Making Maximum Entropy Computations Easier By
Adding Extra Constraints
(Extended Abstract)

Sally A. Goldman
Ronald L. Rivest

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

March 12, 1997

Abstract

This paper presents a new way to compute the probability distribution
with maximum entropy satisfying a set of constraints. Unlike previous ap-
proaches, our method is integrated with the planning of data collection and
tabulation. We show how adding constraints and performing the associated
additional tabulations can substantially speed up computation by replacing
the usual iterative techniques with a straight-forward computation. These
extra constraints are shown to correspond to the intermediate tables used in
Cheeseman’s method. We also show that the class of constraint graphs that
our method handles is a proper generalization of Pearl’s singly-connected
networks. An open problem is to determine a minimal set of constraints
necessary to make a hypergraph acyclic. We conjecture that this problem is
NP-complete, and discuss heuristics to approximate the optimal solution.

1 Introduction

Many applications require reasoning with incomplete information. For example,
in artificial intelligence one may wish to develop expert systems that can answer

9This research was supported in part by NSF Grant DCR-8006938. Sally Goldman received
support from an Office of Naval Research Fellowship.

questions when given an incomplete model of the world. Having an incomplete
model means that a question can have more than one answer consistent with
the model. How can a system choose an answer to such a question? This paper
discusses a technique based on the method of maximum entropy. After formally
defining this problem, we discuss previously known methods for calculating the
maximum entropy distribution. Then we present a new technique which makes
maximum entropy computations easier by adding extra constraints. Finally, we
compare our technique to previous methods.

2 Formal Problem Definition

In this section we formally define our problem. We begin by defining some
notation. Let V = {A, B,C,...} be a finite set of binary-valued variables, or
attributes. (The generalization to finite-valued variables is straightforward.)
Consider the event space €y defined to be the set of all mappings from V to
{0,1}. (We call such mappings assignments since they assign a value to each
variable in V.) It is easy to see that |Qy| = 2IVl. If £ C V, we have Qy is
isomorphic to Qg X Qy_g; we identify assignments in {2 with subsets of Qy in
the natural manner.

We are interested in probability distributions defined on €y,. We use the
following convention throughout this paper. If £ C V', we write P(/) to denote
the probability of an element of Qp C Qy . In other words, we specify only the
variables involved in the assignments and not their values. For example

P(V) = P(A)P(B)P(C)--- (1)

represents 2Vl equations, stating that the variables are independent. (We do
not assume equation (1) in this paper.) By convention, all assignments in an
equation must be consistent. We also write P(A) instead of P({A}), P(AB)
instead of P({AB}), and so on.

We use a similar convention for summations:), stands for a summation
over all assignments in Qg, when F2 C V. Using our conventions, we see that
Y C F CV implies that

Py =Y P(E) (2)
E-Y

We are interested in probability distributions on €y satisfying a given set
of constraints. Let F,...F,, be distinct subsets of V. Let us suppose that for
each i we are given the 2/l constraint values {P(F;)}, and that these values
are consistent (i.e. there exists at least one probability distribution on €y which

satisfies the given constraints). A common way of ensuring that the constraints
are consistent is to derive the constraints by computing the observed marginal
probabilities from a common set of data. (Using “experts” to provide subjec-
tive probability estimates is a well-known way of deriving a set of inconsistent
constraints.) Note that equation (2) states that constraints on the P(Y')’s are
implied by the constraints on the P(E;)’s when Y C F;. In general, there may
be many probability distributions P satisfying the given constraints; in this case
we are interested in that unique distribution P* which maximizes the entropy

H(P)= =) P(V)log(P(V)) (3)

Motivation for this choice can be found in [Ja79, Ja82, JS83, Le59, SJ80, TTL84].

