
S e l f - D e l e g a t i o n w i t h C o n t r o l l e d P r o p a g a t i o n
- or - W h a t I f Y o u L o s e Y o u r L a p t o p

Oded Goldreich 1 and Birgit Pfitzmann 2 and Ronald L. Rivest s

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, ISRAEL.
2 Universitgt des Saarlandes, Fachbereich Informatik, Saarbrficken, GERMANY.

z Laboratory for Computer Science, MIT, Cambridge, Mass., USA.

Abs t rac t . We introduce delegation schemes wherein a user may dele-
gate certain rights to himself, but may not safely delegate these rights
to others. In our motivating application, a user has a primary (long-
term) key that receives some personalized access rights, yet the user may
reasonably wish to delegate these rights to new secondary (short-term)
keys he creates to use on his laptop when traveling, to avoid having to
store his primary secret key on the vulnerable laptop. We propose sev-
eral cryptographic schemes, both generic ones under general assumptions
and more specific practical ones, that fulfill these somewhat conflicting
requirements, without relying on special-purpose (e.g., tamper-proof)
hardware.
This is an extended abstract of our work [19].

1 I n t r o d u c t i o n

In a networked world, users are represented by their public keys. A message
whose digital signature verifies with a user's public key is assumed to have been
signed by that user. Hence, users have to maintain the secrecy of their signing
keys. In real life, however, they may wish to use relatively insecure computing
devices, e.g., networked UNIX machines or laptops, for digital transactions. How
can a user make use of such insecure devices while preserving the secrecy of his
secret key?

One natural solution is for the user to use the secret key of his primary
(long-term) key pair only on secure computing devices, and to create secondary
(temporary, short-term) key pairs as needed for use on less secure devices. The
user delegates a restricted amount of authority from the primary key pair to
such a secondary key pair by signing a delegation certificate. This is simply a
s tatement of the form "the secondary public-key (key2) can be used instead of
the primary public-key (keyl) for the following purposes and under the following
conditions and /or limitations: (description)". The statement is signed with
the primary secret key. This delegation certificate is transferred to the insecure
device together with the secondary key pair, and is appended to all messages
signed with the secondary key, so that the recipient may verify the delegation.
If a secondary secret key is compromised, the loss is minimized because only a
restricted amount of authority was delegated to it.

154

This is a good solution for many cases, but fails in cases where personalized
rights are assigned to a key. Here the intention is to restrict the right to a spe-
cific person, and this is implemented by requiring a signature (or identification)
relative to the key associated with this person. This person may indeed give
away its (primary) secret key, and thus the requirement '~for personal use" is
not really enforced. However, the assumption behind such schemes is that users
are highly motivated not to give away their (primary) secret key because this
key allows others to do many more things in the user's name. Thus, the user is
deterred from propagating certain personalized rights to others by the fact that
other rights will be automatically propagated along with the former rights. For
example, a user may be willing to illegally propagate its personal subscription to
some service, but not if this is linked to the propagation of the right to withdraw
money from his bank account.

The new problem introduced by using secondary keys in a setting where
personalized rights are to be enforced, is that the users are no longer deterred
from propagating personalized rights which they may delegate to secondary keys.
This is the case since the delegation certificate may limit the rights of a secondary
key to a specific right (e.g., subscription), thus leaving no additional risk for
the user ff he propagates this secondary key (and the subscription which goes
with it). Hence, it seems that delegation of rights to secondary keys and the
enforcement of personalized rights are in conflict (see further discussion below).
Resolving this conflict is the central goal of this paper. Put in other words, we
ask: How can delegation of rights be managed such that a user can delegate these
rights to himself, but not to others?

Corresponding to our motivating example - the use of insecure computing
devices - we only consider solutions that do not employ special-purpose hardware
(e.g., tamper-resistant or with biometrics). We consider two different approaches,
which we term statutory and transparent. The latter means that the measures
are invisible to users except for the unavoidable fact that issuers, holders, and
verifiers of a personalized right must be aware that this right is personalized.

Both approaches only approximate the above goal. Loosely speaking, they
do this by fulfilling the following two weaker requirements (with respect to sec-
ondary keys to which personalized rights are delegated):

1. Restricted damage from loss of secondary keys: Loss of a few secondary secret
keys causes no (or little) damage to the user, beyond the loss and possible
abuse (by the finder or thief) of the power delegated by the user to these
secondary keys.

2. Deterring propagation of secondary keys: Giving away many secondary secret
keys to other users (e.g., friends) greatly endangers the user in the sense that
this may have consequences which are highly unpleasant to the user (and
extend way beyond the rights associated with these secondary keys).

The slackness present in this formulation seems inevitable since the finder/thief
in the first requirement is "indistinguishable" from the friends in the second.
Thus, the distinction is made quantitatively.

155

The paper focuses on the transparent approach, where the solutions are
cryptographic. (These cryptographic schemes may have applications beyond the
scope of the self-delegation problem.) The statutory approach, which has non-
cryptographic solutions, is only discussed in the next subsection. We refrain from
addressing the non-technical question of which of the approaches is "better". We
note, however, that the solutions in the two approaches differ in several aspects,
and all aspects should be taken into account when evaluating these solutions.

