)  for the following purposes and under the following 
conditions and /or  limitations: (description)". The statement is signed with 
the primary secret key. This delegation certificate is transferred to the insecure 
device together with the secondary key pair, and is appended to all messages 
signed with the secondary key, so that  the recipient may verify the delegation. 
If a secondary secret key is compromised, the loss is minimized because only a 
restricted amount  of authority was delegated to it. 



154 

This is a good solution for many cases, but fails in cases where personalized 
rights are assigned to a key. Here the intention is to restrict the right to a spe- 
cific person, and this is implemented by requiring a signature (or identification) 
relative to the key associated with this person. This person may indeed give 
away its (primary) secret key, and thus the requirement '~for personal use" is 
not really enforced. However, the assumption behind such schemes is that users 
are highly motivated not to give away their (primary) secret key because this 
key allows others to do many more things in the user's name. Thus, the user is 
deterred from propagating certain personalized rights to others by the fact that 
other rights will be automatically propagated along with the former rights. For 
example, a user may be willing to illegally propagate its personal subscription to 
some service, but not if this is linked to the propagation of the right to withdraw 
money from his bank account. 

The new problem introduced by using secondary keys in a setting where 
personalized rights are to be enforced, is that the users are no longer deterred 
from propagating personalized rights which they may delegate to secondary keys. 
This is the case since the delegation certificate may limit the rights of a secondary 
key to a specific right (e.g., subscription), thus leaving no additional risk for 
the user ff he propagates this secondary key (and the subscription which goes 
with it). Hence, it seems that delegation of rights to secondary keys and the 
enforcement of personalized rights are in conflict (see further discussion below). 
Resolving this conflict is the central goal of this paper. Put in other words, we 
ask: How can delegation of rights be managed such that a user can delegate these 
rights to himself, but not to others? 

Corresponding to our motivating example - the use of insecure computing 
devices - we only consider solutions that do not employ special-purpose hardware 
(e.g., tamper-resistant or with biometrics). We consider two different approaches, 
which we term statutory and transparent. The latter means that the measures 
are invisible to users except for the unavoidable fact that issuers, holders, and 
verifiers of a personalized right must be aware that this right is personalized. 

Both approaches only approximate the above goal. Loosely speaking, they 
do this by fulfilling the following two weaker requirements (with respect to sec- 
ondary keys to which personalized rights are delegated): 

1. Restricted damage from loss of secondary keys: Loss of a few secondary secret 
keys causes no (or little) damage to the user, beyond the loss and possible 
abuse (by the finder or thief) of the power delegated by the user to these 
secondary keys. 

2. Deterring propagation of secondary keys: Giving away many secondary secret 
keys to other users (e.g., friends) greatly endangers the user in the sense that 
this may have consequences which are highly unpleasant to the user (and 
extend way beyond the rights associated with these secondary keys). 

The slackness present in this formulation seems inevitable since the finder/thief 
in the first requirement is "indistinguishable" from the friends in the second. 
Thus, the distinction is made quantitatively. 
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The paper focuses on the transparent approach, where the solutions are 
cryptographic. (These cryptographic schemes may have applications beyond the 
scope of the self-delegation problem.) The statutory approach, which has non- 
cryptographic solutions, is only discussed in the next subsection. We refrain from 
addressing the non-technical question of which of the approaches is "better". We 
note, however, that the solutions in the two approaches differ in several aspects, 
and all aspects should be taken into account when evaluating these solutions. 

1.1 The  S t a t u t o r y  A p p r o a c h  

Following the above paradigm, one may devise simple solutions in which trusted 
authorities (i.e., a judicial system) inflict suitable punishments on users which 
are proven to have propagated personalized rights to others. The case against a 
user will consist of sufficiently many secondary secret-keys (with corresponding 
certificates assigning personalized rights); it is assumed that no user is going to 
incriminate himself, whereas other users may be less careful not to incriminate 
another user. Furthermore, users may even be encouraged (again by statutory 
means; e.g., awards) to incriminate others. Such a judicial system is very flexi- 
ble - it may consider special circumstances and determine the verdict based on 
these. On the other hand, such a system has a significant overhead. 

Another type of statutory arrangement, closer in spirit to the solution pre- 
sented next, is to define an action taken with sufficiently many validated sec- 
ondary secret key (regardless of their assigned rights) as if it was taken by the 
user (i.e., with the corresponding primary key). However, in such a case, all 
verifiers of any signatures, even those that have nothing to do with personal- 
ized rights, must be aware of this arrangement. Thus, this solution too is not 
transparent. 

