US009294473B1

a2 United States Patent (10) Patent No.: US 9,294,473 B1
Juels et al. (45) Date of Patent: *Mar. 22, 2016
(54) SERVER METHODS AND APPARATUS FOR USPC ittt seneneaes 726/9
PROCESSING PASSCODES GENERATED BY See application file for complete search history.
CONFIGURABLE ONE-TIME
AUTHENTICATION TOKENS (56) References Cited
(71) Applicant: ?{?g)C Corporation, Hopkinton, MA U.S. PATENT DOCUMENTS
2003/0086565 Al 5/2003 Desai et al.
(72) Inventors: Ari Juels, Brookline, MA (US); 2003/0229788 Al 12/2003 Jakobsson et al.
Nikolaos Triandopoulos, Arlington, MA 2004/0030932 Al 2/2004 Juels et al.
(US); Marten van Dijk, Somerville, MA (Continued)
(US); John Brainard, Sudbury, MA
(US); Ronald Rivest, Arlington, MA OTHER PUBLICATIONS
(US); Kevin Bowers, Melrose, MA (US) Aloul, Fadi, Syed Zahidi, and Wassim El-Hajj. “Two factor authen-
(73) Assignee: EMC Corporation, Hopkinton, MA tication using mobile phones.” Computer.Systems and Applications,
. . nternational Conierence on. N
(US) 2009. AICCSA 2009. IEEE/ACS Int t 1 Confi IEEE
2009.*
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by O days. o
))))) Primary Examiner — Syed Zaidi
Lhis patent is subject (o a terminal dis~ (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP
claimer.
(21) Appl. No.: 14/662,600 67 ABSTRACT
(22) Filed: Mar. 19, 2015 Server methods and apparatus are providpd for proc.ess%ng
passcodes generated by configurable one-time authentication
Related U.S. Application Data tokeps. An authentication server is configured to process an
o o original passcode generated by a configurable one-time
(62) Division of application No. 13/837,259, filed on Mar. authentication token by configuring the authentication server
15,2013. to have a server configuration that is compatible with a
selected configuration of the configurable one-time authenti-
(51) Int. CI. cation token; receiving a candidate passcode based on the
GO6F 21/00 (2013.01) original passcode generated by the configurable one-time
HO4L 29/06 (2006.01) authentication token; and processing the Is candidate pass-
(Continued) code based on the server configuration. The selected configu-
ration of the configurable one-time authentication token must
(52) U.S.CL &
CPC oo, HO4L 63/083 (2013.01); GO6F 21/31 @Iways enable a forward-secure pseudorandom number gen-
(2013.01); GOGF 21/45 (2013.01) eration feature for the one-time authentication token and at
(58) Field of Classification Search least one additional selected token feature.

CPC GOG6F 21/34; HO4L 63/08; HO4L 63/0838;

HOA4L 63/0846

73

24 Claims, 10 Drawing Sheets

SPLIT-SERVER
PASSCODE
VERIFICATION

U

32

RANDONIZED
STATE
TRANSITIONS

INTERMEDIATE-LAYER FROTECTION 330, ky

3%

7
DATA-TRANSACTION
SIGNING

PER
AUAUARY
CHANNELS

4
TIHE
SYNCHRONIZATION

US 9,294,473 B1
Page 2

(51) Imt.ClL
GO6F 2131 (2013.01)
GO6F 21/45 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2004/0172535 Al
2007/0133591 Al*

9/2004 Jakobsson et al.

6/2007 Shatfordccooevinn 370/457
2009/0323972 Al 12/2009 Kohno et al.

2011/0060913 Al 3/2011 Hird et al.

OTHER PUBLICATIONS

Bellare, et al. A Forward-Secure Digital Signature Scheme, Advances
in Cryptology-CRYPTO’99. Springer Berlin Heidelberg, 1999.

Awasthi et al. A Remote User Authentication Scheme Using Smart
Cards with Forward Secrecy, Consumer Electronics, IEEE Transac-
tions on 49.4 (2003):1246-1248.

Abdalla et al. From Identification to Signatures via the Fiat-Shamir
Transform: Minimizing Assumptions for Security and Foward-Secu-
rity, Advances in Cryptology-EUROCRYPT 2002. Springer Berlin
Heidelberg, 2002.

M’Raihi et al. HOTP: An HMAC-Based One-Time Password Algo-
rithm, RFC 4226, Dec. 2005, see 7.5. p. 11.

M’Raihi et al. TOTP: Time-Based One-Time Password Algorithm,
RFC 6238, May 2011, see Resynchronization, p. 7.

* cited by examiner

US 9,294,473 B1

Sheet 1 of 10

Mar. 22, 2016

U.S. Patent

JRNOSTY
(31031044

o) 7

091

HHOMEIN

[e e e s i s o T S R doo

NOLLYOTTddY HOLVYINIG
Y 3000SSYd ALINGIS

(IR AT

(INTOdON3)
I01AI0 INLLNAMOD
JOIS-INITD

-
{
!
|

i
wd

ALIECHINY
NOLLYOLINIHINY

051
I OIA

TR

U.S. Patent Mar. 22, 2016 Sheet 2 of 10 US 9,294,473 B1

FIG. 2
110 7150
DEVICE SERVER
DEVICE TIME SERVER TIME
i
TIME ¢ TIME t
7130 PASSCODE P, 250
TOKEN PASSCODE
GENERATION
g f g f
PASSCODE Py PASSCODE P,

U.S. Patent Mar. 22, 2016 Sheet 3 of 10 US 9,294,473 B1

FIG. 3
300

1 HIGH-LAYER PROTECTION 310, k

A
(3 314 Rl
e [am | [
VERIFICATION ALARMS e
N

2 LOW-LAYER PROTECTION 320, k;

324y {) 38
RANDOMIZED
FS~PRNG STATE
TRANSITIONS

%

3 | INTERMEDIATE-LAYER PROTECTION 330, k,

A
[,m 334 1,33
DATA-TRANSACTION | | AUXILIARY TIME
SIGNING CHANNELS | | SYNCHRONIZATION
Y

END

US 9,294,473 B1

Sheet 4 of 10

Mar. 22, 2016

U.S. Patent

T <Ey 4+ By 4 hy 0w spioy 9 eseym
{pz¢ uonosjold isdpj-mo|

104 (seibojouyosy) saumypay g < £y Joejes *0zg suonosjosd Jekpj-mo| Josjes g
pup ‘peg uonomold Jahnj-8)nipauLiejy]

Joj (seiBojouyoey) seimpoe) o < Ty sjes “0gg suonaejosd iskoj-eypipsunielu) Josjes 7
‘01¢ uonosjoud sskop-ybly

10 (saifiojouyoey) saumpsy < by yospes 'pis suoposjosd Jakoj-ybiy joepEs |

oy
v oId

US 9,294,473 B1

Sheet 5 of 10

Mar. 22, 2016

U.S. Patent

B T T 7 1 0 (5 % % s o o o o o i |
m ._Om.wzooh — m..\, 0ss
m w..llmm 045 A & 31YiS) m
i 4 ! I'a
“) m AT ONILING | 4
| TINNVHO 9 .
: | SSINNOONYY

Iy | ANVTIIXY = “
| 606 0 YIS “
] ” - “ -
m g v INTTS ! Isy
" mmm\ h«m |]]
e 1 sy39974]
T e i o o S S i e o i i s e |
| v |
{ i
! HOLYYIND ? VLS |

Iy, m 30000104d Iy INHd-S4 | 4
{ I
R e Igals

yivalll JINVHOXT HSYH
P T oy T S T S T T e e S e e e e e T T S S |
HOLVEINID | e e m
30008Svd " YOLYYINGY w
% T f —
— Iy m 300301044 Lty oNEd-S4 W g
e (]

T = 1A .

U.S. Patent Mar. 22, 2016

TIME

Sheet 6 of 10

US 9,294,473 B1

= HASH(a 3.5 || WASH(d 5 p))

= HASH(o 7 || HASH(o 7 5))

US 9,294,473 B1

Sheet 7 of 10

Mar. 22, 2016

U.S. Patent

-apoassnd 410 [ouy sy} 186 0} peiys st aposojoid pauiquiod

ay) yowm Aq Iy piomapos o} spq uorpuuojui-Aingxno ayy sdow (g jeuupys ApyixnD 8yl
's)q Aex-Burup auy o pajduins

s| 930)s Asy-Buryup ey ‘peyiys puo psyppdn s eyys Aex-Bunup auy uayy ‘7 usods up Jo
BuuiBeq ayy 0) spuodsaiios [Ji g uUDjD-usys oY) o) pejdwns SI ep0)s ULID[D-uUBYS BY)
*J yoods Joj usyo} sy} 01 paynduj pjop

jouorjansuos) jouolyippo Aup Bunpiodioou) ‘peyndwiod sy] yoods Joj sposojosd paujquios 8y
"Rjosoaaly 8y} Jo [are] soybity eyy 10 &)l Jouy sejojs foipind ey} jo

ssyspy sbubyoxe 7-71G Pub |-Z1§ SONYJ-S] emg pup pal ay) J yoode up jo Buuuibag ey
0} spuodsaLios J 4] “Aupjwis se10sado 7-7|G S|NPOW ONNd~SJ PAL BY| Pajelep Aejoipewiyy
8JD $8DIS pasn pjo ‘payndwiod osp §|] Syoods aiminy swios o} ssnjpa pup skey yons jo
uopypynduos-eid ey} ‘f yoods up o Buuuibeq ayy st ji ‘senjoa pup ey wopubiopnesd
anjq sejnduios pUb 8)pys ayy Seyopdn Appruenbes |~7|C enpow gNYd~SJ emg eyj