The maximum entropy distribution P* is known to have a simple represen-
tation. For each w in Qp,, there are 21! non-negative real variables ap,(w) (i.e.,
one variable per constraint), that determine P* as follows. Let us write a;(w)
instead of ap, (w) for brevity, and omit the argument w when it can be deduced
from context. Now we may write simply

P (V)=aj0s...0p,. (4)

Each element of €y is assigned a probability which is the product of the ap-
propriate a’s where each « determines its argument from the assignment to V.
This is known as a log-linear representation; it is an interesting fact that the
maximum entropy distribution is the unique log-linear distribution of form (4)
which satisfies the given constraints. (That is, to find the maximum entropy dis-
tribution satisfying the constraints, it suffices to find the log-linear distribution
satisfying the constraints.)

Of course, in order for equation (4) to hold, the a’s must be correctly com-
puted. The problem of computing the maximum entropy distribution becomes
the problem of computing the a;’s from the P(E;)’s.

3 Previous ME Methods

Most existing methods for calculating the maximum entropy distribution are
iterative. They typically begin with a representation of the uniform distribution
and converge towards a representation of the maximum entropy distribution.
Each step adjusts the representation so that a given constraint is satisfied. To
enforce a given constraint P(F;), all of the elementary probabilities P(V') rele-
vant to that constraint are multiplied by a common factor. Because constraints

are dependent, adjusting the representation to satisfy one constraint may cause
a previously satisfied constraint to no longer hold. Thus one must iterate re-
peatedly through the constraints until the desired accuracy is reached. (We note
that the implicit constraint — that the probabilities sum to one — must usually
be explicitly considered here.) Examples of this type of algorithm are given in
[Br59, Ch83, Cs75, Fi70, IK68, KK69]. Representing the probability distribu-
tion explicitly as a table of 2IVl values is usually impractical. For this problem,
it is most convenient to store only ay, s, ...q,,; this is a representation as com-
pact as the input data, which represents the current probability distribution
implicitly via equation (4). To represent the uniform distribution, every a is
set to 1, except for the a corresponding to the requirement that entries of the
probability distribution must sum to 1 — which is set to 2711, To determine if a
constraint is satisfied, one must sum the appropriate elements of the probability
distribution Any particular element can be computed using equation (4). If the
constraint is not satisfied, the relevant « is multiplied by the ratio of the desired
sum to the computed sum. Thus in originally calculating the a’s and later in
evaluating queries it is necessary to evaluate a sum of terms, where each term
is a product of a’s. This sum is difficult to compute since it may involve an
exponential number of terms.

Cheeseman [Ch83] proposes a clever technique for rewriting such sums in
order to evaluate them more efficiently. For example

a Z QaB ®4cD OpDE CAEF
A.LF
is rewritten as follows. First, >°, is broken into six sums, each over one
variable. Arbitrarily choosing the variable ordering C'DF I AB we obtain

Q Z Z Z Z Z Z QABOAACDODEQAEF -

B A E F D C

Now each «a is moved left as far as possible (it stops when reaching a sum over
a variable on which it depends). The above sum then becomes

OéE E aABE E aAEFE aDEE QACD-
B A E F D c

The sums are evaluated from right to left. The result of each sum is an in-
termediate table containing the value of the sum evaluated so far as a function
of variables further to the left which have been referenced. For example after
evaluating >, a table is kept containing ascp for Qap. (As we shall see, in
some cases the intermediate table is most efficiently represented as two or more

smaller tables.) The variable ordering must be chosen carefully in order to take
full advantage of this technique. A poor choice of variable ordering can yield
a sum which is not much better than explicitly considering all 2IV! terms; a
good choice can dramatically reduce the work required. The choice of variable
ordering which minimizes the cost of evaluating a sum can be viewed as a vertex
ordering problem in a graph. This problem is very similar to the minimum fill-in
problem encountered when performing Gaussian elimination on sparse symmet-
ric matrices [RT78, RTL76]. Since the minimum fill-in problem has been proven
to be NP-Complete [Ya81], we conjecture that this problem is as well.

Some alternative approaches to the iterative scheme have been proposed.
One of the more interesting proposals is due to Geman [Ge86, Li86]. This
method uses stochastic relaxation to simultaneously adjust the a’s to meet all
of the constraints, instead of satisfying one constraint at a time.