1.2 The  Transpa ren t  Approach  

In the transparent approach, users are deterred from delegating personalized 
rights to others by ensuring that the recipient learns something about the pri- 
mary secret key of the delegator. A user will then again be highly motivated not 
to delegate such rights so as not to risk giving up the fundamental rights associ- 
ated with the primary secret key. The basic principle of all our proposals is that 
the user has to validate his secondary keys with respect to his primary secret key 
(in addition to signing an ordinary delegation certificate). As described below, 
the validation process will deter the user from delegating personalized rights to 
others. Use of personalized rights is granted only when one proves possession 
of a validated secondary-key (or possession of the primary-key, as usual), mere 
possession of a secondary-key (without corresponding validation) will not do. 

The conflicting goals stated above, are thus rephrased as follows: 

1. Restricted damage from loss of secondary keys: Loss of a few validated sec- 
ondary secret keys will not endanger the security of the primary secret key. 
That is, they yield little or no knowledge about the primary secret key. 
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2. Deterring propagation of secondary keys: Man# validated secondary secret  keys  
allow the recipient to recover the primary secret key efficiently. 

We present several constructions achieving such a balance. Our constructions 
are categorized by the following parameters: 

- Generic vs. specific: In Section 3, we present generic schemes' which apply to 
any primary and secondary keys. They rely on non-interactive zero-knowledge 
proofs [3], and thus on the existence of trapdoor one-way permutations [12, 
21]. In Section 4, we present more specific and efficient constructions where 
the  primary key pair must belong to a discrete-logarithm based cryptographic 
scheme like Schnorr or DSS signatures [25, 11]. 

- Gradual vs. threshold: In Constructions 1 thru 1.2, the security of the pri- 
mary secret key degrades gradually with the number of secondary secret keys 
available to an adversary until the primary secret key is totally revealed. In 
Constructions 2 and 3, the primary secret key is fully secret up to a certain 
threshold number of secondary secret keys available to an adversary (e.g., 3, 
10, or 100), but is easily recovered from any number of secondary secret keys 
larger than this or a second threshold. 
Additionally, some schemes allow the application to freely fix after how many 
secondary secret keys the adversary will get the primary secret key (i.e., the 
slope of the gradual degradation or the threshold, respectively), whereas in 
others this number is predefined by other system parameters, e.g., the key 
length. 

- Limitat ions for secondary keys: Apart from honest users, service providers may 
wish to limit the rights associated with secondary keys. We handle these lim- 
itations associated with a secondary key in a general way, and call their 
description a limitations index. An archetypical example of limitation indices 
are time periods, such as days, during which a secondary key is valid. Other 
examples include upper bounds on value of transactions, lists of specific ser- 
vices, etc. 
A relevant parameter for our schemes is the size of the domain of potential 
limitation indices. For example, if secondary keys are associated with days, 
which is indeed a very important case, then the domain of indices is relatively 
small. If, on the other hand, limitation indices stand for arbitrary specification 
of rights such as expressed by 1000-words English-text documents, then t h e  
domain is huge. The domains in Construction 1.2 is unbounded, in Construc- 
tions 2 and 3 bounded, but exponentially large in the security parameter, and 
in Construction 1.1 relatively small. (Indeed, using appropriate hashing, one 
may use schemes with an exponentially large domain of limitation indices as 
if their domain were unbounded.) 

Our proposals for self-delegation of personalized rights are not in conflict with 
normal delegation of other types of rights: Both types of rights can be given 
on the same primary and secondary keys and even with the same delegation 
certificates. The only difference is that for personalized rights, verifiers will re- 
quire the presence of validation information related to the primary key of the 
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original owner of the right, whereas in other cases they only require a delegation 
certificate. 

1.3 R e l a t e d  Work 

Delegation certificates are merely documents which assert that certain rights 
associated to a specific public key are to be passed to another public key. Such 
documents are verifiable with respect to the former public key, and are binding 
(as all digital signatures) under certain statutory provisions. Technical prob- 
lems with such certificates occur where one makes additional requirements (e.g., 
anonymity, standardization of contexts, or non-transferability) regarding such 
certificates. None of these extensions is required in our case. 