*] yoods qusuno jo BuuuBag syy 0} 1oadsas ypm sdejs Bupmojjop syy o

uoppindwos sy} jo Buuibeq ey) seypsdxe o shbjap seyyl wopups ussoyd Anjeind y

ungoo suopniedo Buimoljo} oYy *0OG USHE) By} JO swieyy
oy} Jo uonosnp ayy Joj pun [yoode ew Aisas jo BujuwBag eyy

i derg -

ig dolg -

17 dayg -

1} dajg -

ip daig -

007
4 91

US 9,294,473 B1

Sheet 8 of 10

Mar. 22, 2016

U.S. Patent

“00/ 8SP2 BJDADIDY BU} U] SD BWDS ip-g sdaig -

‘Ayipisly sy) jo [ase] Jeybly syy 1o ey joun sepis

jprund Jjsyy Jo saysoy sbupyoxe SONYJ-SH enjg pup pal ey} 1 yoods up Jo BupuuiBaq sy
0} spuodseiod [J] *Aupjwis seyosede 7-71G 9jnpow ONYd-S{ ped 8y| ‘pejejep Ajsjoipauiw
&p soj0)s pesn plo ‘pendiuod osip s 7 sysode sumynj awos Joj Ssnjpa pup sksy yons Jo
uopjndwos-aid uayy ‘f yooda up jo Buuuibeq oyy s) 1 41 ‘senipa pup Aey wopupiopnesd
onjg s:yndwos pup eyp)s ay) seopdn Ajjprusnbes |~7|C sinpow 9NNd-SJ onjg 8y

" J 10 yoods xeu ey) st joyy J yoode o) puodseniod 0f ssjpys ay) ejopdn uey) ‘sejois
ONYd-S4 8y} ul papodus s aeym ‘pesn Afysoj elem 7-7|G pud |-Z|G Seinpowl 9N¥d-S4
oM} 8y} j0y) J yoode sy} upyy swyy up J9jo) st] yoods juang eyy Jf "yjbusl ejpudosddp
oy} Jo degs b Ul s0Ys Jjay) ejopdn Z-71G PUD |-Z|G Sojnpow ONMd-S4 Ped pup enjq auy
usyy ‘voppanddo usxoy eyy jo Buiyounoy ayy Jeyo yoods Jsiyy syy s1 g yoods Juennd sy
‘[yoods aung jo Buuuibeq eyl 0] joedsas yym sdejs Buimoriol

ayy jo uopoindwoa sy jo Buuibeq oyy saypedxa Jo shojep Jeyul wopuns ussoys Ajnjeins vy
"peasliyal oin seymys Aey~Bunjup pub uuDD-juBlS ‘ONYNJ-S4 S.u8NDY 8yl

unoge suonpsedo Bumoyjoy sy} ‘uonpayddp uexoy ayy jo Buuns ey} jo uoppinp sy} Joj
pup J yoods awp Asae jo Bujuwibeq ey) b usyy ‘uonpoyddo ueyey syy jo Bupyouno syy Jeyp Aejpipsiui]

W dayg -

ey doig -

g0 deyg -
2 dayg -

008
& 9Id

US 9,294,473 B1

Sheet 9 of 10

Mar. 22, 2016

U.S. Patent

"8njpa 9pod Buiwiwioy pyoa b S| piomapos ADulg oYy J HoSY) 4
*piomspos AIDUIQ S)0PIPUDD 8y} UIDIQO ©) SNIDA |, D YA ‘44 ui uBIp osz-uou yops soojday

:Bumojjoy syy Buiuuopad Aq 44 @ 4 = 44 J SPAYY PeI-(G] PuD enjg-(g| Jeaies yaDe iy yoos U0y
434 eposojosd pauiquioo ayj endwos Aeyj seposssod g1o Bip-g jo 8soo sy} up sew

anpnoasuod ¢ sybip z Buibubyoxe Aq “Ba ‘sjo00104d sy} jo seoeid |onpiaipui Joj Ajpnpoib *sapoocjosd
pos pup anjq Jey) sbubyoxe pai-(G| puD 8njg-0G) SieAISS OM] oY} ‘Ssweyos Juswiwwod Buisp

"] 10} ‘44 SpiomMBpod

ajqissod (b peJ-(0G} JoaseS paJ ay) o) spues pup sendwod anjg-(G| Jeaies snjg ay]

:MOpUIA YIDJS 8y} Ul yosode yoDs Jog

“y)Busy sypudosddn eyy jo dejs b ul

pajopdn S| 8109S ONY4~S4 8y} usy) ‘Jsaies D 9D pesn Apso| soa oYy] ydode eyy uby} ewn uj
Jaipa 8§] yoods juslng sy} J] -u8y0} UOIIDONUBYIND BWI-BUD 8Y} Jo uoppzisjdwpind 100%8

ay} Aq paypeds s| s assym ‘7 yoode awwf) JUBLIND YODB PUNOID-S 8IS JO MOPUIM JID|S D 0}

pojDjes SEDYS GNY-S4 JO AIOISIY D SUIDIUIDW Pa-0G| PUD 8Njq-(G| ISABS LIDS pup S8pys
Aex-Bupjup pup uubp-queps jo Awojsyy ejejdwod ey} SuDUIDW BNig-(QG| JeAsss anjq ay|

wy dag -

gz deyg -

g doyg -
zdoyg -

dag -

'SMOJjo} SD §I Pai-(G) PUD 8Njg-0G} Jeniss yoos jo uoppsdo syy *44 spodssod epopipuns jo dises uodp

006
Ve “OId

US 9,294,473 B1

Sheet 10 of 10

Mar. 22, 2016

U.S. Patent

‘pal-0G| 8njg-(0G} Jonias enjq sy} Aq pasips s| uopdedxs Aey-Bunjup o ‘Mojeq pequosep
Bupjosya Aousysisuoouy syy Buisn ‘peatssqo si Aousisisuoouj up)i pup 83p)s Aey-Buniup

oy} ejopdn o} enjg-(g) Janiss enjq oy} Aq pasn eun Cq puo bq syq Aey Bunjup sy

‘uaNe} 8y} jo #)0)s Buppe(p JueLing 8y} JNOGD LONDULIOU [DUOIPPD SD

pojoeny 8o 3 pup 7 assym ‘pajopioa st (9 ¥So) = ¥So s} uLDp Jusyis oY) 10U} YoIyA
YYM D PUD] JO Senpa 8)840U0D BY} pull 0} mﬁmﬁmﬁc 8njg-0g| Jenies enjq sy} Ajjpuoiyppo
pup ‘enjq-0G} Jeates enjq syy Aq pesipt s uopdeoxs uupjp-jusys o usy Oq 2 L9 31 °.0 g
wupjp-qusys 8yy 18b 0} enjg-0g1 Jewiss enjq syl Aq pajdwps st 9p)s WUDjD-JUSlS Y|
*a0pjd uj i 10y} Aotjod apis-Janies

awos 0} Bupioaon pagoausyynn (Apuojypuoa) si Jasn ayy 3dedon,, Jndino pai-(g)

puo enjg-0g| Siemss yjoq Ji ,.3deaop,, syndino pai-Qg| pud enjq-(g} JsAJSS Yaoe pup

g pup b syq shex-Bupjup pup O g wupp-qusps ey 396 o} enjoa gy o 03 pepodep
] ..”m pionspod Aouig ‘Uay] * ysode Jo} piomapod Aiouyq Buysow ey} aq *.Hm 18]
asimiaiyo “efes,, sjndino pai-0G| pup enjg-0G| Jenses yope usy) ‘sejopypa 97 dejs ou i

i 4335

wdag.

pdaig .

006
g6 914

US 9,294,473 B1

1
SERVER METHODS AND APPARATUS FOR
PROCESSING PASSCODES GENERATED BY
CONFIGURABLE ONE-TIME
AUTHENTICATION TOKENS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a divisional application of U.S.
patent application Serial No. 13/837,259, filed Mar. 15,2013,
entitled “Configure One-Time Authentication Tokens with
Improved Resilience to Attacks,” incorporated by reference
herein.