Some authors restrict their attention to probability distributions that can
be easily worked on without resorting to the iterative methods needed to com-
pute the maximum entropy distribution. These approaches usually restrict the
kinds of constraints that might be supplied, and assume conditional indepen-
dence explicitly as needed to force a unique result. This approach is taken by
Chow and Liu [CL68] and Pearl [Pe85]. These methods construct a dependency
tree where nodes represent variables and links represent direct dependencies; all
direct influences on a node come from its parent. Here the set of all conditional
probabilities of the form, P(child|parent), together with the probability distribu-
tion of the variable at the root, suffice to define a unique probability distribution.
Pearl [Pe85] generalizes the tree condition to a network which has at most one
undirected path between any pair of nodes (a singly-connected network).

One can view the contribution of the current paper as providing a synthesis
of these two approaches, by showing how the difficulties of computing a max-
imum entropy distribution can be substantially alleviated by enlarging the set
of constraints to be considered before the data is gathered and tabulated. With
the enlarged set of constraints, the computation of the maximum entropy dis-
tribution has a simple form which generalizes the equation suggested by Pearl.

4 Using Acyclic Hypergraphs

Our approach is based on the work of Malvestuto [Ma85], who derived suf-
ficient conditions for writing marginals of the maximum entropy formula as
a product of easily calculated probabilities. We begin by describing how to
model a set of attributes and associated constraints as a hypergraph. (A sim-

ilar model was given by [EKS83].) It is interesting to note that the work on
the desirability of acyclic schemas first appeared in the database literature
[BFMMUYS81, BFMYS83, TY82]. The attributes of the database replace the
attributes in our problem, and the relations replace the constraint sets. Given
that the database scheme is acyclic many problems are simplified

A hypergraph is like an ordinary undirected graph, except that each edge
may be an arbitrary subset of the vertices, instead of just a subset of size two.
We define the hypergraph GG = (V, £) to contain a vertex for each variable, and a
hyperedge for each constraint. For example the hyperedge { ABC'} corresponds
to the constraint set {A, B,C'}. We say that hyperedge X subsumes hyperedge
YifY C X. It is important to observe that the constraints on a sub-hypergraph
induced by restricting attention to a subset of the vertices can be inferred from
the original hypergraph constraints.

A hypergraph is acyclic if repeatedly applying the following reduction steps
gives the empty hypergraph (containing no edges and no vertices):

1. Delete any vertices which belong to only one hyperedge.

2. Delete any hyperedges which are subsumed by another hyperedge.

Graham’s algorithm is the procedure of applying reduction steps 1 and 2 until
either the empty set is reached, or neither can be applied [Gr79].

Before proceeding, we define some necessary notation regarding the above
reduction procedure. Let £ = {EEO), .o, B} where EZ»(O) is the i*" hyperedge
of G. Let EZ»(k) = ZZ»(k) UYZ»(k), where ZZ»(k) is the set of variables which appear only
in EZ»(k) and Yi(k) is the set of variables which appear in at least one hyperedge
other than EZ»(k). Finally let £¢+Y be the result of applying reduction step (1)
and then (2) to £@. If ¢ is acyclic then there exists an [such that !+ = ().

When the hypergraph is acyclic, the maximum entropy distribution, P*(V),
is given by: [Ma&5]

-1 (k)
PV = (H M) (H P(E£’>>) (5)

oy TL POV

Note that no a’s are needed; the formula depends only on probabilities in the

K3

original input data (constraints). This formula is an immediate extension of the
following theorem.

Theorem 1 [Ma85] Given a decomposition, £ = {F,,..., F,}, the maximum
entropy distribution is given by the following.
P(EL) - P(En)

PY(V)= POV P(V) P*(Y)

where P*(Y') is the maxzimum entropy distribution for the constraints P(Y1),.. .,

(Yon)-

Proof: From the marginal constraints we have the following
P(E;) = Z o0,
V-E

oy Z Ha]»

V—E;j#i

Similarly we have,

P(Y;) = Z Z Qyp Qi

Z; V—-E;

Let 38; = Zai. Combining equations (6) and (7) from above gives:
Z;

_ P(E)
a; = P(YZ) Bi

Now writing P*(V') in its product form we get

P(V) = a---apy
P(EY) - P(En)

= P(Yl)P(Ym)ﬁlﬁm

(9)

We want to show that ¥(Y) = 3, --- 8, is P*(Y), the maximum entropy dis-
tribution for the constraints P(Y;). To do this, it is suffices to prove that the

marginal constraints hold.