In our case the goal is to resirict  the delegation of some rights; specifically, 
of personalized rights. Thus, ordinary delegation certificates will not do, unless 
they are augmented by either an auxiliary statutory arrangement or auxiliary 
validation information, as discussed above. (In fact, one may view the augmen- 
tation of delegation certificates, suggested above, as a new type of certificate 
which one may call a self-delegation certificate.) Other approaches to the issue 
of limiting the delegation of rights were suggested in [4, 5]. 

We note the analogy between the current work and [10]: The latter paper 
presents a transparent approach to copyright protection, in contrast to the (typ- 
ical) statutory approach based on fingerprinting following [27]. 

Some analogy exists also between self-delegation schemes and (v-1)-spendable 
coins [7, 23]. Conceptually speaking, the problems are different since there is no 
requirement on personal use in the latter, and the main issue is untraceability 
(otherwise identification of overspenders would be trivial). Technically speaking, 
one can see that the analogy does not extend too far since here we construct 
self-delegation schemes based on standard complexity assumptions, whereas such 
schemes are not known for untraceable cash. 

2 T h e  M o d e l  

Our model and constructions of self-delegation schemes only concern the core 
part of the applications described so far, and are therefore largely independent 
of the concrete application. In particular, we only deal with the primary and sec- 
ondary keys, and not with certificates that third parties give to assign rights to 
the primary keys, such as the above-mentioned certificate asserting subscriber- 
hood - these can be realized in standard ways, for example, by signatures with 
keys held by the third parties on the keys handled in the self-delegation scheme, 
and thus be added to our constructions in a modular way. 

Furthermore, we do not explicitly consider the user's own authorization of 
the secondary keys, i.e., the delegation certificates (from primary key to sec- 
ondary key) as described in the introduction. This is not quite as independent 
of our schemes as the statements by third parties, but whenever the underlying 
cryptographic scheme is a signature scheme, the delegation certificates can be 
made in a standard way with the primary secret key. 
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The notion of a generic scheme will more precisely mean the following: An 
arbitrary underlying cryptographic scheme may be given that contains an algo- 
rithm for generating primary key pairs and one for generating secondary key 
pairs, possibly depending on a primary key pair. The typical case is simply 
that an algorithm G for generating one key pair is given, and all primary and 
secondary key pairs are generated independently with this algorithm. Our mech- 
anism allows to control propagation of such secondary keys without posing addi- 
tional dangers on the underlying scheme and without making assumptions about 
how the keys of the underlying scheme may be used. For instance, signing (with 
a secret key) is not a zero-knowledge procedure, and in some protocols secret 
keys may even sometimes be revealed. Our controlled self-delegation schemes 
should not pose any additional risk to the keys, i.e., beyond the risk involved 
in using the given underlying cryptographic schemes. The schemes in Section 3 
are of this type, and those in Section 4 are only slightly less generic in that they 
assume a specific generation algorithm for the primary secret key. We briefly 
mention variants that may be a little more efficient, but require that primary 
and secondary keys are only used in well-defined ways, e.g., within a specific 
signature scheme. In the rest of the model section, we concentrate on generic 
schemes. 

We have to consider three types of parties: a server, which corresponds to 
a key certification infrastructure, users, who have primary and secondary keys, 
and verifiers, with whom the users interact using their secondary keys. A self- 
delegation scheme with controlled propagation has four protocols: 

- S e r v e r  s e t u p :  Here the server generates and publishes global parameters. 

- R e g i s t r a t i o n :  Here the user, having generated a primary key pair (sk, pk) 
from an underlying cryptographic scheme, registers the primary public key 
with the server. We call the secret information that the user stores at the 
end of the registration his extended primary secret key, and the corresponding 
information published by the server the user's extended primary public key. 
For simplicity, we often omit the term "extended", and use (sk, pk) to denote 
also the extended key pair. 

- Secondary key validation: Here the user, having generated a secondary key pair 
(ske, pke) from the underlying cryptographic scheme, wants to validate it for 
a certain limitations index s He produces a v a l i d a t i o n  t a g ,  denoted vale, that 
he will use later to convince verifiers of the validity of the secondary key pair 
(when not having the primary secret key available). 

- V e r i f i c a t i o n :  Here a user wants to convince a verifier, typically a service 
provider, that a certain public key pk e can be used as a secondary key for 
the primary public key pk. 
We stress that the user's secret inputs are only skl and vale; he no longer 
has the primary secret key available. 
The verifier also inputs the limitations index s for which pk e is supposed to be 
valid and global parameters published in server setup. Note that controlled 
propagation would make no sense if the verifier did not check s e.g., if s 
denotes a specific date, the verifier must enter the current date rather than 
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let the alleged user enter a date of his choice (which would always be the one 
for which the key is valid). 