The present application is also related to U.S. patent appli-
cation Ser. No. 13/250,225, filed Sep. 30, 2011, entitled “Key
Update With Compromise Detection,” (now U.S. Pat. No.
8,699,713); U.S. patent application Ser. No. 13/334,7009, filed
Dec. 23, 2011, entitled “Methods and/or Apparatus for Gen-
erating Forward Secure Pseudorandom Numbers,” (now U.S.
Pat. No. 9,008,303); U.S. patent application Ser. No. 13/826,
924, filed Mar. 14, 2013, entitled “Event-Based Data Signing
via Time-Based One-Time Authentication Passcodes,” (now
U.S. Pat. No. 9,225,717); U.S. patent application Ser. No.
13/826,993, filed Mar. 14, 2013, entitled “Time Synchroni-
zation Solutions for Forward-Secure One-Time Authentica-
tion Tokens,” (now U.S. Pat. No. 8,984,609); U.S. patent
application Ser. No. 13/404,780, filed Feb. 24, 2012, entitled
“Method and Apparatus for Embedding Auxiliary Informa-
tion in One-Time Passcode Authentication Tokens;” U.S.
patent application Ser. No. 13/404,788, filed Feb. 24, 2012,
entitled “Methods and Apparatus for Silent Alarm Channels
Using One-Time Passcode Authentication Tokens;” U.S.
patent application Ser. No. 13/728,271, filed Dec. 27, 2012,
entitled “Forward Secure Pseudorandom Number Generation
Resilient to Forward Clock Attacks,” (now U.S. Pat. No.
9,083,515); U.S. patent application Ser. No. 13/404,737, filed
Feb. 24, 2012, entitled “Method and Apparatus for Authenti-
cating a User Using Multi-Server One-Time Passcode Veri-
fication,” (now U.S. Pat. No. 9,118,661); and U.S. patent
application Ser. No. 13/828,588, filed Mar. 14, 2013, entitled
“Randomizing State Transitions for One-Time Authentica-
tion Tokens,” each incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to one-time authen-
tication tokens and, more particularly, to techniques for
designing and configuring configurable one-time authentica-
tion tokens.

BACKGROUND

One-time authentication tokens are used to realize two-
factor authentication according to which a traditional pass-
code-based user-authentication method (using a secret you
know) is augmented with a one-time passcode that is pro-
duced by an authentication token (i.e., a secret produced by
something you possess). The two factors collectively provide
a stronger authentication method.

One-time authentication tokens typically produce a series
of unpredictable one-time passcodes on a regular time basis,
i.e., in specified time intervals often called epochs. Passcodes
are unpredictable as they get produced in a pseudorandom
manner using a secret state, often referred to as a seed, that is
stored at the token and also shared with the server. Tokens can
either he software or hardware based. Software tokens pro-
duce passcodes on-demand, whenever the token’s application

20

25

30

35

40

45

50

55

60

65

2

is launched in the host device, where a series of passcodes is
generated for the epochs following the launching of'the appli-
cation. Hardware tokens typically produce passcodes on a
permanent basis, one passcode per epoch, for the entire life-
time of their battery. Overall, such tokens produce a time-
based series of unpredictable one-time passcodes by employ-
ing their seed to generate pseudorandom bits that are
convened to passcodes.

The security of any one-time authentication token col-
lapses if an attacker obtains access to the secret seed of the
token. Using the seed, the attacker can clone the token and
reconstruct the series of passcodes that the token will pro-
duce. Indeed, the attacker can use the token’s seed to repro-
duce the pseudorandom numbers used for passcode genera-
tion, effectively breaking the unpredictability of the
passcodes. In turn, the attacker can increase its chances for
impersonating the corresponding user, by either performing a
brute-force attack on the user’s PIN or by launching a more
sophisticated man-in-the-middle attack for harvesting the
user’s PIN.

Since the security of the token is based on a secret seed, the
attacker will attempt to obtain this secret seed. There are three
forms of attack that an attacker can employ to obtain access to
the secret seed of the token of a target victim user. Under a
server compromise attack, the attacker compromises the
authentication server and obtains the secret seed of the tokens
of one or more users. With a token tampering attack, the
attacker compromises the token and obtains the secret seed of
the token. Finally, with a seed capturing attack, the attacker
obtains the secret seed of the token indirectly by attacking a
storage or communication unit used to store or transfer the
token’s seed or through side-channel attacks performed
against the token or the server.

A need therefore exists for one-time authentication tokens
that protect against the above types of attacks that attempt to
obtain the secret seed of one or more tokens. A further need
exists for authentication servers that process passcodes gen-
erated by configurable one-time authentication tokens.

SUMMARY OF THE INVENTION

The present invention in the illustrative embodiments
described herein provides server methods and apparatus for
processing passcodes generated by configurable one-time
authentication tokens. According to one aspect of the inven-
tion, atleast one authentication server is configured to process
an original passcode generated by a configurable one-time
authentication token by configuring the at least one authenti-
cation server to have a server configuration that is compatible
with a selected configuration of the configurable one-time
authentication token, wherein the selected configuration of
the configurable one-time authentication token must always
enable a forward-secure pseudorandom number generation
feature for the one-time authentication token and at least one
additional selected token feature selected from a group com-
prising a split-server passcode verification feature, a silent
alums feature, a drifting keys feature, a token randomness
generation feature used for the generation of passcodes, a
randomized state transitions feature, a data-transaction sign-
ing feature, an auxiliary channel feature and a time synchro-
nization feature used to maintain synchronization between
the one-time authentication token and the at least one authen-
tication server; receiving a candidate passcode based on the
original passcode generated by the configurable one-time
authentication token; and processing the candidate passcode
based on the server configuration.

US 9,294,473 B1

3

According to another aspect of the invention, the candidate
passcode is processed to verify that the candidate passcode is
related to the original passcode generated by the configurable
one-time authentication token. In one exemplary implemen-
tation, the candidate passcode is compared to a target pass-
code in a slack window of size s corresponding to a current
epoch, wherein the target passcode is computed by the at least
one authentication server based on a state corresponding to a
current leaf node in a hierarchical tree in correspondence to
the original passcode.

In another exemplary implementation, the original pass-
code comprises a plurality of original protocodes for use with
a plurality of the authentication servers and the candidate
passcode is verified by a plurality of authentication servers
comparing the candidate passcode to a plurality of target
protocodes, wherein each of the target protocodes corre-
sponds to a slack window of size s corresponding to a current
epoch, wherein each of the plurality of target protocodes is
computed individually by the plurality of authentication serv-
ers in correspondence to the original protocodes.

In yet another exemplary implementation, the original
passcode comprises one or more bits encoded into an original
codeword to embed auxiliary information and the processing
of the candidate passcode by the at least one authentication
server further comprises extracting a candidate codeword
based on one or more target passcodes that are computed by
the at least one authentication server in correspondence to the
original passcode and the original codeword, decoding one or
more bits from the candidate codeword, wherein the bits
comprise auxiliary information, and verifying the candidate
passcode by comparing the candidate codeword to one or
more target codewords that are related to the one or more
target passcodes.

The disclosed exemplary authentication servers that pro-
cess passcodes generated by configurable one-time authenti-
cation tokens overcome one or more of the problems associ-
ated with the conventional techniques described previously.
These and other features and advantages of the present inven-
tion will become more readily apparent from the accompa-
nying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary network environment in
which the present invention can operate;

FIG. 2 illustrates auser device attempting to authenticate to
a server using a passcode generated by a token;

FIG. 3 illustrates an exemplary design framework incorpo-
rating aspects of the present invention;

FIG. 4 illustrates exemplary pseudo code for designing a
one-time passcode token in accordance with the framework
of FIG. 3;

FIG. 5 illustrates a configurable breach-resilient, tamper-
resistant and cloning-resistant one-time authentication token
in accordance with aspects of the invention;

FIG. 6 illustrates the exchange of a cryptographic hash of
partial states at regular predetermined time intervals by two
forward secure random number generators;

FIG. 7 illustrates exemplary pseudo code for token opera-
tion for an exemplary hardware implementation of a token;

FIG. 8 illustrates exemplary pseudo code for token opera-
tion for an exemplary software implementation of a token;
and

FIGS.9A and 9B, collectively, illustrate exemplary pseudo
code for server operation for an exemplary split server imple-
mentation.

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

Aspects of the present invention provide one-time authen-
tication tokens with improved resilience to attacks that
attempt to obtain the secret seed of one or more tokens.

FIG. 1 illustrates an exemplary network environment in
which aspects of the present invention can operate. As shown
in FIG. 1, an exemplary client-side computing device
(CSCD) 110 communicates with a protected resource 170
over a network 160. In an exemplary implementation, the user
must authenticate with an authentication authority 150 using
apasscode generated by a security passcode-generator appli-
cation 130 (hereinafter, referred to as security passcode app
130) before obtaining access to the protected resource 170. In
alternate variations, a user can employ a hardware one-time
authentication token, such as the RSA Secur]D® user authen-
tication token commercially available from RSA Security
Inc. of Bedford, Mass. U.S.A. The network 160, may com-
prise, for example, a global computer network such as the
Internet, a wide area network (WAN), a local area network
(LAN), a satellite network, a telephone or cable network, or
various portions or combinations of these and other types of
networks.

The user of the CSCD 110 is authenticated with the pro-
tected resource 170 using a one-time variable key that may be
generated in accordance with the present invention. It is to be
appreciated that a given embodiment of the disclosed system
may include multiple instances of CSCD 110, security pass-
code app 130, authentication authority server 150 and pro-
tected resource 170, and possibly other system components,
although only single instances of such components are shown
in the simplified system diagram of FIG. 1 for clarity of
illustration.

The security passcode app 130 is shown in FIG. 1 as being
implemented by the CSCD 110. The security passcode app
130 may be implemented, for example, using the RSA Secu-
rID® user authentication token commercially available from
RSA Security Inc. of Bedford, Mass. U.S.A. The security
passcode app 130 may be a server or other type of module that
is accessible over the network 160, or it may be a n software
component resident on the CSCD 110. As another alternative,
security passcode app 130 may be distributed over multiple
devices, one of which may be the CSCD 110. Thus, while the
present invention is illustrated herein using a security pass-
code app 130 executing on the CSCD 110, such that the
CSCD 110 can read a given passcode (or another authentica-
tion value) directly from the security passcode app 130, other
implementations are within the scope of the present inven-
tion, as would be apparent to a person of ordinary skill in the
art. For example, for other security passcode apps 130 that are
not connectable to a computer or other user device in this
manner, the user may manually enter a password or another
value displayed by the security passcode app 130 at the time
of'the attempted access. In addition, for to detailed discussion
of' a modular and/or component implementation of a token-
based authentication technique, see, for example, U.S. Pat.
No. 7,562,221 to Nystrdm et al., assigned to the assignee of
the present invention and incorporated by reference herein.