PE) = Y (Hl;(f})) o(y)

B P P(E))
= Vg ¢(Y) P(K oy P()/])
_ P(E) 1
= 7 Yz_% ¢(Y)]¢Z oA z; (]1;[P(Ej))) (10)

where 7 =7, U---UZ,,sothat V =Y U Z. Now, since the Z;’s are disjoint,

S TIPE) = T PE)

Z—Zij#i JFIL—2;

= TI> P(E)

J#T Z;

= TIrem) (11)

i

Substituting equation (11) into equation (10) gives:

However since P*(F;) = P(F;) we get P(Y;) = Z P(Y), so ¥(Y) satisfies the
Y-V,

constraints P(Y;). |

5 A New ME Method

In this section we present a new procedure for calculating the maximum entropy
distribution. The main advantage of our procedure is that it avoids the iteration
previously required by providing a direct formula for the desired answer. The
major disadvantage is that the method cannot ordinarily be applied if the data
is already tabulated and the constraints already derived; the method requires
that one “plan ahead” and tabulate additional constraints when processing the
data.

Equation (5) allows one to avoid iteration when calculating the maximum
entropy distribution for schemas having acyclic hypergraphs. What should one
do for eyclic hypergraphs? Our method is based on the observation that a
hypergraph can always be made acyclic by adding hyperedges. (This is trivial to
prove, since at worst a hypergraph can be made acyclic by adding the hyperedge
containing all vertices.) For example, the hypergraph:

V,E)={ABCDEF}, {{AB},{ACD},{DE} {AEF}})

becomes acyclic when the hyperedge {ADFE} is added. Thus by adding addi-
tional constraints (edges) the maximum entropy calculation can be simplified so
that no iteration is required. Here is a summary of how our method works:

1. We begin with a set of variables (attributes) and a set of constraint groups
deemed to be of interest. (Cheeseman [Ch84] discusses a learning program
which uses the raw data to find a set of significant constraints. Edwards
and Kreiner [EK83] also discuss how to choose a good set of constraints.)
Here a “constraint group” is a set of variables; the intent is that during
data-gathering there will be one table created for each constraint group,
and the observed events will be tabulated once in each table according
to the values of the attributes in the constraint group. For example, if
{A,B,C} is a constraint group of three binary valued attributes, then
there will be a table of size 8 used to categorize the data with respect to
these three attributes. This will give rise to 8 constraints on the maximum-
entropy distribution desired, one for each of the eight observed probabilities

P(ABC).

2. Construct the corresponding hypergraph G' = (V,§), where there is one
vertex for each variable and one hyperedge corresponding to each con-
straint group.

3. Perform Graham’s algorithm on G, and let G’ denote the resulting hyper-
graph. If G’ is the empty hypergraph, then G is acyclic, and the following
step is skipped.

4. Find a minimal set A" of additional hyperedges (constraint groups) which
can be added to GG’ to make it acyclic. Note that any original edges sub-
sumed by edges in X" are eliminated.

5. Collect data for the expanded set £ U X" of constraints .

6. Apply equation (5) to calculate individual elements of the maximum en-
tropy distribution. If sums of elements are desired, use Cheeseman’s sum-
mation technique, choosing a good variable ordering. Note that instead of
having a summation over a product of &’s, here the summation is over a
product of probabilities which are equivalent in form to the a’s.