1.1 The S t a t u t o r y A p p r o a c h

Following the above paradigm, one may devise simple solutions in which trusted
authorities (i.e., a judicial system) inflict suitable punishments on users which
are proven to have propagated personalized rights to others. The case against a
user will consist of sufficiently many secondary secret-keys (with corresponding
certificates assigning personalized rights); it is assumed that no user is going to
incriminate himself, whereas other users may be less careful not to incriminate
another user. Furthermore, users may even be encouraged (again by statutory
means; e.g., awards) to incriminate others. Such a judicial system is very flexi-
ble - it may consider special circumstances and determine the verdict based on
these. On the other hand, such a system has a significant overhead.

Another type of statutory arrangement, closer in spirit to the solution pre-
sented next, is to define an action taken with sufficiently many validated sec-
ondary secret key (regardless of their assigned rights) as if it was taken by the
user (i.e., with the corresponding primary key). However, in such a case, all
verifiers of any signatures, even those that have nothing to do with personal-
ized rights, must be aware of this arrangement. Thus, this solution too is not
transparent.

1.2 The Transpa ren t Approach

In the transparent approach, users are deterred from delegating personalized
rights to others by ensuring that the recipient learns something about the pri-
mary secret key of the delegator. A user will then again be highly motivated not
to delegate such rights so as not to risk giving up the fundamental rights associ-
ated with the primary secret key. The basic principle of all our proposals is that
the user has to validate his secondary keys with respect to his primary secret key
(in addition to signing an ordinary delegation certificate). As described below,
the validation process will deter the user from delegating personalized rights to
others. Use of personalized rights is granted only when one proves possession
of a validated secondary-key (or possession of the primary-key, as usual), mere
possession of a secondary-key (without corresponding validation) will not do.

The conflicting goals stated above, are thus rephrased as follows:

1. Restricted damage from loss of secondary keys: Loss of a few validated sec-
ondary secret keys will not endanger the security of the primary secret key.
That is, they yield little or no knowledge about the primary secret key.

156

2. Deterring propagation of secondary keys: Man# validated secondary secret keys
allow the recipient to recover the primary secret key efficiently.

We present several constructions achieving such a balance. Our constructions
are categorized by the following parameters:

- Generic vs. specific: In Section 3, we present generic schemes' which apply to
any primary and secondary keys. They rely on non-interactive zero-knowledge
proofs [3], and thus on the existence of trapdoor one-way permutations [12,
21]. In Section 4, we present more specific and efficient constructions where
the primary key pair must belong to a discrete-logarithm based cryptographic
scheme like Schnorr or DSS signatures [25, 11].

- Gradual vs. threshold: In Constructions 1 thru 1.2, the security of the pri-
mary secret key degrades gradually with the number of secondary secret keys
available to an adversary until the primary secret key is totally revealed. In
Constructions 2 and 3, the primary secret key is fully secret up to a certain
threshold number of secondary secret keys available to an adversary (e.g., 3,
10, or 100), but is easily recovered from any number of secondary secret keys
larger than this or a second threshold.
Additionally, some schemes allow the application to freely fix after how many
secondary secret keys the adversary will get the primary secret key (i.e., the
slope of the gradual degradation or the threshold, respectively), whereas in
others this number is predefined by other system parameters, e.g., the key
length.

- Limitat ions for secondary keys: Apart from honest users, service providers may
wish to limit the rights associated with secondary keys. We handle these lim-
itations associated with a secondary key in a general way, and call their
description a limitations index. An archetypical example of limitation indices
are time periods, such as days, during which a secondary key is valid. Other
examples include upper bounds on value of transactions, lists of specific ser-
vices, etc.
A relevant parameter for our schemes is the size of the domain of potential
limitation indices. For example, if secondary keys are associated with days,
which is indeed a very important case, then the domain of indices is relatively
small. If, on the other hand, limitation indices stand for arbitrary specification
of rights such as expressed by 1000-words English-text documents, then t h e
domain is huge. The domains in Construction 1.2 is unbounded, in Construc-
tions 2 and 3 bounded, but exponentially large in the security parameter, and
in Construction 1.1 relatively small. (Indeed, using appropriate hashing, one
may use schemes with an exponentially large domain of limitation indices as
if their domain were unbounded.)

Our proposals for self-delegation of personalized rights are not in conflict with
normal delegation of other types of rights: Both types of rights can be given
on the same primary and secondary keys and even with the same delegation
certificates. The only difference is that for personalized rights, verifiers will re-
quire the presence of validation information related to the primary key of the

157

original owner of the right, whereas in other cases they only require a delegation
certificate.

1.3 R e l a t e d Work

Delegation certificates are merely documents which assert that certain rights
associated to a specific public key are to be passed to another public key. Such
documents are verifiable with respect to the former public key, and are binding
(as all digital signatures) under certain statutory provisions. Technical prob-
lems with such certificates occur where one makes additional requirements (e.g.,
anonymity, standardization of contexts, or non-transferability) regarding such
certificates. None of these extensions is required in our case.