The CSCD 110 may represent a portable device, such as a
mobile telephone, personal digital assistant (PDA), wireless
email device, game console, etc. The CSCD 110 may alter-
natively represent a desktop or laptop personal computer
(PC), a microcomputer, a workstation, a mainframe com-
puter, a wired telephone, a television set top box, or any other
information processing device which can benefit from the use
of authentication techniques in accordance with the inven-
tion. The CSCD 110 may also be referred to herein as simply

US 9,294,473 B1

5

a“user.” The term “user” should be understood to encompass,
by way of example and without limitation, a user device, a
person utilizing or otherwise associated with the device, or a
combination of both. A password or other authentication
information described as being associated with a user may,
for example, be associated with a CSCD device 110, a person
utilizing or otherwise associated with the device, or a combi-
nation of both the person and the device.

The authentication authority 150 is typically a third party
entity that processes authentication requests on behalf of web
servers and other resources, and verifies the authentication
information that is presented by a CSCD 110.

The protected resource 170 may be, for example, an
access-controlled application, web site or hardware device. In
other words, a protected resource 170 is a resource that grants
user access responsive to an authentication process, as will be
described in greater detail below. The protected resource 170
may be, for example, a remote application server such as a
web site or other software program or hardware device that is
accessed by the CSCD 110 over a network 160.

One-Time Authentication Tokens

Authentication tokens, such as the RSA SecurID® user
authentication token commercially available from RSA
Security Inc. of Bedford, Mass. U.S.A., are typically time-
based, meaning that they produce new passcodes in fixed
predetermined time intervals T, called epochs. For instance,
SecurlD produces a new passcode every one minute epoch.

FIG. 2 illustrates as user device 110 attempting to authen-
ticate to a server 150. The user device 110 authenticates to the
server 150 by providing the passcode P, that corresponds to
the current time t' (at the epoch level, e.g., minute) that the
device 110 knows. Then, as shown in FIG. 2, the server 150
must authenticate a user who provides a candidate passcode
P' by first recomputing the passcode P, using a passcode
generation block 250 that corresponds to the current time t (at
the epoch level) that the server 150 knows, and then accepting
the submitted passcode if and only if P'=P,. It is clear that if
t'=t, that is, if the token 130 and server 150 are not synchro-
nized with each other, even a legitimate user cannot be
authenticated.

A passcode P,.that is produced in time epoch t' is typically
generated by the token 130 by applying a one-way crypto-
graphic function f on the current time epoch t', specified by
the token’s current time and the seed o of the token 130.
Software tokens 130 specify their current time based on the
host’s device current time, whereas hardware tokens 130
specify their time implicitly through the use of a time-based
counter.

A produced passcode P, may then be transmitted to the
authentication server 150 in order to authenticate a corre-
sponding user to the server 150 for accessing a protected
resource 170 through a high-level application. The transmis-
sion of the passcode P, to the server 150 may happen either in
a user-based manner, typically by typing performed by the
user to an API provided by the high-level application, or in a
user-agnostic manner, typically by an automatic way where a
software token 130 is directly communicating to the server
150 through a communication channel offered by the host
device, referred to as a connected token 130.

In turn, on receiving the received candidate passcode P,,
the server 150 verifies this passcode by contrasting it against
the passcode P, that is locally computed by the server 150,
accepting the passcode if and only if P,=P,. If the passcode is
not accepted, the user is not authenticated to access the pro-
tected resource 170; otherwise, the user is authenticated if and
only if the user’s PEN is correct. Passcode P, is computed by
the server 150 by applying the same function f on the current

20

25

30

35

40

45

50

55

60

65

6

time epoch t' specified by the server’s current time and the
seed 0 of the token 130 that is stored by the server 150. Often,
in order to tolerate small discrepancies between the current
time of the software (or hardware) token 130 and the current
time of the server, P,, is also contrasted against another 2s
passcodes within a slack window that are defined by epochs
that are neighboring epochs to the server’s epoch t, that is, to
passcodes (P, ., ..., P, |, P, P, ,, ..., P,). Thatis, one or
more passcodes are computed locally by the server 150 based
on a slack window of epochs of size 2s and on the knowledge
of the underlying seed of the token 130.

Produced passcodes are pseudorandom based on the use of
the one way function f. Thus, as long as the seed remains
secret, protected against leakage to an attacker, future pass-
codes retrain unpredictable even if an attacker has observed
an arbitrarily long history of passcodes produced in the past.

Threats Related to Seed [eakage

As indicated above, there are three forms of attack that an
attacker can employ to obtain access to the secret seed of the
token of a target victim user. Under a server compromise
attack, the attacker compromises the authentication server
150 and obtains the secret seed of the tokens 130 of one or
more users. With a token tampering attack, the attacker com-
promises the token 130 and obtains the secret seed of the
token 130. Finally, with a seed-record capture attack, the
attacker obtains the secret seed of the token 130 indirectly by
attacking a storage or communication unit used to store or
transfer the token’s seed or through side-channel attacks per-
formed against the token 130 or the server 150.

Considering a worst-ease scenario, it is assumed that the
attacker has access to the PIN of the user, and therefore is
actively operating towards getting access to the secret seed in
order to clone the token 130.

Server Compromise

The attacker may compromise the authentication server
150 and get the secret seed of the tokens 130 of one or more
users. In the best case, the attacker will compromise the server
150 ephemerally, i.e., by instantly stealing the seed(s) and
then terminating the attack. Although this is enough for clon-
ing one or more of the tokens 130, there is a stronger type of
attack where the attacker compromises the server perma-
nently, i.e., the attacker may remain in control of the server for
a long or unlimited in the future period of time, thus directly
being able to impersonate one or more users. Therefore, any
type of solution guarding against server compromise must
also consider this stronger attack version. Server compromise
may itself be part of or the target of a sophisticated advanced
persistent threat against an organization or an enterprise.

Token Tampering or Compromise

The attacker may compromise the token 130 and obtain the
secret seed of the token 130. For software tokens 130, this
corresponds to performing a direct attack against the host
device 110, where the host device 110 gets compromised
using some malware, trojan, or virus installed on the device or
through some network-based attack; once the device 110 is
compromised and the attacker has full control of the device
110, the attacker can bypass any protection mechanisms
being in place by the token application 130 for restricting
access to the token’s seed. For hardware tokens 130, this
corresponds to physically tampering with the token 130 to get
access to its internal memory or processor where the seed is
stored or lied, e.g., by opening the case of the token and
reading the full internal state of the token at the time of
compromise.

Seed Capturing

The attacker may get the secret seed of the token 130
indirectly by attacking a storage or communication unit used

US 9,294,473 B1

7

to store or transfer the token’s seed or through side-channel
attacks performed against the token 130 or the server 150. In
particular, often records of the seeds of the users’ tokens must
be kept for usability, back-up, legal or compliance purposes.
Or, software tokens 130 must be provisioned at the beginning
of their operation using some protocol that relies on some
type of communication between the host device 110 and the
server 150, e.g., using a web service or an email message.
Accordingly, an attacker may get access to one or more seeds
by directly attacking these storage or communication media,
i.e., by getting access to the seeds while the seed are in rest or
in transit. Moreover, an attacker may perform sophisticated
side-channel attacks against the token 130 or the server 150 in
order to harvest the secret seed. For instance, power analysis
attacks can be used for this purpose. Note that these types of
attacks are particularly hard to detect or prevent as the token
130 or the server 150 are not involved in or directly affected
by the attack.

Design Framework for One-Time Authentication Tokens

A general design framework is provided that results in
concrete architectural designs for one-time authentication
tokens 130 that enjoy one or more intrusion-detection and
intrusion-resilience technologies which help mitigate the
harm inflicted by the attack vectors described above.

FIG. 3 illustrates an exemplary design framework 300
incorporating aspects of the present invention. As discussed
hereinafter, the exemplary design framework 300 applies at
least one of three protection layers: high-layer protection 310,
low-layer protection 320 and intermediate-layer protection
330to the basic design of one-time authentication tokens 130.

The high-layer protection 310 optionally employs one or
more of the following intrusion-detection and intrusion-resil-
ience technologies: split-server passcode verification 312,
silent alarms 314 and drifting keys 316, each discussed fur-
ther below in a corresponding section. The technologies in the
high-layer protection 310 detect and tolerate attacks based on
the leakage of seeds in general and typically involve both the
token and the server. Thus, the high protection layer 310
establishes token-server mechanisms guarding against at
least one of the three possible threat settings described above,
namely, server compromise, token tampering/compromise
and seed-record capturing. When at least one of these tech-
nologies is employed, enabling these technologies in the
same design entails some challenges as these technologies
need to be properly integrated into a fully functional one-time
authentication token 130. The disclosed framework 300 pre-
sents a novel way to seamlessly integrate these technologies,
as discussed hereinafter.