6 Possible Problems With Our Method

In this section we consider possible inefficiencies of our method. First, it may be
necessary to add “large” hyperedges containing many vertices in order to make

'Our method is unusual in that it extends the set of tables (constraints) used to tabulate
the data. To fill in the entries of a new table, the raw data must still be available in step (5).
Thus steps 1-4 may be considered to be “planning” steps.

the hypergraph acyclic. For example, to make the complete undirected graph
(containing all hyperedges of size two) acyclic, one must add the “maximum”
hyperedge containing all vertices. Since the size of the table corresponding
to a hyperedge is an exponential function of the size of the hyperedge, adding
large hyperedges creates a problem. Furthermore, the table corresponding to the
maximum hyperedge is itself the probability distribution that we are estimating,
so the above situation is clearly undesirable. This kind of behavior depends on
the structure of the hypergraph; hypergraphs which are “highly connected” will
tend to require the addition of large hyperedges. However, when the graph is
highly connected other computational techniques seem to “blow up” as well.

Second, because of our method’s unique approach, we have a unique concern.
Recall that since the data is tabulated after adding the additional constraints;
steps 1-4 of our algorithm must be performed while the source of the constraints
(i.e., the raw data) is still available. If the added hyperedges are too large,
there may not be enough data to calculate meaningful statistics. Tabulating
100,000 data points in a table of size &~ 1,000 will give reasonable estimates,
while tabulating them in a table of size ~ 1,000,000 will not.

~

~
~
~

7 Comparison with Cheeseman’s Method

We now compare the tables (constraints) added by our technique, with the
intermediate tables used in Cheeseman’s method. We demonstrate, by means
of an example, that these are the same, except that Cheeseman’s tables are half
the size, since they are are already summed over the variable being eliminated.

When evaluating a sum one can visualize an imaginary “scan line” moving
from left to right across the hypergraph, where all variables to the left of the
scan line have already been summed over.

e According to the position of a scan line the vertices of the graph may
be divided into three parts (“eliminated”, “boundary”, and “unseen”) as
follows:

1. Vg = {v € V| v is left of the scan line }
2.VB:{U/EV—VE|E|?J€VE§(?J,?J/)€E}
3. VU:V—(VEUVB)

o Let Gy,Gy, ..., G, be the connected components of the subgraph induced

o Let I'(G;) denote the set of vertices of Vi in G.

10

o Let I'(G;) be that subset of I'(G;) consisting of the vertices adjacent to
some vertex in Vi or Vjg.

Theorem 2 Let X;, Xo,..., X; be a collection of subsets of Vg. Then {X;} is
sufficient and necessary for Cheeseman’s algorithm if

(V)(37) [T(G) € X (12)

Now we will look at the following example:

B D F

. . .
Ae

. .

C FE

To explain this example we introduce new notation, where the variable sets
for the intermediate tables are put in parenthesis above the summation sign.
Consider the vertex ordering D EFF(C' AB; given such a vertex ordering, theorem
2 specifies the temporary tables needed.

(AB) (BC) (BF,CF) (BF)

«
P (@): E QAR E QacOpe E Qcp E QcpQEpR E AppQpFp
AB c F E D

(This summation is only being used for explanatory purposes. Since the ele-
ments of the probability distribution sum to 1, we know that P*(()) = 1.) When
evaluating >, it will be necessary to keep a table with the value of agpapp
for Qpp. When evaluating >, as well as keeping the table for B and F, an-
other table with all combinations of ' and F must be created. Below are the
temporary tables used by Cheeseman’s method.

BF,CF,BC,AB

Now we look at the hyperedges which must be added to make a hypergraph
acyclic.

o Let vy,...,v, be an ordering of the vertices.
G ife=0
o Let G = { Gi1+ ¢(v;) —{e | v; € e} otherwise

11

o Let ¢(v;) = {v|vis adjacent to v; in G;_; }.

(0 if ¢p(vi) =10
o et (I)(Ui) - { ¢(vi) U v, otherwise

Theorem 3 The set of all non-empty ®(v;) is necessary and sufficient to make
a hypergraph, G, acyclic.