In our case the goal is to resirict the delegation of some rights; specifically,
of personalized rights. Thus, ordinary delegation certificates will not do, unless
they are augmented by either an auxiliary statutory arrangement or auxiliary
validation information, as discussed above. (In fact, one may view the augmen-
tation of delegation certificates, suggested above, as a new type of certificate
which one may call a self-delegation certificate.) Other approaches to the issue
of limiting the delegation of rights were suggested in [4, 5].

We note the analogy between the current work and [10]: The latter paper
presents a transparent approach to copyright protection, in contrast to the (typ-
ical) statutory approach based on fingerprinting following [27].

Some analogy exists also between self-delegation schemes and (v-1)-spendable
coins [7, 23]. Conceptually speaking, the problems are different since there is no
requirement on personal use in the latter, and the main issue is untraceability
(otherwise identification of overspenders would be trivial). Technically speaking,
one can see that the analogy does not extend too far since here we construct
self-delegation schemes based on standard complexity assumptions, whereas such
schemes are not known for untraceable cash.

2 T h e M o d e l

Our model and constructions of self-delegation schemes only concern the core
part of the applications described so far, and are therefore largely independent
of the concrete application. In particular, we only deal with the primary and sec-
ondary keys, and not with certificates that third parties give to assign rights to
the primary keys, such as the above-mentioned certificate asserting subscriber-
hood - these can be realized in standard ways, for example, by signatures with
keys held by the third parties on the keys handled in the self-delegation scheme,
and thus be added to our constructions in a modular way.

Furthermore, we do not explicitly consider the user's own authorization of
the secondary keys, i.e., the delegation certificates (from primary key to sec-
ondary key) as described in the introduction. This is not quite as independent
of our schemes as the statements by third parties, but whenever the underlying
cryptographic scheme is a signature scheme, the delegation certificates can be
made in a standard way with the primary secret key.

158

The notion of a generic scheme will more precisely mean the following: An
arbitrary underlying cryptographic scheme may be given that contains an algo-
rithm for generating primary key pairs and one for generating secondary key
pairs, possibly depending on a primary key pair. The typical case is simply
that an algorithm G for generating one key pair is given, and all primary and
secondary key pairs are generated independently with this algorithm. Our mech-
anism allows to control propagation of such secondary keys without posing addi-
tional dangers on the underlying scheme and without making assumptions about
how the keys of the underlying scheme may be used. For instance, signing (with
a secret key) is not a zero-knowledge procedure, and in some protocols secret
keys may even sometimes be revealed. Our controlled self-delegation schemes
should not pose any additional risk to the keys, i.e., beyond the risk involved
in using the given underlying cryptographic schemes. The schemes in Section 3
are of this type, and those in Section 4 are only slightly less generic in that they
assume a specific generation algorithm for the primary secret key. We briefly
mention variants that may be a little more efficient, but require that primary
and secondary keys are only used in well-defined ways, e.g., within a specific
signature scheme. In the rest of the model section, we concentrate on generic
schemes.

We have to consider three types of parties: a server, which corresponds to
a key certification infrastructure, users, who have primary and secondary keys,
and verifiers, with whom the users interact using their secondary keys. A self-
delegation scheme with controlled propagation has four protocols:

- S e r v e r s e t u p : Here the server generates and publishes global parameters.

- R e g i s t r a t i o n : Here the user, having generated a primary key pair (sk, pk)
from an underlying cryptographic scheme, registers the primary public key
with the server. We call the secret information that the user stores at the
end of the registration his extended primary secret key, and the corresponding
information published by the server the user's extended primary public key.
For simplicity, we often omit the term "extended", and use (sk, pk) to denote
also the extended key pair.

- Secondary key validation: Here the user, having generated a secondary key pair
(ske, pke) from the underlying cryptographic scheme, wants to validate it for
a certain limitations index s He produces a v a l i d a t i o n t a g , denoted vale, that
he will use later to convince verifiers of the validity of the secondary key pair
(when not having the primary secret key available).

- V e r i f i c a t i o n : Here a user wants to convince a verifier, typically a service
provider, that a certain public key pk e can be used as a secondary key for
the primary public key pk.
We stress that the user's secret inputs are only skl and vale; he no longer
has the primary secret key available.
The verifier also inputs the limitations index s for which pk e is supposed to be
valid and global parameters published in server setup. Note that controlled
propagation would make no sense if the verifier did not check s e.g., if s
denotes a specific date, the verifier must enter the current date rather than

159

let the alleged user enter a date of his choice (which would always be the one
for which the key is valid).

These protocols must be efficient, preferably as efficient as the underlying cryp-
tographic scheme. Clearly, correctly validated secondary keys for correctly regis-
tered primary public keys should (almost) always be accepted by honest verifiers.