The low-layer protection 320 optionally employs one or
more of the following tamper-resistance technologies: for-
ward-secure pseudorandom number generators 324, use of a
source of randomness at the token, and randomized state
transitions 328, each discussed further below in a correspond-
ing section. The technologies in the low-layer protection 320
tolerate attacks based on the leakage of the seed at the token
130 and typically involve only the token 130. Thus, the low
protection layer 320 establishes token-side mechanisms
guarding against full or partial secret-state leakage. Again,
the exemplary framework 300 presents a novel way to inte-
grate these technologies with the technologies offered by the
high protection layer 310.

The intermediate-layer protection 330 optionally employs
one or more of the following token-visibility technologies:
data-transaction signing 332, auxiliary channels 334 and time
synchronization 338, each discussed further below in a cor-
responding section. The technologies in the intermediate-
layer protection 330 achieve better coordination between the

20

25

30

35

40

45

50

55

60

65

8

token 130 and the server 150 and typically involve the com-
munication of some side information from the token 130 to
the server 150. Thus, the intermediate protection layer estab-
lishes communication mechanisms enabling and enhancing
the token-side visibility. Once again, the exemplary frame-
work 300 presents a novel way to seamlessly integrate these
technologies with the technologies offered by the high and
low protection layers.

High-Layer Protection Technologies 310

The exemplary framework 300 employs any set of the
following three solution concepts for the design of one-time
authentication tokens 130 so that intrusion-detection and
intrusion-resilience is achieved.

1. Split-Server Passcode Verification 312: As described in
U.S. patent application Ser. No. 13/404,737, filed Feb. 24,
2012. entitled “Method and Apparatus for Authenticating a
User Using Multi-Server One-Time Passcode Verification,”
(now U.S. Pat. No. 9,118,661), split-server passcode verifi-
cation is a solution concept for tolerating compromise(s) of
the server 150 in systems that employ one-time authentication
tokens 130. Generally, this solution employs distributed cryp-
tographic techniques for dispersing the task of verifying a
candidate passcode (provided by a user or token 130) among
two or more verification servers 150 so that each such par-
ticipating server S, stores only a partial secret state o,. Token’s
seed ois split or shared into two or more pieces each managed
by a separate server 150. One security property offered by a
split-server passcode verification protocol 312 is that verifi-
cation is securely implemented in a distributed manner, yet
leakage of one or more, but up to a specified threshold, partial
secret states does not compromise the security of the token
130.

In a typical case, the seed is split into two pieces, often
called the red and the blue partial seeds, and two verification
servers 150 are employed: the red server (150-red) stores the
red seed and the blue server (150-blue) stores the blue seed.
Upon receiving a candidate passcode P, the two servers 150-
red and 150-blue interact through a secure protocol to jointly
compute the passcode P, against which the candidate pass-
code is contrasted, and accordingly P,.is rejected if any of the
two servers 150-red or 150-blue outputs “reject.” This deci-
sion is typically made by a so-called relying server that is
stateless and responsible for the final decision about the
acceptance of P,, based on the individual outputs of the red
and the blue servers 150-red and 150-blue.

The additional feature of proactivization can be used
according to which the partial states of the (e.g., two) servers
150 evolve over time and where the servers periodically
exchange secure descriptions (e.g., hashes) of their partial
secret states, which are then used to create their new partial
secret states.

2. Silent Alarms 314: As described in U.S. patent applica-
tion Ser. No. 13/404,788, filed Feb. 24, 2012, entitled “Meth-
ods and Apparatus for Silent Alarm Channels Using One-
Time Passcode Authentication Tokens,” silent alarms detect
token tampering or compromise and eventually prevent cer-
tain impersonation attempts by an attacker. Generally, the
silent alarm solution employs a secret silent alarm state that
instantly changes once the token 130 (software or hardware)
senses or detects a suspicious activity that indicated possible
token compromise.

This state change corresponds to, for example, the raising
of one or more special alert flags but the change itself is
performed in a forward-secure and stealthy manner so that,
even after the complete compromise of a token 130 by an
attacker, the silent alarm state alone is not indicative or
whether or not any alert flag has been raised—thus, the alert

US 9,294,473 B1

9

flags serve as a silent alarm. One security property offered by
a silent alarm 314 of a token 130 is that the silent alarm state
and, therefore, the alert flags, remain secure with respect to
their integrity and confidentiality, i.e., an attacker that learns
the complete state of the token 130 after the compromise does
not learn if any alert flag was ever raised and cannot tamper
with any alert flag.

Using an appropriate auxiliary channel, discussed further
below, these alert flags can be embedded into the passcodes
that are produced by the token 130, and thus transmitted to the
authentication server 150. Using an appropriate decoding of
these alert flags, the authentication server 150, in turn, can
eventually learn about the one or more raised alert flags and
appropriately handle the verification and acceptance of the
received candidate passcode. In particular, such alert flags can
be used to encode alert messages related to a possible com-
promise of the token 130; thus receipt of such messages by the
server 150 corresponds to detection of a possible compromise
of the token 130.

When such compromise is detected, the server 150 may
appropriately change its verification procedure according to
some passcode acceptance policy. For instance, if a low-risk
alert message is received, the server 150 (and the high-level
application) may restrict the access that the user gets into the
protected resource 170, or if a high-risk alert message is
received, the server 150 may immediately reject the authen-
tication or fake an authentication success only to identify the
origin on the impersonation attack. Successful decoding of an
embedded alert flag into a passcode is a probabilistic event
that happens with some positive probability: the alert flag will
be eventually received in one of the next few transmitted
passcodes, false negatives exist. However, false positives do
not exist: A received alert flag will always indicate a suspi-
cious (according to some token-side alert-generation policy)
event happening at the token 130.

3. Drifting Keys 316: As described in U.S. patent applica-
tion Ser. No. 13/250,225, filed Sep. 30, 2011, entitled “Key
Update With Compromise Detection,” (now U.S. Pat. No.
8,699,713), drifting keys detect token cloning and eventually
preventing certain impersonation attempts by an attacker.
Generally, the drifting keys solution employs a drifting key
state that changes over time randomly. This random state
change corresponds to a dynamically evolving and unique
fingerprint (i.e., characteristic key) of the (software or hard-
ware) token 130 that is being randomly updated at some low
rate (e.g., a few new random bits are added to the state every
week, i.e., hit are randomly drifted over time).

As these small changes in the token’s fingerprint are
embedded into the produced passcodes and as these pass-
codes are received and accepted by the server 150, the server
gradually learns the partial or complete state of the token’s
fingerprint (depending on how often passcodes are received
by the server, thus, on how often the user makes use of the
token 130). One security property offered by a drifting key
316 of a token 130 is that the drifting key state and, therefore,
the token’s randomized fingerprint, remain unique over time;
therefore if a cloned token 130 starts reporting corresponding
cloned drifting key updates to the server 150, these updates
will not match the drifting key updates reported by the origi-
nal, cloned, token 130. Therefore, as long as the original
token 130 and the cloned one are being used simultaneously
by the legitimate user and the attacker, respectively, with
overwhelming probability the server 150 will notice a diver-
gence or inconsistency in the learned fingerprint of the token
130.

That is, the drifting key states of the original and the cloned
tokens will necessarily eventually be forked away from each

20

25

30

35

40

45

50

55

60

65

10

other which is a detectable event. Even if the server 150 will
not be able to distinguish the cloned token 130 from the
original one, the server 150 will be alerted that a possible
cloning attack has been performed and will react according to
a certain policy being in place.

As with the silent-alarm messages, drifting key updates are
being embedded in the passcodes using an appropriate aux-
iliary channel, discussed further below. Using an appropriate
decoding of these updates, the authentication server 150, in
turn, can eventually learn about the one or more inconsisten-
cies in the token’s unique fingerprint, even if the server 150
has only a partial view of the original token’s fingerprint.
Again, successful decoding of an embedded drifting key
update into a passcode is a probabilistic event that happens
with some positive probability: the update will be eventually
received in one of the next few transmitted passcodes, i.e.,
false negatives exist. However, false positives do not exist: A
received inconsistent drifting key update will always indicate
a cloning attack against the token 130.

By employing any combination of these intrusion-detec-
tion and intrusion-resilience technologies, the exemplary
design framework 300 achieves a unique property of protect-
ing against one or more vectors of attacks that are related to
the cloning of one-time authentication tokens. In particular,
the exemplary framework 300 ensures that tokens 130 are
protected against leakage of seeds in settings where:

only server compromise or token tampering/compromise

or seed-record capturing occurs;

or both server compromise and token tampering/compro-

mise occurs;

or both server compromise and seed-record capturing

occurs;

or both token tampering/compromise and seed-record cap-

turing occurs.

Low-Layer Protection Technologies 320

The exemplary framework 300 also employs any set of the
following two solution concepts that enhance the security of
one-time authentication tokens 130 with respect to token-side
leakage of the secret state (i.e., the seed).