Now we return to our example. Theorem 3 defines a set of additional hyper-
edges that make our hypergraph acyclic. First, the hyperedge BF D eliminates
vertex D. (Hyperedge BF D subsumes hyperedges BD and DF and thus elim-
inates them. Now D is only in hyperedge BDF and so is eliminated, leaving
hyperedge BF'.) Second, hyperedge C'F'E eliminates vertex £. Now vertex F' is
only in hyperedges BF and C'F so BC'F eliminates it. Finally, hyperedge ABC
eliminates the remaining vertices. Thus the following additional hyperedges will
make our example graph acyclic (in parenthesis is the variable eliminated by
adding the edge):

BF(D),CF(FE), BC(F),AB(C)

Ignoring the variables in parentheses, these are identical to Cheeseman’s tables.
However there are important differences between these methods.

First, in terms of time complexity, Cheeseman’s method specifies an iterative
approximation of the as, whereas our method requires no such iteration. So, if
Cheeseman’s method requires 10 iterations on the average, our method should
yield an average speed-up of a factor of 10.

Second, in terms of space complexity, both methods use approximately the
same amount of space. However, our method adds what might be called “per-
manent” edges, since they correspond to tabulations of the raw data. Note,
however, that new edges may subsume and thus eliminate original edges, so the
space required by our method may not be quite as great as it first appears. In
Cheeseman’ method the tables exist only temporarily during the course of the
computation, and not all such tables may be needed at the same time.

And finally, in terms of the “precomputation” needed, both methods need to
compute a vertex ordering to use. We observe that a good summation ordering
is a good ordering for eliminating vertices. So the problem of choosing the
hyperedges to make a graph acyclic seems comparable to the problem of choosing
an optimal summation ordering.

12

8 Comparison to Pearl’s Work

In this section we will compare our work to that of Pearl, and show that the
formula we use is a proper generalization of Pearl’s. Pearl’s technique depends on
the Bayesian network being singly-connected. A Bayesian network is a directed
acyclic graph; such a network is said to be singly-connectedif it has no undirected
cycles (i.e., no cycles if we ignore the directions of the edges).

We begin by proving that a singly-connected network is a special case of an
acyclic hypergraph. Then we show that both Pearl’s and Malvestuto’s formulas
yield the same estimated probability distribution for a singly-connected network.
Given a network N, we define a corresponding hypergraph G as follows. The
vertices of GG are the nodes of N. For each node z in N we create a hyperedge
in ¢, consisting of the corresponding vertex and the vertices corresponding to
all immediate predecessor of in N.

Theorem 4 If a Bayesian network N is singly-connected, then the correspond-
ing hypergraph G is acyclic.

Proof: Since N is singly-connected, it contains no undirected cycles, by the
definition of singly-connected. Since an acyclic undirected graph is a tree or
forest, N must contain some node s with degree at most one. The corresponding
vertex in (G is contained in exactly one hyperedge and so can be eliminated by
reduction step 1. Finally, we must show that the reduced network N’ so obtained
corresponds to the reduced hypergraph G’ that remains after eliminating the
vertex corresponding to s. When s is a source in N (or a sink which is the second
to last node) this correspondence is obtained immediately. In the remaining
cases, the correspondence holds only after applying reduction step 2 to eliminate
the hyperedge remaining after s is eliminated. (This hyperedge contains only
the parent of s.) The network N’ is singly-connected, and so by induction every
node in G can be eliminated. Thus G is acyclic. [|

Theorem 5 A Bayesian network is not necessarily singly-connected if the cor-
responding hypergraph is acyclic.

Proof: We prove this by means of an example. The following Bayesian network

13

is not singly-connected since there is an undirected cycle.

B C
° °
°
A
°
D

The hypergraph corresponding to the above network is acyclic as shown by the
reduction below:

{B,C,ABC, BCD}
g
{BC}
g
0

Thus Pearl’s condition of the network being singly-connected is a special case of
having an acyclic hypergraph. So when given a singly-connected network, our
technique will apply without adding any constraints.

