Che

snay

laboratoire de recherche
en informatique
et automatique

Graph partitioning
and constructing optima
decision trees are

polynomial complete
problems

L.. Hyafil
R.IL Rivest

Rapport de Recherche n° 33
octobre 1973

GRAPH PARTITIONING AND CONSTRUCTING OPTIMAL DECISION TREES
ARE POLYNOMIAL COMPLETE PROBLEMS

L. Hyafil, R.L. Rivest

Abstract :

The problem of partitioning the nodes of a graph into subsets
of bounded size so as to minimize the number of edges connecting nodes
from distinct subsets is shown to be polynomial complete. The problem
of constructing a decision tree which minimizes the expected number of
tests required to identify an object is also shown to be polynomial
complete. (Every polynomial complete problem (for example, traveling
salesman, graph coloring) can be solved in polynomial time if one

of them can.)

Keywords : complexity, polyromial complete, graph partitioning,

decision trees.

Nous montrons qﬁe le probléme de la partition des noeuds d'un
graphe en sous ensembles de taille bornée, de fagon & minimiser le
nombre d'ar@tes joignant deux noeuds se trouvant dans des sous en-
sembles distincts, est polynomial complet. Nous montrons aussi que
la construction d'un arbre de décision qui minimise le nombre moyen
de recherches nécessaires pour identifier un objet est un probléme
polynomial complet. (Si un probléme polynomial complet peut &tre
résolu en temps polynomial alors tous les problémes polynomiaux
complets (par exemple le probléme du voyageur de commerce, ou le
probléme de la coloration d'un graphe) peuvent &tre résolus en

temps polynomial.)

. Mots clés : complexité&, polynomial complet, partition d'um graphe,

arbre de décision.

In this paper we demonstrate that the problems of graph parti-
tioning and constructing optimal decision trees are polynomial
complete., We first present some basic definitions, then the proof
for graph partitioning, followed by the proof for decision trees.

Let P (respectively NP) denote the class of functions compu—
table by a deterministic (respectively non-deterministic) Turing
machine in a time bounded by a polynomial function of the length
of the input. Cook [1] and Karp [5] have shown that P = NP if and
only if there exist polynomial-time bounded algorithms for each

function in the class PC, the polynomial complete functions, where

PC « NP. The class PC includes many classic "intractable" problems
such as the traveling salesman problem, the knapsack problem, and
determining the chromatic number of a graph. The fact that no
polynomial-time bounded deterministic algorithm has yet been dis-
covered for any problem in PC leads one to suspect that none exist,
that these problems are "inherently" hard, requiring exponential-

time algorithms for their solution.

A problem X is polynomial complete if X ¢ NP and there exists a
polynomial complete problem Y such that Y is "polynomial reducible"
to X (denoted by Y « X) (in other words, if Y can be solved in poly-
nomial time by a deterministic Turing machine which has an oracle

for solving problem X).

Let G = (V, E) be a graph, where V = {Vl""’vn} is a finite
set of vertices and E is a set of unordered pairs of vertices, the
edges of G. A partition & of G is a decomposition of the vertices
V of G into disjoint nonempty blocks (subsets) 3=%T], Tz,...,Tk},

so that we have

V= L—J T. (n

and
P45 = (a1 =0 (2)

A partition & is said to be r-bounded if no block Tiéfg
contains more than r vertices. The cost C(¥) of a partition
is defined to be the number of edges joining vertices belonging

to distinct blocks. That is,
C(®) =4.¢ 1 {{x,y} 1 {x,¥} € E) A (x e THO A dTHY | . (3)

The graph partitioning problem GP(G,r,w) is to determine

whether there exists an r-bounded partition & of G such that
C < w.

This problem has applications in circuit layout and program
segmentation problems. For circuit layouts one wishes to place
the n components on circuit boards so as to minimize the number of
interboard connections. Similarly one might want to segment a program
for placement on the pages of a secondary storage device so as to
minimize the number of interpage references.

Simple generalizations of this problem would include weights
for each vertex and edge; one then attempts to minimize the weighted
sum of the edges joining vertices in distinct blocks of the
partition, subject to the constraint that the weighted sum of the
nodes in each block may not exceed r. These more general problems
are a fortiori also members of PC, as a consequence of the result

shown here.

It is interesting to note that when r = 2, the graph
partitioning problem is just the problem of finding a maximum
matching in a graph, ‘and when r = n - 1| it is equivalent to
finding a minimal cut set of the graph. Both of these problems

have polynomial~time bounded algorithms (see [2], [31).
Theorem GP(G,r,w) ¢ PC.