1. Forward-Secure Pseudorandom Number Generator 324:
As described in U.S. patent application Ser. No. 13/334,709,
filed Dec. 23, 2011, entitled “Methods and/or Apparatus for
Generating Forward Secure Pseudorandom Numbers,” (now
U.S. Pat. No. 9,008,303), forward security can be applied to
management of the internal state of one-time authentication
tokens 130. Instead of using a fixed global secret state, e.g., a
seed, for the entire lifetime of the token 130, thus risking
leakage of this global state that results in perfect cloning of
the token 130, forward security involves requiring that the
secret state of the token evolves over time in a one-way
cryptographic manner so that older states cannot be computed
(by a polynomial bounded attacker) from newer states. In the
simplest case, for instance, the seed may evolve over time,
e.g, every elementary time epoch in which a new passcode
must be produced, through the use of a one-way hash chain.
That is, the new secret state is the hash of the current secret
state, which get immediately deleted by the token after the
new state is produced. The security property offered by such
a forward-secure approach is that if an attacker compromises
the token 130 and captures its current secret state, although all
future states can be perfectly simulated, no older state can be
computed by the attacker. One advantage of this approach is
that it is possible to protect, even post-compromise, some
important past state of the token 130, which in turn can be
used to communicate to the server 150 important information
about the token’s posture.

US 9,294,473 B1

11

A hash chain, however, introduces some computational
overhead proportional to d (both at software tokens and at the
server) when a current state, corresponding to current time,
must be computed from an old state, corresponding to a time
in some distance d in the past. It is possible to employ hier-
archical hash chains that reduce this “catch up” computation
cost to approximately log d, at the slight cost of increasing the
state size by a factor of d.

2. Randomness Source: A source of (true) randomness at
the token 130 is used to produce a series of random hits at
some desired rate.

3. Randomized-State Transitions 328: As described in U.S.
patent application Ser. No. 13/828,588, filed Mar. 14, 2013,
entitled “Randomizing State Transitions for One-Time
Authentication Tokens,” certain portions of the state of a
token 130 are more likely to leak to an attacker compromising
a token 130, if the attacker schedules the compromise at the
beginning of the predetermined elementary time epoch dur-
ing which new passcodes are generated (e.g., close to the
passcode generation, at the beginning of the periods that last
one minute). By then randomizing the exact time windows
(e.g., duration and placement in time of these windows) dur-
ing which passcodes are generated, it is possible to mitigate
these special type of inference attacks. A random or a pseu-
dorandom source can be used at the token 130 for randomiz-
ing state transitions.

By employing any combination of these tamper-resistance
technologies 324, 328, the exemplary design framework 300
achieves the property of protecting against token-side leakage
of the secret state of the token 130.

Intermediate-Layer Protection Technologies 330

The exemplary framework 300 employs any set of the
following three solutions that enhance the security of one-
time authentication tokens 130 with respect to token-side
visibility.

1. Data-Transaction Signing 332: As described in U.S.
patent application Ser. No. 13/826,924, filed Mar. 14, 2013,
entitled “Event-Based Data Signing via Time-Based One-
Time Authentication Passcodes,” (now U.S. Pat. No. 9,225,
717), it is possible to extend the basic functionality of the
tokens 130 so that the passcodes produced by the token 130
can authenticate not only the user but also some data pro-
duced by the high-level application. In particular, the token
130 may be extended to receive from the high-level applica-
tion some data which participates in the generation of the next
passcode produced by the token 130. This passcode then
serves as a signature of this data and, when received by the
server 150, this passcode can he used to verify the validity of
the corresponding data transaction that took place at the high-
level application. In particular, the high-level application pro-
vides the server 150 with the data that is to he verified, and this
data transaction is accepted only if the locally produced pass-
code on this provided data matches the passcode that was
received by the token 130.

2. Auxiliary Channel 334: As described in U.S. patent
application Ser. No. 13/404,780, filed Feb. 24, 2012, entitled
“Method and Apparatus for Embedding Auxiliary Informa-
tion in One-Time Passcode Authentication Tokens,” (now
U.S. Pat. No. 8,984,609), it is possible to embed a small
number of auxiliary information bits into the produced pass-
codes of a token 130. These embedded bits can then be recon-
structed by the server 150; thus implementing an auxiliary
channel between the token 130 and the server 150. This
channel is typically a channel of low bandwidth and a small
number of bits, for instance, 4 bits are embedded. Such chan-
nels are designed so that they are resilient to small-digit
typographical errors performed by the user transcribing a

20

25

30

35

40

45

50

55

60

65

12

passcode. Typically, an error correction code is used to
encode the auxiliary word that is to be embedded into the
passcode, and this embedding corresponds to adding the
resulted codeword to the initial passcode.

3. Time Synchronization 338: As described in U.S. patent
application Ser. No. 13/826,993, filed Mar. 14, 2013, entitled
“Time Synchronization Solutions for Forward-Secure One-
Time Authentication Tokens,” and in U.S. patent application
Ser. No. 13/728,271, filed Dec. 27, 2012, entitled “Forward
Secure Pseudorandom Number Generation Resilient to For-
ward Clock Attacks,” (now U.S. Pat. No. 9,083,515), it is
possible that software tokens 130 get out of synchronization
with the server 150, which in turn can lead to usability prob-
lems. For instance, a user may not be able to successfully
log-in if the token’s device time is put forward in the future.
Or worse, the token 130 may not be able to even produce a
passcode if the time is later corrected but forward security is
used.

In fact, the lack of synchronization may even lead to a
special type of security attack called a forward clock attack,
where the attacker makes use of future times of the host
device 110 to harvest a series of passcodes that are valid in the
future and then corrects the device time at the end. It is
possible to employ certain time-synchronization solutions so
that the token 130 manages to communicate to the server 150,
directly or indirectly, with or without user intervention, that
such an attack has occurred and so that the token 130 addi-
tionally is re-synchronized with the server 150.

By employing any combination of these token-visibility
technologies, the exemplary design framework 300 achieves
the property of communicating to the server 150 the token’s
posture assessment, thus enabling better coordination
between the token 130 and the server 150 and more timely
detection of certain types of attacks.

FIG. 4 illustrates exemplary pseudo code for designing a
one-time passcode token 130 in accordance with the frame-
work 300 of FIG. 3. As shown in FIG. 4, a one-time passcode
token 130 can be designed as follows:

1. Select high-layer protections 310. Select k, =0 features
(technologies) for high-layer protection 310;

2. Select intermediate-layer protections 330. Select k,=0
features (technologies) for intermediate-layer protection 330;
and

3. Select low-layer protections 320. Select k;=0 features
(technologies) for low-layer protection 320;
where it holds that k, +k,+k;>2. Overall, the general design
framework 300 can lead the design of a rich set of architec-
tures for security-enhanced implementations of one-time
authentication tokens 130.

The following dependency rules are optionally enforced
when using the general design framework 300 for one-time
authentication tokens 130:

1. Split-server passcode verification (312) with proactiv-
ization and silent alarms (314) each require a forward-secure
pseudorandom generator (324).

2. Randomized state transitions (328) require one of a
forward-secure pseudorandom generator (324) and a ran-
domness source (not shown in Figures). The forward security
aspect of the pseudorandom generator is not crutical, how-
ever.

3. Drifting keys (316) and silent alarms (314) require an
auxiliary channel 334).

4. Drifting keys (316) require a randomness source (not
shown in Figures).

As used herein, the term “configurable” refers to the
design, configuration and/or reconfiguration of a config-
urable one-time authentication token.

US 9,294,473 B1

13

Design & Configuration: By employing the exemplary
general design framework 300 to select among one or more of
security and functionality features, a concrete architecture for
one-time authentication tokens is designed and adopted that
defines (1) the number and type of individual core modules of
the architecture, (2) the exact mode of operation of these core
modules and (3) the exact interconnection of these core mod-
ules. This main design can successively be configured accord-
ing to several specification, parameterization and tuning cri-
teria. These criteria involve, for instance, (1) the structure,
format and sizes of internal token state, (2) the format and
sizes of produced pseudorandom information, (3) the exact
instantiation and implementation of the underlying crypto-
graphic operations and (4) the exact instantiation and imple-
mentation of the underlying coding schemes. This type of
token configuration occurs at manufacture and/or at system
initialization by the system administrator and before the
usage of the token by the user.

Reconfiguration: For software tokens, and with the excep-
tion of the forward security aspect of a token, any of the above
features are tunable, and therefore the token operation is
reconfigurable. In particular, even after the start of the usage
of the token by the user, one or more design features can be
activated or deactivated as desired or needed by the use case,
or some initial configuration parameters can be tuned as
desired by the system administrator of the one-time authen-
tication token. For instance, during a software update cycle,
the token application may be reconfigured to employ one or
more different features or use one or more different param-
eters. This reconfiguration may or may not require the user
notification or training. Overall, every technical feature of the
system is autonomous and for software tokens every such
feature can be effectively dynamically enabled or dis-acti-
vated.

Breach-, Tamper- and Cloning-Resistant Tokens

FIG. 5 illustrates a breach-resilient, tamper-resistant and
cloning-resistant one-time authentication token 500 in accor-
dance with aspects ofthe invention. Among other benefits, the
authentication token 500 of FIG. 5 adheres to the general
design framework 300 of FIG. 3. As used herein, the terms
“breach-resilient, tamper-resistant and cloning-resistant” are
collectively referred to as “security-enhanced”. Thus, a secu-
rity-enhanced one-time authentication token 500 is provided
with several important security and functional properties.

Security Features

(a) Tamper-Resistant Technologies

i. Forward Security: The internal secret state of the exem-
plary token 500 evolves over time in a forward-secure manner
so that if the token 500 is compromised, all past transmis-
sions/operations of the token 500 remain secure and certain
states related to the detection of cloning attacks remain
secure.

ii. Randomized State-Update Timing: The internal state of
the exemplary token 500 changes in unpredictable time units
further limiting the attack window during which the compro-
mise of the token reveals information to the attacker about
whether its attack was detected by the token 500.