We call a triple (ski, vall,pkL) a correctly validated secondary key triple if
it is a possible output of the correct secondary key generation and validation
program. This is what a thief gets from an honest user. However, dishonest
users who try to give away secondary keys to others are not restricted to correctly
validated keys. We say that a user gives a second person a valid secondary key
triple (for a public key pk and a limitations index s if the information enables
the second person to convince an honest verifier almost certainly. Formally, this
notion is only meaningful in connection with the second person's program, which
may be arbitrary, yet must be efficient. For simplicity, we concentrate on users
giving away full-quality secondary keys, but with definitions as in [1] this can be
generalized to giving away information that will only convince the verifier with
a certain probability.
Our two goals can now be formulated in more detail as follows:

- Restricted damage from key disclosure: I f a certain user is honest, i t should be
infeasible for an adversary (thief) who only obtains .few correctly validated
secondary key triples to generate additional valid secondary key triples. Here,
"additional" means for a limitations index t* for which the adversary has not
obtained a correctly validated secondary key triple. The adversary should also
not get too much knowledge about existing non-stolen secondary secret keys
ski nor about the primary secret key. More precisely, as we concentrate on
generic schemes, we have to speak about any knowledge gained by validation
tags. A suitable terminology is that of knowledge complexity (cf., [20, 18]). 4
Specifically, gradual schemes have a parameter $, called the slope, so that
each correctly validated secondary key triple only gives ~ bits of knowledge.
Schemes with threshold have a parameter r , called the threshold, so that less
than r correctly validated secondary key triples do not give the adversary
any knowledge.

- Controlled propagation: If a user gives a second person many different valid
secondary key triples, then the second person can efficiently compute the
user's primary secret key. Here, "different" means for different limitations
indices.
In schemes with threshold, "many" typically means at least v, but there are

4 Loosely speaking, saying that a protocol (or a message) gives ~ bits of knowledge
with respect to a given state means that whatever can be efficiently computed after
the execution of the protocol (or receipt of the message) can also be computed
efficiently with probability at least 2 -'~ from the state alone. Thus, for small ~, more
precisely ~ --- O(log n) where n is the key length, if one can find the primary secret
key with non-negligible probability after receiving at most ~ bits of knowledge, then
one can do the same without receiving these bits. (Recall that f(n) is non-negligible
if f (n) > 1/poly(n)).

160

also schemes with a second threshold r* > r, (i.e., allowing a gap). Gradual
schemes have a similar parameter j3, which will typically be about n/6, where
n is the key length.

For simplicity, we assume that all the security parameters ~, r etc., are chosen
at the server setup time. Typically, users are concerned with restricted damage
from key disclosure and therefore wish r to be large (or ~ to be small), whereas
service providers, mainly concerned with propagation control, want the opposite.
We consider the following types of attacks:

- The adversary for the first goal, "restricted damage", knows the user's pri-
mary public-key. It includes (both other users and) verifiers who have verified
any number of this user's secondary public keys and with whom the user has
then interacted using these keys, e.g., by signing messages.
In a strong form of the requirement, the adversary also includes the server
(i.e., the user may not want or need to trust the server).

- The adversary for the second goal, "controlled propagation", consists of any
number of colluding users and other verifiers. Typically, we only speak of "the
user" because independence is clear. In some of our constructions achieving
this goal depends on proper behaviour of the server (which is supposed to
generate some random parameters).

In all the following schemes, the first goal, "restricted damage", is stated and
proven with respect to a static adversary, i.e., the limitations indices of the re-
vealed validation tags are determined beforehand rather than chosen adaptively
by the adversary. We believe that all schemes are in fact adaptively secure, but
refrain at this point from formulating and proving our belief. We also assume
for the time being that each participant only carries out one protocol at a time
(i.e., we do not consider protocol interleaving).

3 G e n e r i c S c h e m e s

The basic idea is that each validation tag val l contains some little "piece of
information" el about the primary secret key sk. The holder of a secondary key
can only convince verifiers if he knows this el. Convincing the verifier must be
done in zero-knowledge, so that verifiers do not gain an advantage in finding a
user's primary secret key. On the other hand, knowledge of ~l's is related to the
gradual release of a secret (as introduced for secret exchange in [2]): Knowledge
of a few such pieces (i.e., el 's) does not endanger the secret, whereas knowledge
of many "orthogonal" pieces does endanger it. A crucial point is to ensure this
"orthogonality" whenever many pieces are given to a second person in violation
of the "controlled propagation" goal. To ensure this, the value of el is made to
depend on the limitations index s Our constructions differ in the way this is
achieved.

In the proof that he knows el, the user also has to prove that el is correct
with respect to the primary secret key sk, which is no longer available in the ver-
ification stage. Hence this part of the proof will be precomputed in the secondary
key validation protocol. We use a non-interactive zero-knowledge proof system

161

[3], more precisely one where one common random string R e f can be used for
an arbitrary number of proofs [12]. (This result also applies to the more efficient
basic construction in [21].) In schemes with a small set of limitations indices, we
could improve efficiency by using a non-interactive zero-knowledge proof system
capable of only proving one assertion, and providing enough reference strings in
advance.