Now we show (by example) that for singly-connected networks, Pearl’s and
Malvestuto’s formulas for the estimated probability distribution are equivalent.
We use the following notation for stating Pearl’s formula.

o {f.} are the fathers (immediate ancestors) of node z in the network.

e R is the set of roots (sources).
Pearl’s equation is

V) = (H P(w)) (H P(wl{fx})) (13)

TER zgR

We use the following example to compare Pearl’s and Malvestuto’s formulas.

A B
C

D F

E

14

Pearl’s formula gives:
P (A...F) = P(A)P(B)P(CIAB)P(D|C)P(F|C)P(E|D)

P(ABC) P(CD) P(CF) P(DE)
P(AB) P(C) P(C) P(D)

= P(A)P(B)
By definition A and B must be independent since otherwise there would be a

link connecting them. Thus P(AB) = P(A)P(B) and the above becomes

P(CD) P(CF) P(DE)
P(C) P(C) P(D)

P*(A...F) = P(ABC) (14)

To apply Malvestuto’s formula, it is necessary to perform Graham’s algo-
rithm. (Elements of ¥;*) are underlined.)

{ABC,CD,CF,DE}
4
{¢D}
4
0

Applying equation (5) gives:

P(ABC) P(C'F) P(DE)

P(A...F)= P(C) P(C) P(D)

P(CD) (15)

As shown by equations (14) and (15) the probability distribution given by Pearl’s
and Malvestuto’s formulas are the same. So Pearl’s formula is a special case of
Malvestuto’s formula. Thus our method is a proper generalization of the method
given by Pearl. That is, not only does our technique give the same results as
Pearl’s when the network is singly-connected, but our formula applies (without
adding any hyperedges) to cases where Pearl’s does not.

9 Conclusions and Open Problems

We have presented an efficient algorithm for calculating the maximum entropy
distribution given a set of attributes and constraints. Using a hypergraph to
model the attributes and constraints, we show the benefits of making the corre-
sponding hypergraph acyclic. We then show how to make a hypergraph acyclic
by adding hyperedges (constraints). We have shown that our technique is at

15

least as efficient as Cheeseman’s method, and that our technique generalizes
Pearl’s method for singly-connected networks.

An open problem is how to choose the best set of hyperedges which will make
a hypergraph acyclic; we conjecture that this problem is NP-complete. If so, then
step (4) of our method cannot be done efficiently. One can use heuristics (such
as a minimum-degree heuristic) to approximate the optimal answer, or maybe
there is a pseudo-polynomial time algorithm in the size of the contingency tables
corresponding to the edges of the optimal hypergraph.

We intend to try our technique on some realistic examples. Our goal is to
determine if the size of the hyperedges will remain within reasonable limits for
such realistic examples. We expect that in practice our new method will give
substantial improvements in running time.

Finally, we will study the effects on accuracy of keeping tables which may
be larger than the original tables.

References

[BFMMUYS81] Berri, C., R. Fagin, D. Maier, A. Mendelzon, J.D. Ullman and
M. Yannakakis, “Properties of Acyclic Database Schemas,” in Proc.

13" Annual ACM STOC (1981), 355-362.

[BFMY83] Beeri, C., R. Fagin, D. Maier and M. Yannakakis, “On the Desir-
ability of Acyclic Database Schemas,”.J. ACM, 30,3 (1983), 355-362.

[Br59] Brown, D.T., “A Note on Approximations to Discrete Probability Dis-
tributions,” Information and Control, 2 (1959), 386-392.

[Ch83] Cheeseman, P.C., “A Method For Computing Generalized Bayesian
Probability Values For Expert Systems,” in Proc. Fighth International
Conference on Artificial Intelligence (August 1983), 198-202.

[Ch84] Cheeseman, P.C., “Learning of Expert Systems From Data,” in Proc.
IFEE Workshop on Principles of Knowledge Based Systems (1984),
115-122.

[CL68] Chow, C.K. and C.N. Liu, “Approximating Discrete Probability Dis-
tributions With Dependence Trees,” IEFE Trans. on Info. Theory, I'T-
14,3 (May 1968), 462-467.