(b) Anti-Cloning Technologies

i. Silent Alarms: Assuming certain tampering events are
detectable by the token 500, the exemplary token 500 can
securely and privately transmit an alert to the authentication
server 150 notifying the server 150 about this tampering
event. This holds true even after the complete compromise of
the token 500 by an attacker.

ii. Drifting Keys: The secret state of the exemplary token
500 evolves over time in a random and therefore unpredict-
able manner so that any cloning of the state is guaranteed to be

20

25

30

35

40

45

50

55

60

65

14

eventually detected by the authentication server by observing
diverging or forking states at the server through detectable
inconsistencies.

() Anti-Breach Technologies

i. Split Secret State: The secret state of the exemplary token
500 is split into two parts so that the authentication server 150
can itself he split into two servers: Then, the system guaran-
tees that as long as these two servers 150 do not simulta-
neously get ephemerally compromised within one certain
period of time (e.g., one week), the security of the token’s
functionality is preserved. Additional but slightly weaker
security properties hold if a server 150 gets permanently
compromised.

(d) Side-Channel Tolerant Technologies

i. Secret-State Updates: The internal secret states of the
exemplary token 500 and the server(s) 150 evolve over time
(in a forward-secure manner) at a high update rate; therefore
the secret states are hard to leak to an attacker through side-
channel attacks.

Functional Features

(a) Modes of Operations

i. User-Based OTP: This is the standard use case where a
user transcribes a one-time 6 or 8 digit one-time (authentica-
tion) passcode or one-time passcode (OTP).

ii. User-Based Transaction Signature: The user can also
transcribe a one-time 6 or 8 digit transactional data signature
through a special passcode that serves as a signature of some
data related to a transaction between a client and the server
performed over a high-level application.

iii. Connection-Based OTP: This case is as in the user-
based OTP mode of operation, but now the OTP is transmitted
automatically by the token 500 and through the high-level
application, without the user’s help, referred to as “long
OTP;” as this passcode can be of an arbitrarily long size.

iv. Connection-Based Transaction Signature: As in the
user-based transaction signature mode of operation, but now
the signature is transmitted automatically by the exemplary
token 500 and through the high-level application, without the
user’s help, referred to as “long OTP signature,” as this pass-
code can be of an arbitrarily long size.

(b) Auxiliary Channels

i. Auxiliary-Information Channel 334: This auxiliary chan-
nel is designed to secretly embed a small number of bits (e.g.,
1 to 4 bits) into the transmitted passcode in a manner that is
resilient to user-introduced transcription errors.

ii. Time-Synchronization Channel 338: The channel is
designed to allow to transmit time-related information to the
server.

(¢) Tunable Operation

i. Reconfiguration: For software tokens, and with the
exception of the forward security aspect of the token 500, any
of the above features are tunable, and therefore the token
operation is reconfigurable. In particular, even after the start
of the usage of the token by the user, one or more design
features can be activated or deactivated as desired or needed
by the use case, or some initial configuration parameters can
be tuned as desired by the system administrator of the one-
time authentication token. For instance, during a software
update cycle, the token application may be reconfigured to
employ one or more different features or use one or more
different parameters. This reconfiguration may or may not
require the user notification or training. Overall, every tech-
nical feature of the system is autonomous, and for software
tokens, every such feature can be effectively dynamically
enabled or dis-activated.

As demonstrated next, the exemplary design of the token
500 involves several novel ideas related to a fully multi-

US 9,294,473 B1

15

operational end-to-end one-time authentication token 500
that achieves the properties discussed above. Additionally,
the exemplary design is unique especially with respect to how
different existing solutions concepts and technologies are
combined in a novel way to provide a sophisticated, yet
flexible, design for one-time authentication tokens. The
exemplary design also includes an elaborate server-side split-
state verification protocol that extends the basic {accept,re-
ject} output range of the server 150 to a richer set of outputs
that are related to assessing the security posture of the token
and taking appropriate action when certain events are
detected.

Main Architecture

As shown in FIG. 5, the. architecture of the exemplary
token 500 comprises three main portions:

1. The blue protocode-generation portion 510-1;

2. The red protocode-generation portion 510-2; and

3. The auxiliary-information portion 530.

Protocode-Generation Portions 510-1 and 510-2

The protocode-generation portions 510-1 and 510-2,
referred to as the blue and red protocode-generation parts, are
almost identical in their functionality with one another,
described as follows:

1. As shown in FIG. 5, an FS-PRNG module 512 in each
portion 510 implements a forward-secure pseudorandom
generator where given an initial seed, seed Sz (or Sy respec-
tively) and the current time epoch T as input, the blue (or the
red as respectively) FS-PRNG module 512 produces a for-
ward-secure pseudorandom key K - (or K - respectively).
This key K ;- (or K, ;- respectively) is produced in regular
predetermined time intervals, every elementary time epoch T,
e.g., every minute. The initial seed Sz (or S; respectively) is
used to produce some initial corresponding FS-PRNG state
0 (or oy respectively), where the seed gets deleted immedi-
ately after Xi producing this initial state. At every time epoch
T, given the current FS-PRNG state o ;- (or O , respec-
tively), the blue (or red respectively) FS-PRNG updates its
state to new FS-PRNG state o'5 ;- (or o' , respectively) and
output key K5 - (or K - respectively) where state oz ;- (or
Oy rrespectively) is immediately deleted after this.

The only difference between the blue and red FS-PRNGs
512-1 and 512-2 is that at each time epoch T the blue FS-
PRNG 512-1 additionally outputs some forward-secure pseu-
dorandom values Rg 1, Ry, -and R, ;- to the auxiliary-infor-
mation portion 530.

All pseudorandom keys and values are binary strings of
some certain appropriate length, namely of lengths
K5, A=Kz 7, Rg A, IR, 7 and IR,/ specified by the exact
parameterization of the one-time authentication token 500.

Additionally, each FS-PRNG module 512 employs the fol-
lowing four features:

Pre-Computation of Pseudorandom Keys, Values: For effi-
ciency reasons, the set of pseudorandom keys and values that
correspond to epoch T, which is a small multiple of epoch T,
are preempted and stored in the token. For instance T may be
an epoch of length 4 times longer than epoch T (e.g., pre-
computation occurs every 4 minutes). Each of these keys or
values are immediately deleted as soon as they are being used
by the token 500.

Hierarchical State Transitions: The FS-PRNG state is com-
posed into partial FS-PRNG states so that a hierarchy is
induced among them, according to a structure that has the
form of a tree of chains, so that state transitions can be
implemented fast both sequentially and in (bigger) steps: That
is, the new state may either correspond to the next time epoch
of'the current epoch or to an epoch that is further away in the
future from the current (most recently used) epoch. Partial

20

25

30

35

40

45

50

55

60

65

16

FS-PRNG states correspond to time epochs of different
lengths and state transition in steps can occur by employing
the appropriate subset of these partial states to compute new
(intermediate) partial states that are immediately deleted as
soon as they used by the token.

For instance, the FS-PRNG state may consist of partial
states corresponding to months, weeks, days, hours and min-
utes. Then, to transition to the new FS-PRNG state that cor-
responds to a step of 3 months and 6 days, the partial month
state is used to generate in a hash chain 3 new partial month
states, and the one-but-last such month state is used to gen-
eratein a hash tree a new partial day state corresponding to the
first day in this mouth. Then, this new partial day state is used
to generate in a hash chain 6 new partial day states, and the
one-but-last such state is iteratively used in a hash tree or a
hash chain to produce the final pseudorandom key and values
corresponding to the new epoch T. The total number of partial
state transitions are much smaller than the transitions
required to sequentially generate the new FS-PRNG state.

Finally, partial state transitions are performed by employ-
ing a cryptographic hash function, where a different such
function, or the same function on different control inputs, is
used for each hash chain or hash tree transition in different
levels of the hierarchy of partial states.

Randomized State Transitions: The above partial state tran-
sitions may occur in a time window that starts in a random
point in time. However, the new randomized scheduling of
these partial state transitions is such that the total ordering of
these transitions remains the same.

Pro-Activation of Secret States: As shown in FIG. 6, at
regular predetermined time intervals T, defined by the partial
states o, ;of the FS-PRNG states, the blue and red FS-PRNG
modules 512 exchange a cryptographic hash of their partial
states 0y .5 and Oy ;.. Here, partial states 0, ;5 and 0, 7.5
correspond to the time epoch T that is of the longest duration
(e.g., one month) and that is associated to level L. of the
hierarchy of partial states. That is, the blue and red FS-PRNG
modules exchange a cryptographic hash of their partial states
corresponding to the current month. The blue (resp. red)
FS-PRNG uses this received red (resp. blue) hash value as an
additional input for the next transition of its partial state o, 7 »
(resp. 0z 7.2)-

2. As shown in FIG. 5, a protocode-generator module 515
in each portion 510 implements the generation of a prelimi-
nary passcode called protocode. The blue and red such mod-
ules 515-1 and 515-2 operate identically. The blue module
515-1, for instance, operates as follows. Each time epoch T
(e.g., one minute) that a new passcode must be produced, the
module 515-1 uses the pseudorandom key K 7, the current
time epoch T and optionally an additional data input D to
produce a protocode Py ;. This protocode comes from the
same range of values as a regular passcode, typically, a 6- or
8-digit number, but it is not the final output of the token 500
for this time epoch T.