Proof : First of all, it is clear that GP ¢ NP, since a nondeter—
ministic Turing machine can merely guess a partition & and then

check to see if C(J) < w and if $ is r-bounded.

Let S3 be the problem of "satisfiability with exactly three
literals per clause'. That is we have a set of clauses
D = {D],...,Dr} where each Di contains exactly 3 literals from the
set L = {x],xz,...,xm} U {;l, ;é,...,§ﬁ}. The set D is satisfiable
if there exists a set L*<L of literals such that I* does not contain
any pair of complementary literals and L*nD, # @ for l<is<r. Karp [5]
has shown that satisfiability with at most three literals per clause
to be polynomial complete. As a consequence, S3 & PC as well since

any clause with only one or two literals can be expanded. For example,
(avb) = (avbve) A (avbve). (4)

We will demonstrate that S3 « GP(G,r,w). We will first cons—
truct the'graph G from the set of clauses D = {Dl,...,Dr} in two
steps. First we consider the graph G' having 3r points which has
an r-clique if and only if D is satisfiable (this construction is

due to Karp [5]). The graph G' is defined by

VI

{<o,i> | ceDi}, and (5)

E' = {{<0,i>,<6,j>} | i # j and ¢ # ¢}.

It is simple to verify that G' has the desired property, since
the edges in E' only join vertices corresponding to non-complementary
literals in distinct clauses.

We now modify G' slightly to obtain our graph G. To each set of
3 points in G' corresponding to a single clause in D we add a new
(r-2)-clique and attach every point of the clique to each of the

three-points. Thus we have

V=Vy {vij | 1isr and 1<j<(r-2)}, and (6)
E =E'u {{Vi' , Vik} [lI=<isr, 1€j<r-2, 1<k<r-2, j # k}
u {{vij,<o,i>} | 1<i<r, 1<j<r-2, -ceDi}.

It is easy to see that G contains an r-clique if and only if
G' does (that is, if and only if D is satisfiable). We now assert
that the problem GP(G,r,JE]-(r+l)(£) + r) has a solution if and only
if D is satisfiable. Furthermore, the optimal partition will contain

the r-clique as a block by itself, if one exists.

Assuming that the r-clique exists, let d* Dbe the partition
which has the r-clique as one block and r other blocks, each con-
taining one (r-2)-clique and two of the three vertices connected
to that clique. (Remember, the r-clique contains exactly one point
from each group of three corresponding to a clause). The cost of

this partition is just

C@E»)

[El = () = 2L - 13 (7
B - e () 4 x

If no r-clique exists in G, then the average number of edges
internal to a block, per node of that block, can be at most
[(2) = 11/r, as this is the average number of edges per node in an

r-clique lacking one edge. But then we have
C@ 2 IEl = +DIG) - 17 (8)
> 6(3*).

Thus the optimal partition contains an r-clique of G as a separate
block, if it exists. (Note that any other partition &' such that
C(3') < C@*) would also have to‘contain an r-clique as a block,
since the number of internal edges is sufficiently high.)
Thus we have shown that GP ¢ NP and S3 « GP (the construction
of G from D takes polynomial time), so that GP is polynomial

complete. []

We now turn our attention to the problem of constructing
optimal decision trees. Let X = {xl,...,xn} be a finite set of

objects and let Q = {T 'f’TE} be a finite set of tests. For

1*°
each test Ti’ 1€i<t, and object Xj’ 12j<n, we either have
Ti(xj) = true or Ti(xj) = false. Without fear of confusion,

we shall also let Ti denote the set {xeX | Ti(x) = true}.

The problem is to construct an identification procedure for the
objects in X such that the expected number of tests required to completely
identify an element of X is minimal. An identification procedure
is essentially a binary decision tree; at the root and all other
internal nodes a test is specified, and the terminal nodes specify
objects in X. To apply the identification procedure one first applies
the test specified at the root to the unknown object; 1if it is false
one takes the left branch, otherwise the right. This procedure is
repeated at the root of each successive subtree until one reaches a
terminal node which names the unknown object. Let p(xi) be the length
of the path from the root of the tree to the terminal node naming
X, that is, the number of tests required to identify x,. Then the cost

of this tree is merely the external path length, that is, xZeX p(xi).
: i

The decision tree problem DT(Q,X,w) is to determine whether there

exists a decision tree with cost less than or equal to w,

This problem has many applications,.most of them straightfor-
ward identification problems. The problem of compiling decision
tatles is one such application. As before, this problem can be
generalized by the addition of costs for each test TieCZand proba-
bilities for each xieX, but a fortiori those are polynomial complete

problems as well.