[Cs75] Csiszar, L., “I-Divergence geometry of probability distributions and
minimization problems,” Annals of Probability, 3,1 (1975), 146-158.

16

[EK83]

[Fi70]

[Ge&6]

[GrT79]

[TK68]

[Ja79]

[Ja82]

[7983]

[KK69]

[Le59]

[LiS6]

[Mas85]

Edwards, D., and S. Kreiner, “Analysis of contingency tables by graph-
ical models,” Biometrika 70,3 (1983), 553-565.

Fienberg, S.E., “An Iterative Procedure For Estimation In Contin-
gency Tables,” The Annals of Mathematical Statistics, 41,3 (1970),
907-917.

Geman, S., “Stochastic Relaxation Methods For Image Restoration
and Expert Systems,” In Cooper, D.B., R.L. Launer, and E. McClure,
editors, Automated Image Analysis: Theory and FErperiments, New
York: Academic Press, (to appear).

Graham, M.H., “On the Universal Relation,” University of Toronto
Technical Report (1979).

Ireland, C.T., and S. Kullback, “Contingency tables with given
marginals,” Biometrika 55,1 (1968), 179-188.

Jaynes, E.T., “Where Do We Stand On Maximum Entropy,” In Levine
and Tribune, editors, The Mazimum Entropy Formalism, M.1.T. Press,
(1979).

Jaynes, E.T., “On the Rationale of Maximum-FEntropy Methods,” Pro-
ceedings of the IEFE, 70,9 (September 1982), 939-952.

Johnson, R.W., and J.E. Shore, “Comments and corrections to ‘Ax-
iomatic derivation of the principle of maximum entropy and the princi-
ple of minimum cross-entropy’,” IEEE Trans. Inform. Theory IT-29,
6 (Nov. 1983), 942-943.

Ku, H.H. and S. Kullback, “Approximating Discrete Probability Dis-
tributions,” IFEE Trans. on Info. Theory, IT-15.4 (July 1969), 444
447.

Lewis, P.M., “Approximating Probability Distributions to Reduce
Storage Requirements,” Information and Control, 2 (1959), 214-225.

Lippman, A.F., “A Maximum Entropy Method for Expert System
Construction,” PhD thesis, Brown University, Division of Applied
Mathematics, (May 1986).

Malvestuto, F.M., “Approximating Discrete Probability Distributions:
Fasy and Difficult Cases,” Unpublished Manuscript, (December 1985).

17

[Pes5]

[RTTS]

[RTL76]

[SJ80]

[TTL84]

[TYS2]

[Ya81]

Pearl, J., “Fusion, Propagation and Structuring in Bayesian Net-
works,” University Of California, Los Angeles Dept. of Computer Sci-
ence Technical Report CSD-850022 R-42, (April 1985).

Rose, D.J. and R.E. Tarjan, “Algorithmic Aspects of Vertex Elimi-
nation in Directed Graphs,” SIAM Journal Applied Math, 24 (1978),
176-197.

Rose, D.J., R.E. Tarjan, and G.S. Lueker, “Algorithmic Aspects of
Vertex Elimination on Graphs,” SIAM Journal Comput., 5,2 (June
1976), 266-283.

Shore, J.E., and R.W. Johnson, “Axiomatic Derivation of the Principle
of Maximum Entropy and the Principle of Minimum Cross-Entropy,”
IEEE Trans. Inform. Theory, IT-26,1 (Jan. 1980), 26-37.

Tikochinsky, Y., N.Z. Tishby, and R.D. Levine, “Consistent inference
of probabilities for reproducible experiments,” Physical Rev. Letters
52, 16 (16 April 1984), 1357-1360.

Tarjan, R.E. and M. Yannakakis, “Simple Linear-Time Algorithms to
Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selec-
tively Reduce Acyclic Hypergraphs,” SIAM J. Comp., 13,3 (August
1984), 566-579.

Yannakakis, M., “Computing the Minimum Fill-in is NP-Complete,”
SIAM Journal Alg. Disc. Meth., 2,1 (March 1981), 77-79.

18