These protocols must be efficient, preferably as efficient as the underlying cryp- 
tographic scheme. Clearly, correctly validated secondary keys for correctly regis- 
tered primary public keys should (almost) always be accepted by honest verifiers. 

We call a triple (ski, vall,pkL) a correctly validated secondary key triple if 
it is a possible output  of the correct secondary key generation and validation 
program. This is what a thief gets from an honest user. However, dishonest 
users who try to give away secondary keys to others are not restricted to correctly 
validated keys. We say that  a user gives a second person a valid secondary key 
triple (for a public key pk and a limitations index s if the information enables 
the second person to convince an honest verifier almost certainly. Formally, this 
notion is only meaningful in connection with the second person's program, which 
may be arbitrary, yet must be efficient. For simplicity, we concentrate on users 
giving away full-quality secondary keys, but with definitions as in [1] this can be 
generalized to giving away information that  will only convince the verifier with 
a certain probability. 
Our two goals can now be formulated in more detail as follows: 

- Restricted damage from key disclosure: I f  a certain user is honest, i t  should be 
infeasible for an adversary (thief) who only obtains .few correctly validated 
secondary key triples to generate additional valid secondary key triples. Here, 
"additional" means for a limitations index t* for which the adversary has not 
obtained a correctly validated secondary key triple. The adversary should also 
not get too much knowledge about existing non-stolen secondary secret keys 
ski nor about the primary secret key. More precisely, as we concentrate on 
generic schemes, we have to speak about any knowledge gained by validation 
tags. A suitable terminology is that  of knowledge complexity (cf., [20, 18]). 4 
Specifically, gradual schemes have a parameter $, called the slope, so that  
each correctly validated secondary key triple only gives ~ bits of knowledge. 
Schemes with threshold have a parameter r ,  called the threshold, so that  less 
than r correctly validated secondary key triples do not give the adversary 
any knowledge. 

- Controlled propagation: If a user gives a second person many different valid 
secondary key triples, then the second person can efficiently compute the 
user's primary secret key. Here, "different" means for different limitations 
indices. 
In schemes with threshold, "many" typically means at least v, but there are 

4 Loosely speaking, saying that a protocol (or a message) gives ~ bits of knowledge 
with respect to a given state means that whatever can be efficiently computed after 
the execution of the protocol (or receipt of the message) can also be computed 
efficiently with probability at least 2 -'~ from the state alone. Thus, for small ~, more 
precisely ~ --- O(log n) where n is the key length, if one can find the primary secret 
key with non-negligible probability after receiving at most ~ bits of knowledge, then 
one can do the same without receiving these bits. (Recall that f(n) is non-negligible 
if f (n)  > 1/poly(n)). 
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also schemes with a second threshold r* > r, (i.e., allowing a gap). Gradual 
schemes have a similar parameter j3, which will typically be about n/6, where 
n is the key length. 

For simplicity, we assume that all the security parameters ~, r etc., are chosen 
at the server setup time. Typically, users are concerned with restricted damage 
from key disclosure and therefore wish r to be large (or ~ to be small), whereas 
service providers, mainly concerned with propagation control, want the opposite. 
We consider the following types of attacks: 

- The adversary for the first goal, "restricted damage", knows the user's pri- 
mary public-key. It includes (both other users and) verifiers who have verified 
any number of this user's secondary public keys and with whom the user has 
then interacted using these keys, e.g., by signing messages. 
In a strong form of the requirement, the adversary also includes the server 
(i.e., the user may not want or need to trust the server). 

- The adversary for the second goal, "controlled propagation", consists of any 
number of colluding users and other verifiers. Typically, we only speak of "the 
user" because independence is clear. In some of our constructions achieving 
this goal depends on proper behaviour of the server (which is supposed to 
generate some random parameters). 

In all the following schemes, the first goal, "restricted damage", is stated and 
proven with respect to a static adversary, i.e., the limitations indices of the re- 
vealed validation tags are determined beforehand rather than chosen adaptively 
by the adversary. We believe that all schemes are in fact adaptively secure, but 
refrain at this point from formulating and proving our belief. We also assume 
for the time being that each participant only carries out one protocol at a time 
(i.e., we do not consider protocol interleaving). 