Finally, we have to guarantee that all al 's refer to the same primary secret
key sk. This is easy if the underlying cryptographic scheme guarantees that for
every primary public key pk, there is only one possible primary secret key sk and
its validity can be verified in polynomial time. For example, this is the case with
the prime factorization of KSA moduli or the discrete logarithm of an element in
logarithm-based schemes. Yet, in other cases, additional information aux may be
required to verify the validity of secrets with respect to publicly available infor-
mation. Typically, the randomness used in the key-generation process suffices.
We then denote by pk the entire information that is published. This motivates
our interest in schemes where a 3-dry relation Pred with the following properties
exists:

- NP-recognition of secret keys: Pred is recognizable in polynomial-time. This
implies that the set of valid public keys

Predl : { p k l 3 s k , a u x : (s k , aux, pk) 6 P r e d }

and of valid key pairs

Pred2 = {(sk, pk)13aux : (sk, aux, pk) q Pred}

are in NP and therefore have zero-knowledge proof systems [17].
- Unique secret keys: For every pk, there exists at most one sk such that

(sk, pk) e Pred2.
-- Key generation of the given cryptographic scheme produces triples (sk, aux, pk) E

Pred.

Using any one-way function, one may transform any cryptographic scheme into
one with unique secret keys, while maintaining computational secrecy.

3.1 G r a d u a l schemes

The following construction is actually a framework for several slightly different
versions with different properties.

C o n s t r u c t i o n 1 (generic, gradual, framework): Let a cryptographic scheme with
unique secret keys with a relation Pred as above be given.

- Server setup: The server chooses the length n of the secret keys and the
slope 6, where 6 divides n. It randomly generates a reference string R e f E
{0, 1} p~ for the non-interactive zero-knowledge proof system, and sets up
a scheme that defines a sequence rl, r~, ... of n-bit strings so that anyone can
obtain rl in poly(n, logg) time. Several such schemes are discussed below.

162

- Registration: Suppose a user has generated a primary key pair (sk, pk), to-
#ether with the value aux so that (sk, aux, pk) E P r e d . The user proves to the
server in zero-knowledge that pk is valid, i.e., lies in Predl.

-- Secondary key validation: The validation fag for this user's seconda~ key
w.r.t, the limitations indez e is the pair (at, re) where
(1) ~e is the inner prodnct in GF(2 ~) of sk and re, where both are considered
as n/b-dimensional vectors over GF(26).
(2) re is a non-interactive zero-knowledge proof, with respect to the reference
string Re f , that there ezists sk so that (sk, pk) E Pred2 and ~re is the inner
product of sk and re.

- Verification: The user gives the verifier an interactive zero-knowledge proof of
knowledge [20, I] that he knows (~'e, re) such that re is a valid non-interactive
zero-knowledge proof as in item (2} of the validation protocol. We stress that
the common input to the interactive proof consists of Re f , pk, and re.

Propos i t i on 1 (generic, gradual, framework): Any instantiation of Construc-
tion 1, that is, no matter how the re's are determined, has the following prop-
erties:

1. Restricted damage from key disclosure: The scheme leaks no knowledge except
bits in each correct validation tag. The user only needs to trust the server

for the randomness of the reference string Ref .
2. Controlled propagation: i f the user gives a second person valid secondary key

triples for a certain set of limitations indices, L, then the second person can
efficiently compute the inner product of one fixed primary secret key sk with
each value re corresponding to t E L.

P r o o f sketch: We first prove Part 1 ("restricted damage"). First, one easily
sees that in the registration and verification protocols, the user does not give
away any knowledge beyond the standard operation of the public-key infras-
tructure, because the rest of the protocols gives zero-knowledge proofs. Next,
we consider the knowledge an adversary gains by obtaining a correctly validated
secondary key triple. Recall that we only need to consider what is revealed on
top of the secondary secret key itself, i.e., in the validation tag (at, ~re). These
are merely ~ bits of knowledge, since ~e is only ~ bits long and ~re is a zero-
knowledge proof referring to at and values the adversary knows already. (Recall
that knowledge complexity is bounded by the actual length of objects and at
most additive [18].)

We now prove Part 2 ("controlled propagation"). By the soundness of the in-
teractive zero-knowledge proof of knowledge, having a valid secondary key triple
(i.e., information that enables the second person to convince an honest veri-
fier) implies that the second person knows a correct pair (~re, 7re). More formally,
there is an effective way (called a knowledge extractor [1]) to reconstruct this
pair given access to the second person's strategy and his auxiliary information.
Now the soundness of the non-interactive zero-knowledge proof ~re implies that

163

~e is in fact the inner product of the one fixed sk and re. (Here the uniqueness
property of Pred2 is used.) []

The scheme defining the sequence rl, r2, ... should guarantee that sufficiently
many of these values span almost the entire vector space, so that giving away
many valid secondary keys compromises the primary key. Our first such scheme
guarantees this in an optimal way, but can only be used for a domain of up
to 26 - 1 limitations indices. This value is small because 8 should be at most
logarithmic in n to satisfy the restricted-damage condition. Thus, this scheme is
most adequate for cases like our motivating example where the limitations indices
correspond to days; e.g., $ = 10 allows 1023 days, after which the primary key
pairs could be renewed.

C o n s t r u c t i o n 1.1 (generic, gradual, severely bounded limitations indices): We
use Construction 1 with the following re 's: The server fixes an easily computable
enumeration ~1,...,~26_1 of the non-zero elements of GF(26). The value re is
the vector (1, ~e,-.., c~-1), where t3 = n/8.