-

Theorem DT((Q,X,w) ¢ PC.

Proof: Clearly DT ¢ NP, since a non-deterministic Turing machine can

guess the decision tree and then see if its weight exceeds w.

To show that DT is complete, we show that EC3=DT, where EC3 is
the problem of finding an exact cover for a set X, where each of the
subsets available for use contains exactly 3 elements. More precisely,

we are given a set X = {xl,...;xp} and a family Q= {T ,...,Tt} of

i
subsets of X, such that ITi! = 3 for Igic<t, and we wish to find a

sequence of indices i],iz,..r,ik such that

U T.. =X, (9)
I<j<gk 1k
and
(G # 2)=> LCT; 0 T.)=¢1 (10)

The exact cover problem EC (where there is no restriction on
the size of each Ti), is known to be in PC (see Karp [5]).

To show that EC3 is complete, we show that 3DM « EC3, where
3DM is the problem of finding a "three dimensional matching“.‘That
is, we are given a set U < B x B x B and we wish to find a subset
W of U such that |W| = |B| and no two elements of W agree in any
coordinate. Karp [5] shows that 3DM ¢ PC. But 3DM becomes EC3 if
we let U consist of a set of triples chosen from Bl U B, U B. where

2 3
BI’B B3 are distinct sets of size |B| and each element of U

2’
contains one element from each Bi' Thus EC3 ¢ PC.
For a given problem EC3(Q,X) we will construct a corresponding
problem DT(Q',X',w) such that the optimal solution to DT embodies

the solution to EC3 if it exists, thus showing that EC3 = DT. We

define

X! = lef X u {a,b,c}, (1)

where a,b,c are three elements not in X, and

Q' =4.¢ Qu {{x}|x e X'}. (12)

That is, Q' contains all the triples in Q plus all the elements in

X' as singleton sets.

We wish to show that an optimal decision.tree has the following

form :

Figure 1

where the sets Til""’Ti form an exact cover of X by triples from Q ,
and the singleton sets (tests) are used to distinguish elements
within each triple. While this may be intuitively true to the reader,

we give a rigorous proof.

Let f(n) denote the minimal cost (path length) of a decision tree
on an n-element set X, where all one, two, and three element subsets
of X are available as tests. The following table gives the first few

values of f(n).

n ’l {3‘4]
I I

K

We wish to show that the root of the optimal decision tree always
selects a 3-element subset of X as a test, for n 2 7. By definition
we have

f(n) = min [f(n-i) + £(i) + nl, for n > 4, (13)

1<1<3 .

where 1 represents the size of the subset chosen as the test at the
root. But if f(m) - f(m-1) > 3 for n-3<m<n-1, then i = 3 must be
chosen to minimize f(n), and f(n) - f(n-1) = f(n-3) ~ f(n-4) + 1 > 3
as well. Thus a 3 element subset must be chosen at the root for all
nzz7.

Since the decision tree of Figure 1 acheives a cost of £CIX'D)
exactly, it is optimal. Furthermore, any optimal decision tree must
embody the solution to the correSpondinngCS p;oblem, because only
in this way can the root of each sufficiently large subtree be a test

on a three element subset of X. Thus EC3 « DT so that DT ¢ PC. W

Conclusions

If it is shown that P # NP, then these problems require
exponential~time algorithms for their solution, so that one may
have to be content with good heuristic methods, such as those of

Kernighan and Lin [4J, or Pollack [6].

C1]

£2]

£3]

L4]

[5]

L6]

References

Cook, S. "The complexity of theorem-proving procedures',

Third ACM Symposium on Theory of Computing, (1970), 151-158.

Edmonds, J. "Path, Trees, and Flowers", Candian J. Math. 18(1965),
449-467.

Edmonds, J. and R. Karp '"Theoretical Improvements in the Algorithmic

Efficiency of Network Problems', JACM 19 (1972), 248-264.

Kernighan, B.W. and S. Lin "The partitioning of graphs", Eng.
Cybern, 7(1969), 76~82.

Karp, Richard M. "Reducibility among combinatorial problems",
IBM Symposium on computational complexity (1973),
85-103.

Pollack, S.L. "Conversion of limited~entry decision tables to

computer programs, CACM 8(1965), 667-672.