3 G e n e r i c  S c h e m e s  

The basic idea is that each validation tag val l  contains some little "piece of 
information" el about the primary secret key sk. The holder of a secondary key 
can only convince verifiers if he knows this el. Convincing the verifier must be 
done in zero-knowledge, so that verifiers do not gain an advantage in finding a 
user's primary secret key. On the other hand, knowledge of ~l's is related to the 
gradual release of a secret (as introduced for secret exchange in [2]): Knowledge 
of a few such pieces (i.e., el 's) does not endanger the secret, whereas knowledge 
of many "orthogonal" pieces does endanger it. A crucial point is to ensure this 
"orthogonality" whenever many pieces are given to a second person in violation 
of the "controlled propagation" goal. To ensure this, the value of el is made to 
depend on the limitations index s Our constructions differ in the way this is 
achieved. 

In the proof that he knows el, the user also has to prove that el is correct 
with respect to the primary secret key sk, which is no longer available in the ver- 
ification stage. Hence this part of the proof will be precomputed in the secondary 
key validation protocol. We use a non-interactive zero-knowledge proof system 
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[3], more precisely one where one common random string R e f  can be used for 
an arbitrary number of proofs [12]. (This result also applies to the more efficient 
basic construction in [21].) In schemes with a small set of limitations indices, we 
could improve efficiency by using a non-interactive zero-knowledge proof system 
capable of only proving one assertion, and providing enough reference strings in 
advance. 

Finally, we have to guarantee that all al 's refer to the same primary secret 
key sk. This is easy if the underlying cryptographic scheme guarantees that for 
every primary public key pk, there is only one possible primary secret key sk and 
its validity can be verified in polynomial time. For example, this is the case with 
the prime factorization of KSA moduli or the discrete logarithm of an element in 
logarithm-based schemes. Yet, in other cases, additional information aux may be 
required to verify the validity of secrets with respect to publicly available infor- 
mation. Typically, the randomness used in the key-generation process suffices. 
We then denote by pk the entire information that is published. This motivates 
our interest in schemes where a 3-dry relation Pred with the following properties 
exists: 

- NP-recognition of secret keys: Pred is recognizable in polynomial-time. This 
implies that the set of valid public keys 

Predl : { p k l 3 s k ,  a u x  : ( s k ,  aux, pk) 6 P r e d }  

and of valid key pairs 

Pred2 = {(sk, pk)13aux : (sk, aux, pk) q Pred} 

are in NP and therefore have zero-knowledge proof systems [17]. 
- Unique secret keys: For every pk, there exists at most one sk such that 

(sk, pk) e Pred2. 
-- Key generation of the given cryptographic scheme produces triples (sk, aux, pk) E 

Pred. 

Using any one-way function, one may transform any cryptographic scheme into 
one with unique secret keys, while maintaining computational secrecy. 

3.1 G r a d u a l  schemes  

The following construction is actually a framework for several slightly different 
versions with different properties. 

C o n s t r u c t i o n  1 (generic, gradual, framework): Let a cryptographic scheme with 
unique secret keys with a relation Pred as above be given. 

- Server setup: The server chooses the length n of the secret keys and the 
slope 6, where 6 divides n. It randomly generates a reference string R e f  E 
{0, 1} p~ for the non-interactive zero-knowledge proof system, and sets up 
a scheme that defines a sequence rl,  r~, ... of n-bit strings so that anyone can 
obtain rl in poly(n, logg) time. Several such schemes are discussed below. 
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- Registration: Suppose a user has generated a primary key pair (sk, pk), to- 
#ether with the value aux so that (sk, aux, pk) E P r e d .  The user proves to the 
server in zero-knowledge that pk is valid, i.e., lies in Predl. 

-- Secondary key validation: The validation fag for this user's seconda~ key 
w.r.t, the limitations indez e is the pair (at, re) where 
(1) ~e is the inner prodnct in GF(2 ~) of sk and re, where both are considered 
as n/b-dimensional vectors over GF(26). 
(2) re is a non-interactive zero-knowledge proof, with respect to the reference 
string Re f ,  that there ezists sk so that (sk, pk) E Pred2 and ~re is the inner 
product of sk and re. 

- Verification: The user gives the verifier an interactive zero-knowledge proof of 
knowledge [20, I] that he knows (~'e, re) such that re is a valid non-interactive 
zero-knowledge proof as in item (2} of the validation protocol. We stress that 
the common input to the interactive proof consists of Re f ,  pk, and re. 