P r o p o s i t i o n 2 (generic, gradual, severely bounded limitations indices): Con-
struction 1.1 has the following controlled-propagation property: Any 13 valid sec-
ondary key triples yield the primary secret key.

P r o o f sketch: Any 13 vectors re form a Vandermonde matrix, which is always
non-singular. Thus the system of equations that the second person has (by the
general controlled-propagation property of Construction 1) is of full rank. The
easily found solution is the primary secret key. []

To use Construction 1 with a larger domain of limitations indices, we essentially
use uniformly random values re. The server can set these up in different ways:

C o n s t r u c t i o n 1.2 (generic, gradual, less bounded limitations indices): We use
Construction 1 with one of the following schemes for generating the rt 's:

1. For medium-sized limitation set: The server generates and publishes, as part
of the setup stage, a list of a certain number m of uniformly chosen values
rl.

2. For unbounded limitation set: The server provides a "random oracle" (or
Beacon) service throughout the lifetime of the system; rl equals the answer
of this random oracle on query L The random oracle may be implemented
by the server by using a pseudorandom function [16].

To analyze the controlled-propagation quality of these constructions, we need
a technical lemma about the probability that too many of the rl 's are linearly
dependent. Note that when we talk of the rank of a matrix chosen from a subset
of a field, we mean its rank over the field (i.e., the maximum number of linearly
independent rows with respect to coefficients from the field).

164

L e m m a 1 Let m , n , t , R be integers so that m > n > R and m > t > R, and
q be a prime power. Let S C_. GF(q). Then, the probability Prs(m, n, t, R) that
a uniformly chosen m-by-n matrix over S contains t rows which together have
rank at most R is bounded above by

(2 m) ' . ISI_(._R).(,_R)" Prs(rn, n, t, R) <_ t]

Proof omitted. For simplicity, we now restrict ourselves to the binary case (i.e.,
6---1).

P r o p o s i t i o n 3 (generic, gradual, less bounded limitations indices): For the first
variant of Construction 1.P, with ~ = 1, the following controlled-propagation
property holds: With probability at least 1 - 2 -n, over the choice of the rl 's, i f
a user gives away 2n valid secondary key triples to a second person, the second
person can e~ciently list a set of at most m 2 possibilities for the primary secret
key. For the second variant of Construction 1.2, the above holds provided the
user makes at most m oracle queries.

Proof omitted. The second person can use the above list in different ways: For'
example, he can efficiently perform any task requiring this secret key with proba-
bility 1/m 2, by uniformly selecting an element of this list. Alternatively, in many
applications, additional publicly available information can be used to determine
which of these keys is correct.

3.2 A t h r e s h o l d s c h e m e

We now show a generic threshold construction. The threshold r can be chosen
very freely, i.e., between 1 and 2 n - 1, where n is the length of the keys. The
set of limitations indices is bounded, but the bound can be much larger than in
Construction 1.1: It is now 2 n.

C o n s t r u c t i o n 2 (generic, threshold, exponentially large indices domain): Let
a cryptographic scheme with unique secret keys with a relation Pred as above be
given. Additionally, we need a secure commitment scheme that is unconditionally
binding; e.g., as in [22].

- Server setup: The server chooses parameters n for the length of secret keys
and r for the threshold and a reference string R e f E {0, 1} p~ for the
non-interactive zero-knowledge proof system. It fixes an easily computable
enumeration ~1, ..., c~2--1 of the non-zero elements of GF(2n).

- Registration: Suppose a user has generated a primary key pair (sk, pk), to-
gether with the value aux so that (sk, aux, pk) E Pred. He first proves to the
server in zero-knowledge that pk is valid, i.e., lies in Predl . Next, he uni-
formly selects a polynomial of degree r - 1 over GF(2 n) with the primary

def r - 1
secret key as the constant coeJ~cient, say, p(x) = ~ = o PJ "xJ with Po = sk.
This corresponds to setting up a secret sharing scheme as in [26]. tie makes

165

a commitment C to all the non.constant coel~cients using the given commit-
ment scheme. Typically, the length of the commitment automatically shows
that the content is a polynomial of degree r - 1, otherwise this must be shown
in zero-knowledge.
The user's extended primary public key is (pk, C).

- Secondary key validation: The validation tag for this user's secondary key for
the limitations index ~ is the pair (crt, ~rL) where
(1) ~t is the value of the polynomial p at the point al;
(2) r t is a non-interactive zero-knowledge proof with respect to the reference
string R e f that there exist ~k and p so that (sk, pit) E Pred2, the non-constant
coed~cients of p correspond to the commitment C, the constant term Po equals
�9 k, and at = p(a~).

-- Verification: The user gives a zero-knowledge proof that he knows a correct
pair (crt, rl).

P r o p o s i t i o n 4 Construction 2 satisfies

1. Restricted damage from key disclosure: Public information and the validation
tags of at most 7" - 1 correctly validated secondary key triples leak no knowl-
edge. The user need not trust the server except for the randomness of the
reference string Re f .