Propos i t i on  1 (generic, gradual, framework): Any instantiation of Construc- 
tion 1, that is, no matter how the re's are determined, has the following prop- 
erties: 

1. Restricted damage from key disclosure: The scheme leaks no knowledge except 
bits in each correct validation tag. The user only needs to trust the server 

for the randomness of the reference string Ref .  
2. Controlled propagation: i f  the user gives a second person valid secondary key 

triples for a certain set of limitations indices, L, then the second person can 
efficiently compute the inner product of one fixed primary secret key sk with 
each value re corresponding to t E L. 

P r o o f  sketch:  We first prove Part 1 ("restricted damage"). First, one easily 
sees that in the registration and verification protocols, the user does not give 
away any knowledge beyond the standard operation of the public-key infras- 
tructure, because the rest of the protocols gives zero-knowledge proofs. Next, 
we consider the knowledge an adversary gains by obtaining a correctly validated 
secondary key triple. Recall that we only need to consider what is revealed on 
top of the secondary secret key itself, i.e., in the validation tag (at, ~re). These 
are merely ~ bits of knowledge, since ~e is only ~ bits long and ~re is a zero- 
knowledge proof referring to at and values the adversary knows already. (Recall 
that knowledge complexity is bounded by the actual length of objects and at 
most additive [18].) 

We now prove Part 2 ("controlled propagation"). By the soundness of the in- 
teractive zero-knowledge proof of knowledge, having a valid secondary key triple 
(i.e., information that enables the second person to convince an honest veri- 
fier) implies that the second person knows a correct pair (~re, 7re). More formally, 
there is an effective way (called a knowledge extractor [1]) to reconstruct this 
pair given access to the second person's strategy and his auxiliary information. 
Now the soundness of the non-interactive zero-knowledge proof ~re implies that 
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~e is in fact the inner product of the one fixed sk and re. (Here the uniqueness 
property of Pred2 is used.) [] 

The scheme defining the sequence rl, r2, ... should guarantee that sufficiently 
many of these values span almost the entire vector space, so that giving away 
many valid secondary keys compromises the primary key. Our first such scheme 
guarantees this in an optimal way, but can only be used for a domain of up 
to 26 - 1 limitations indices. This value is small because 8 should be at most 
logarithmic in n to satisfy the restricted-damage condition. Thus, this scheme is 
most adequate for cases like our motivating example where the limitations indices 
correspond to days; e.g., $ = 10 allows 1023 days, after which the primary key 
pairs could be renewed. 

C o n s t r u c t i o n  1.1 (generic, gradual, severely bounded limitations indices): We 
use Construction 1 with the following re 's: The server fixes an easily computable 
enumeration ~1,...,~26_1 of the non-zero elements of GF(26). The value re is 
the vector (1, ~e,-.., c~-1), where t3 = n/8. 

P r o p o s i t i o n  2 (generic, gradual, severely bounded limitations indices): Con- 
struction 1.1 has the following controlled-propagation property: Any 13 valid sec- 
ondary key triples yield the primary secret key. 

P r o o f  sketch:  Any 13 vectors re form a Vandermonde matrix, which is always 
non-singular. Thus the system of equations that the second person has (by the 
general controlled-propagation property of Construction 1) is of full rank. The 
easily found solution is the primary secret key. [] 

To use Construction 1 with a larger domain of limitations indices, we essentially 
use uniformly random values re. The server can set these up in different ways: 

C o n s t r u c t i o n  1.2 (generic, gradual, less bounded limitations indices): We use 
Construction 1 with one of the following schemes for generating the rt 's: 

1. For medium-sized limitation set: The server generates and publishes, as part 
of the setup stage, a list of a certain number m of uniformly chosen values 
rl. 

2. For unbounded limitation set: The server provides a "random oracle" (or 
Beacon) service throughout the lifetime of the system; rl equals the answer 
of this random oracle on query L The random oracle may be implemented 
by the server by using a pseudorandom function [16]. 

To analyze the controlled-propagation quality of these constructions, we need 
a technical lemma about the probability that too many of the rl 's are linearly 
dependent. Note that when we talk of the rank of a matrix chosen from a subset 
of a field, we mean its rank over the field (i.e., the maximum number of linearly 
independent rows with respect to coefficients from the field). 
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L e m m a  1 Let m , n , t , R  be integers so that m > n > R and m > t > R, and 
q be a prime power. Let S C_. GF(q). Then, the probability Prs(m, n, t, R) that 
a uniformly chosen m-by-n matrix over S contains t rows which together have 
rank at most R is bounded above by 

( 2 m ) '  . ISI_(._R).(,_R)" Prs(rn, n, t, R) <_ t] 

Proof omitted. For simplicity, we now restrict ourselves to the binary case (i.e., 
6---1). 

P r o p o s i t i o n  3 (generic, gradual, less bounded limitations indices): For the first 
variant of Construction 1.P, with ~ = 1, the following controlled-propagation 
property holds: With probability at least 1 - 2 -n,  over the choice of the rl 's, i f  
a user gives away 2n valid secondary key triples to a second person, the second 
person can e~ciently list a set of at most m 2 possibilities for the primary secret 
key. For the second variant of Construction 1.2, the above holds provided the 
user makes at most m oracle queries. 

Proof omitted. The second person can use the above list in different ways: For' 
example, he can efficiently perform any task requiring this secret key with proba- 
bility 1/m 2, by uniformly selecting an element of this list. Alternatively, in many 
applications, additional publicly available information can be used to determine 
which of these keys is correct. 

3.2 A t h r e s h o l d  s c h e m e  

We now show a generic threshold construction. The threshold r can be chosen 
very freely, i.e., between 1 and 2 n - 1, where n is the length of the keys. The 
set of limitations indices is bounded, but the bound can be much larger than in 
Construction 1.1: It is now 2 n. 

C o n s t r u c t i o n  2 (generic, threshold, exponentially large indices domain): Let 
a cryptographic scheme with unique secret keys with a relation Pred  as above be 
given. Additionally, we need a secure commitment scheme that is unconditionally 
binding; e.g., as in [22]. 

- Server setup: The server chooses parameters n for the length of secret keys 
and r for the threshold and a reference string R e f  E {0, 1} p~ for the 
non-interactive zero-knowledge proof system. It fixes an easily computable 
enumeration ~1, ..., c~2--1 of the non-zero elements of GF(2n). 

- Registration: Suppose a user has generated a primary key pair (sk, pk), to- 
gether with the value aux so that (sk, aux, pk) E Pred. He first proves to the 
server in zero-knowledge that pk is valid, i.e., lies in Predl .  Next, he uni- 
formly selects a polynomial of degree r - 1 over GF(2 n) with the primary 

def r -  1 
secret key as the constant coeJ~cient, say, p(x) = ~ = o  PJ "xJ with Po = sk. 
This corresponds to setting up a secret sharing scheme as in [26]. tie makes 
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a commitment C to all the non.constant coel~cients using the given commit- 
ment scheme. Typically, the length of the commitment automatically shows 
that the content is a polynomial of degree r -  1, otherwise this must be shown 
in zero-knowledge. 
The user's extended primary public key is (pk, C). 

- Secondary key validation: The validation tag for this user's secondary key for 
the limitations index ~ is the pair (crt, ~rL) where 
(1) ~t is the value of the polynomial p at the point al; 
(2) r t  is a non-interactive zero-knowledge proof with respect to the reference 
string R e f  that there exist ~k and p so that (sk, pit) E Pred2, the non-constant 
coed~cients of p correspond to the commitment C, the constant term Po equals 
�9 k, and at = p(a~). 

-- Verification: The user gives a zero-knowledge proof that he knows a correct 
pair (crt, rl). 

P r o p o s i t i o n  4 Construction 2 satisfies 

1. Restricted damage from key disclosure: Public information and the validation 
tags of at most 7" - 1 correctly validated secondary key triples leak no knowl- 
edge. The user need not trust the server except for the randomness of the 
reference string Re f .  

2. Controlled propagation: Any r valid secondary key triples yield the primary 
secret key. 

P r o o f  sketch:  The second part follows as in Proposition 2. For Part 1, the se- 
curity of the commitment scheme and the zero-knowledge proofs implies that the 
only non-negligible source of knowledge is in the values el. These are 7"- 1 shares 
of a secret sharing scheme with threshold r and therefore give no information 
about the secret sk [26]. [] 

4 D i s c r e t e - L o g a r i t h m  S c h e m e s  

We now present a practical self-delegation scheme for cryptographic schemes 
based on discrete logarithms in groups of prime order. Important examples are 
Schnorr and DSS signatures [25, 11]. The advantage over the schemes in the pre- 
vious section is that no general zero-knowledge proof techniques are needed, and 
the resulting self-delegation schemes are essentially as efficient as the underlying 
schemes. The secondary keys can even be from a different cryptographic scheme; 
only the primary key pair has to be from the discrete-logarithm-based scheme. 