2. Controlled propagation: Any r valid secondary key triples yield the primary
secret key.

P r o o f sketch: The second part follows as in Proposition 2. For Part 1, the se-
curity of the commitment scheme and the zero-knowledge proofs implies that the
only non-negligible source of knowledge is in the values el. These are 7"- 1 shares
of a secret sharing scheme with threshold r and therefore give no information
about the secret sk [26]. []

4 D i s c r e t e - L o g a r i t h m S c h e m e s

We now present a practical self-delegation scheme for cryptographic schemes
based on discrete logarithms in groups of prime order. Important examples are
Schnorr and DSS signatures [25, 11]. The advantage over the schemes in the pre-
vious section is that no general zero-knowledge proof techniques are needed, and
the resulting self-delegation schemes are essentially as efficient as the underlying
schemes. The secondary keys can even be from a different cryptographic scheme;
only the primary key pair has to be from the discrete-logarithm-based scheme.

More precisely, we assume an underlying cryptographic scheme with the fol-
lowing key generation: First a prime q is chosen, typically 160 bits long; next
a prime p, typically 512 bits, such that q divides p - 1; and then an element
g of order q in the multiplicative group modulo p. A secret key is a uniformly
chosen value sk E GF(q)* = {1, ..., q - 1}, and the corresponding main part of
the public key is h = gS~ mod p.

166

The actual scheme is a slight extension to Feldma~'s Verifiable Secret Sharing
(VSS) scheme based on discrete logarithms [13]. The validation tags are simply
shares of the secret key. We need two extra properties for our application: First, if
we want a large domain of limitations indices, the VSS scheme must allow a large
number of potential shares with an efficient way to index them. Secondly, in our
case it is not the shareholders who need to verify the validity of the shares (the
shareholders in the motivating example are the laptops), but external verifiers,
i.e., we need an efficient zero-knowledge proof of knowledge of a proper share.
Although these extra properties are not required in the general definition of VSS
(cf., [8]), they happen to hold in Feldman's VSS. This gives the following scheme,
for any 7- > 2.

Cons t ruc t i on 3 (discrete log, threshold): Let any cryptographic scheme based
on discrete logarithms in groups of prime order be given, i.e., the primary key
generation is as described above.

- Server setup: For simplicity, we let the server generate the parameters (q, p, g)
of the underlying scheme. The domain of limitations indices is {1, ..., q - 1}.
The server also selects an arbitrary threshold r.

- Registration: Given a primary key pair (sk, pk) from the underlying dis-
crete logarithm scheme, the user randomly selects a polynomial pol of de-
gree r - 1 over GF(q) with sk as its constant coefficient. That is, it selects
uniformly coefficients (cl, ..., Or-l) in GF(q). This polynomial is the extended
primary secret key. The extended primary public key consists of the values
hj = g% mod p, for j = 1,..., r - 1.

- Secondary key validation: The validation tag for this user's secondary key for
the limitations indez s is the value v a l l = pol(g), i.e.,

r - 1

vall ----- sk --' E c]g] mod q.
./=I

Note that this validation tag can be seen as a secret key, denoted ski, of the
underlying discrete logarithm scheme; the corresponding public key would be
pk~ = gval~ mod p.

Verification: The verifier can compute this value pk~ as

r - 1

pk~ = pk- II h~' mod p
./=1

using the values hj in the user's extended primary public key. Now the user
has to give a zero-knowledge proof of knowledge of vall, i.e., of the discrete
logarithm of pk~ (c f , [6, 15]). An alternative is Schnorr identification [25],
which needs only one ezponentiation on each side, but is only known to be
witness-hiding [14].

167

The security of this scheme is obvious from the perfect security of the Verifiable
Secret Sharing scheme when the public key is already given [24]: Less than r
validation tags, i.e., shares, give no information about the secret beyond what is
known by the public key, whereas r validation tags enable reconstruction.

An alternative way of using this core scheme is to use the values vall 's di-
rectly as secondary secret keys (i.e., = sk~'s), instead of as validation tags for
independently generated secondary key pairs. This improves efficiency in cases
where we can omit the proof of knowledge (because the subsequent usage of ~k~
establishes knowledge of it). However, in such a case we have to be careful about
how the security of the underlying scheme and our self-delegation scheme influ-
ence each other. In particular, the legitimate use of sk~ in the underlying scheme
is typically not zero-knowledge and might therefore additionally endanger the
primary secret key sk via our self-delegation scheme. Thus, security in such us-
age has to be considered specifically for each concrete underlying scheme (e.g., for
Schnorr or DSS signatures). Specifically, for Schnorr identification scheme [25],
security does hold (for further details see our report [19]).

In case the set of limitations indices is much smaller than q (e.g., as in case
where limitations correspond to days of a year), efficiency is greatly improved
since the evaluation of pk~ by a Horner-like schema only involves exponentiations
with small numbers. That is, pk~ can be computed from the hj's and s by
iteratively computing vi+l = (h r - i �9 vi) e mod p, starting with vl = 1 and ending
with pk~ = vr �9 pk.