More precisely, we assume an underlying cryptographic scheme with the fol- 
lowing key generation: First a prime q is chosen, typically 160 bits long; next 
a prime p, typically 512 bits, such that q divides p -  1; and then an element 
g of order q in the multiplicative group modulo p. A secret key is a uniformly 
chosen value sk E GF(q)* = {1, ..., q -  1}, and the corresponding main part of 
the public key is h = gS~ mod p. 
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The actual scheme is a slight extension to Feldma~'s Verifiable Secret Sharing 
(VSS) scheme based on discrete logarithms [13]. The validation tags are simply 
shares of the secret key. We need two extra properties for our application: First, if 
we want a large domain of limitations indices, the VSS scheme must allow a large 
number of potential shares with an efficient way to index them. Secondly, in our 
case it is not the shareholders who need to verify the validity of the shares (the 
shareholders in the motivating example are the laptops), but external verifiers, 
i.e., we need an efficient zero-knowledge proof of knowledge of a proper share. 
Although these extra properties are not required in the general definition of VSS 
(cf., [8]), they happen to hold in Feldman's VSS. This gives the following scheme, 
for any 7- > 2. 

Cons t ruc t i on  3 (discrete log, threshold): Let any cryptographic scheme based 
on discrete logarithms in groups of prime order be given, i.e., the primary key 
generation is as described above. 

- Server setup: For simplicity, we let the server generate the parameters (q, p, g) 
of the underlying scheme. The domain of limitations indices is {1, ..., q -  1}. 
The server also selects an arbitrary threshold r. 

- Registration: Given a primary key pair (sk, pk) from the underlying dis- 
crete logarithm scheme, the user randomly selects a polynomial pol of de- 
gree r - 1 over GF(q) with sk as its constant coefficient. That is, it selects 
uniformly coefficients (cl, ..., Or-l) in GF(q). This polynomial is the extended 
primary secret key. The extended primary public key consists of the values 
hj = g% mod p, for j = 1,..., r -  1. 

- Secondary key validation: The validation tag for this user's secondary key for 
the limitations indez s is the value v a l l =  pol(g), i.e., 

r - 1  

vall ----- sk --' E c]g] mod q. 
./=I 

Note that this validation tag can be seen as a secret key, denoted ski, of the 
underlying discrete logarithm scheme; the corresponding public key would be 
pk~ = gval~ mod p. 

Verification: The verifier can compute this value pk~ as 

r - 1  

pk~ = pk- II h~' mod p 
./=1 

using the values hj in the user's extended primary public key. Now the user 
has to give a zero-knowledge proof of knowledge of vall,  i.e., of the discrete 
logarithm of pk~ (c f ,  [6, 15]). An alternative is Schnorr identification [25], 
which needs only one ezponentiation on each side, but is only known to be 
witness-hiding [14]. 
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The security of this scheme is obvious from the perfect security of the Verifiable 
Secret Sharing scheme when the public key is already given [24]: Less than r 
validation tags, i.e., shares, give no information about the secret beyond what is 
known by the public key, whereas r validation tags enable reconstruction. 

An alternative way of using this core scheme is to use the values vall 's  di- 
rectly as secondary secret keys (i.e., = sk~'s), instead of as validation tags for 
independently generated secondary key pairs. This improves efficiency in cases 
where we can omit the proof of knowledge (because the subsequent usage of ~k~ 
establishes knowledge of it). However, in such a case we have to be careful about 
how the security of the underlying scheme and our self-delegation scheme influ- 
ence each other. In particular, the legitimate use of sk~ in the underlying scheme 
is typically not zero-knowledge and might therefore additionally endanger the 
primary secret key sk via our self-delegation scheme. Thus, security in such us- 
age has to be considered specifically for each concrete underlying scheme (e.g., for 
Schnorr or DSS signatures). Specifically, for Schnorr identification scheme [25], 
security does hold (for further details see our report [19]). 

In case the set of limitations indices is much smaller than q (e.g., as in case 
where limitations correspond to days of a year), efficiency is greatly improved 
since the evaluation of pk~ by a Horner-like schema only involves exponentiations 
with small numbers. That is, pk~ can be computed from the hj's and s by 
iteratively computing vi+l = ( h r - i  �9 vi) e mod p, starting with vl = 1 and ending 
with pk~ = vr �9 pk. 
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