A c k n o w l e d g m e n t s

We thank Michael Waidner for interesting discussions. This research was par-
tially supported by DARPA grant DABT63-96-C-0018.

R e f e r e n c e s

1. M. BeHave and O. Goldreich: On Defining Proofs of Knowledge; in Crypto '9P,
Springer-Verlag, LNCS Vol. 740, pp. 390-420, 1992.

2. M. Blum: How to Exchange (Secret) Keys; A C M Transactions on Computer Sys-
tems, Vol. 1, No. 2, pp. 175-193, 1983.

3. M. Blum, P. Feldman, and S. Micali: Non-Interactive Zero-Knowledge and its
Applications; in POth STOC, pp. 103-112, 1988.

4. D. Chaum: Showing credentials without identification: Transferring signatures
between unconditionally unlinkable pseudonyms; in Auscrypt '90, LNCS 453,
Springer-Verlag, Berlin 1990, pages 246-264.

5. D. Chaum: Achieving Electronic Privacy; Scientific American, August, pp. 96-
101, 1976.

6. D. Chanm, 3.-H. Evertse, and 3. van de Graaf: An improved protocol for demon-
strating possession of discrete logarithms and some generalizations; in Eurocrypt
'87, Springer-Verlag, LNCS Vol. 304, pp. 127-141, 1988.

7. D. Chaum, A. Fiat and M. Naor: Untraceable Electronic Cash; in Crypto '88,
LNCS 403, Springer-Verlag, Berlin 1990, pages 319-327.

168

8. B. Chor, S. Goldwasser, S. Micali and B. Awerbuch: Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults; in ~6th FOGS, pages 383-395,
1985.

9. W. Diffie and M. E. HeUman: New Directions in Cryptography; IEEE Transac.
tions on Information Theory, Vol. 22, No. 6, pp. 644-654, 1976.

10. C. Dwork, J. Lotspiech, and M. Naor: Digital Signets: Self-Enforcing Protection
of Digital Information; in P8th STOC, pp. 489-498, 1996.

11. The Digital Signature Standard Proposed by NIST; Communications o] the ACM,
Vol. 35, No. 7, pp. 36-40, 1992.

12. U. Feige, D. Lapidot, and A. Shamir: Multiple non-interactive zero knowledge
proofs based on a single random string; in 31st FOGS, pp. 308-317, 1990.

13. P. Feldman: A practical scheme for non-interactive verifiable secret sharing; in
BOth FOGS, pp. 427-437, 1987.

14. U. Feige and A. Shamir: Witness Indistinguishability and Witness Hiding Proto-
cols; in ~Pnd STOC, pp. 416-426, 1990.

15. A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions to Identifica-
tion and Signature Problems; in Grypto '86, Springer-Verlag, LNCS Vol. 263, pp.
186-194, 1987.

16. O. Goldreich, S. Goldwasser, S. Micali: How to Construct Random Functions;
Journal o] the ACM, Vol. 33, No. 4, pp. 792-807, 1986.

17. O. Goldreich, S. Micali, and A. Wigderson: Proofs that Yield Nothing but their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems; Journal
of the AGM, Vol. 38, No. 1, pp. 691-729, 1991.

18. O. Goldreich and E. Petrank: Quantifying Knowledge Complexity; in 3~nd FOGS,
pp. 59-68, 1991. To appear in Computational Complexity.

19. O. Goldreich, B. Pfitzmann and R.L. Rivest: Self-Delegation with Controlled
Propagation - or - What If You Lose Your Laptop; Record 97-12 of the The-
ory of Cryptography Library, URL: h t tp : / / t heo ry . lcs .mit. edu/,,~tcryptol.

20. S. Goldwasser, S. Micali, and C. Rackoff: The Knowledge Complexity of Interac-
tive Proof Systems; SIAM Journal on Computing, Vol. 18, No. 1, pp. 186-208,
1989.

21. J. Kilian and E. Petrank: An Efficient Noninteractive Zero-Knowledge Proof Sys-
tem for NP with General Assumptions; Journal of Cryptology, Vol. 11, No. 1, pp.
1-27, 1998.

22. M. Naor: Bit Commitment Using Pseudorandomness; Journal of Cryptology, Vol.
4, No. 2, pp. 151-158, 1991.

23. T. Okamoto and K. Ohta: Disposable Zero-Knowledege Authentications and their
Applications to Untraceable Electronic Cash; in Crypto '89, LNCS 435, Springer-
Verlag, Berlin 1990, pages 481-496.

24. T. P. Pedersen: Distributed Provers with Applications to Undeniable Signatures;
in Eurocrypt '91, Springer-Verlag, LNCS Vol. 547, pp. 221-242, 1991.

25. C. P. Schnorr: Efficient Signature Generation by Smart Cards; Journal of Cryp-
tology, Vol. 4, No. 3, pp. 161-174, 1991.

26. A. Shamir: How to Share a Secret; Communications o] the ACM, Vol. 22, No. 11,
pp. 612-613, 1979.

27. N.R.Wagner: Fingerprinting; in Proceedings of IEEE Symposium on Security
and Privacy, pp. 18-22, 1983.