Instead, a different passcode P, will be produced as final
output of the token for epoch T as described below. Protocode
P ris computed by applying a one-way cryptographic func-
tion on the pseudorandom key K - and an additional input
thatis of the form T or T||D ,, where T is the current time epoch
of'the token and D .is an optional additional input related to a
data transaction performed by a high-level application that
the token communicates with. Whenever the token has such a
transactional data D, input then T|[Dis used as input, other-
wise T is used. For instance, if T|[D is used as input, then
Pz ;~MAC(K 1, T|[D;) where the MAC function is imple-
mented using, e.g., CMAC.

US 9,294,473 B1

17

The pseudorandom key Kz used for producing protocode
P, may either have been produced as output of the blue
FS-PRNG module in this epoch T or it may have been pre-
computed at an epoch T' that is earlier than T.

Again, the protocodes output of the protocode generation
are binary strings of the appropriate lengths 1P /I, 1Pz /I
specified by the exact parameterization of the one-time
authentication token 500.

Auxiliary-Information Portion 530

1. As shown in FIG. 5, an auxiliary-channel module 530
encodes a small number of bits, e.g., 4 bits, into a codeword
W that is used to embed some auxiliary information into the
final OTP passcode at time epoch T. In an exemplary setting,
this module 530 receives as input 4 auxiliary-information
bits, 1 control hit and the pseudorandom value R , - (thatis an
output of the blue FS-PRNG module 512-1 for the same
epoch T).

If the control bit is 0, then the module 530 outputs W,=0,
which indicates that no auxiliary information will be embed-
ded into the final OTP passcode for epoch T.

If the control bit is 1, then the module 530 produces a
decimal codeword of 6- or 8-digits that will embed 1 silent
alarm bit b, ,, 2 drifting key bits b, ;, b, ;, and 1 auxiliary bit
b rinto the final OTP passcode for epoch T as follows.

The auxiliary-channel module 550 maps the bits produced
by the silent-alarm module 535 and drifting-key module 540
into a decimal codeword. The mapping occurs in three steps;

(a) Concatenate the bits b, 7, b, 1, b, rand b, - into a 4-bit
value; if'b; -is a “reserved” unused bit, then the most signifi-
cant bit is always 0;

(b) Compute an 8-bit extended hamming code from the
4-bit value; and

(c) Map the bits of the hamming code to a decimal code-
word as follows:

If the bit is 0, it is mapped to a “0’ digit;

If'the bit is 1, it is pseudorandomly mapped to a digit from
‘1’ to “9’, using a 9-bit pseudorandom value (derived)
from the value R, ;- to select the digit.

The codeword is added, with no carry between digits, to the
protocode to produce the passcode. If the passcode is only 6
digits, the process is the same, but only the least significant six
digits of the codeword are added to the 6-digit protocode.

2. The silent-alarm module 535 produces a silent alarm bit
by, for epoch T that corresponds to a pseudorandom sam-
pling or hash value of the silent alarm state o, of the token
500. In particular, at all times the token 500 maintains a silent
alarm state o, which is a binary string of some appropriate
length log,l specified by the exact parameterization of the
one-time authentication token 500.

This silent alarm state o, evolves over time in an event-
based and forward secure manner. That is, whenever the token
500 detects or senses one or more predetermined events (e.g.,
that indicate possible compromise), state O, is instantly
changed to value o'y,=h“”(o,,), where h is a cryptographic
hash function, h” denotes titerations of function h, that is, for
instance, h®(x)=h(h(h(x))), and t is a small integer value that
depends on the exact event that is sensed by the token 500.
Optionally, an additional control input ¢, which takes on a
value coming from a small set of size 1, can participate in the
above hashing operation, i.e., o'g,~h”(c,-c). The silent
alarm state is thus updated at times that are independent of the
regular time epochs of the token 500.

At each time epoch T the silent alarm state is sampled in a
pseudorandom manner. In particular, the pseudorandom
value R 7, output of the blue FS-PRNG module 512-1, and

20

25

30

35

40

45

50

55

60

65

18

the silent alarm state o, combined together through the dot
product operation to define bitb,, 4, i.e., b, ;=R -0, Where
|0541=IRg 7.

3. A drifting-key module 540 produces two drifting key bits
b, ;and b, ;. for epoch T that correspond to pseudorandom
samplings or hash values of the drifting key states o,z),
Opx,2» respectively, of the token 500, having sizes 0 | and
|Opk 5!, specified by the exact parameterization of the one-
time authentication token 500. The operations of the two
states is identical, and in the simplest case, these two states
can be set to be at all times the same, i.e., Opx =0k »- Then,
in this case, the module operates as follows.

At every time epoch T of some predefined length (e.g.,
every one week, or every 5 days), the drifting key state is
being shifted by k positions to the right and new random bits
are being inserted into the state, where k is specified by the
exact parameterization of the one-time authentication token.
Thus, k bits of the state 0, are deleted and k random bits
are inserted at the beginning of the state.

At each time epoch T the drifting key state 0, , sampled
twice in a pseudorandom manner. In particular, the pseudo-
random value R j, 7, output of the blue FS-PRNG module, is
splitinto two equal parts R, ., and R, 7., and then each such
part and the drifting key state 0, are combined together
through the dot product operation to define bits b, yand b,
ie, b, 7Ry 7 1'Opg,; and b, 7Ry 75°0px; where we
require that |0 x I=IRp, 7 1=IR g 751

4. Finally, as shown in FIG. 5, a passcode-generation mod-
ule 560 combines the outputs of the blue and red protocol-
generation parts 510-1 and 510-2 with the output of the aux-
iliary-information portion 530 to produce the final OTP
passcode.

In particular, for user-based OTPs, the two blue and red
protocodes Py, ;, P, rare first digitalized into two 6- or 8-digit
passcodes P, ;=DIG(P 1), Pr /~DIG(Pg ;) where DIG is a
function transforming binary strings into digital numbers of
length 6 or 8; then, these P, and P ,are combined as PR~
P, /PPy 1, where @ denotes digit-wise addition module 10
(without carries) to form the combined protocode forepoch T.
Finally, the final OTP passcode P for time epoch T is defined
to be P,=PR W, i.e., the combined protocode distorted or
shifted by the codeword W that is output of the auxiliary-
channel module.

For long OTPs, the operation of the module 560 is analo-
gous with the case above but now the digitizing of the proto-
codes is omitted and the combining operation can be an XOR
operation over the binary strings P ;, P, and a binary rep-
resentation of W, or a binary representation directly related
to auxiliary-information bits.

Token-Side Operation

FIG. 7 illustrates exemplary pseudo code for token opera-
tion 700 for an exemplary hardware implementation of token
500. As shown in FIG. 7, at the beginning of every time epoch
T and for the duration of the lifetime of the token 500, the
following operations occur:

Step 0: A carefully chosen random jitter delays or expedites
the beginning of the computation of the following steps
with respect to the beginning of current epoch T

Step 1: The blue FS-PRNG module 512-1 sequentially
updates the state and computes blue pseudorandom key
and values; if T is the beginning of an epoch T, then
pre-computation of such keys and values for some future
epochs T is also computed; old used states are immedi-
ately deleted. The red FS-PRNG module 512-2 operates
similarly, if T corresponds to the beginning of an epoch

US 9,294,473 B1

19
T the red and blue FS-PRNGs 512-1 and 512-2 exchange
hashes of their partial states that lie at the higher level of
the hierarchy.

Step 2: The combined protocode for epoch T is computed,
incorporating any additional transactional data inputted
to the token for epoch T.

Step 3: The silent-alarm state is sampled to the silent-alarm
bit; if T corresponds to the beginning ofan epoch T, then
the drifting-key state is updated and shifted; the drifting-
key state is sampled to the drifting-key bits.

Step 4: The auxiliary channel 550 maps the auxiliary-
information bits to codeword W, by which the com-
bined protocode is shifted to get the final OTP passcode.

FIG. 8 illustrates exemplary pseudo code for token opera-

tion 800 for an exemplary software implementation of a token
500. As shown in FIG. 8, immediately after the launching of
the token application, then at the beginning of every time
epoch T and for the duration of the running of the token
application, the following operations occur:

Step 0a: The token’s FS-PRNG, silent-alarm and drifting-
key states are retrieved.

Step 06: A carefully chosen random jitter delays or expe-
dites the beginning of the computation of the following
steps with respect to the beginning of current epoch T.

Step 1a: If the current epoch T is the first epoch after the
launching of the token application, then the blue and red
FS-PRNG modules 512-1 and 512-2 update their states
in a step of the appropriate length. If the current epoch T
is later in time than the epoch T' that the two FS-PRNG
modules 512-1 and 512-2 were lastly as used, where T" is
encoded in the FS-PRNG states, then update the states to
correspond to epoch T" that is the next epoch of T".

Step 16: The blue FS-PRNG module 512-1 sequentially
updates the state and computes blue pseudorandom key
and values; if T is the beginning of an epoch T, then
pre-computation of such keys and values for some future
epochs T is also computed; old used states are immedi-
ately deleted. The red FS-PRNG module 512-2 operates
similarly. If T corresponds to the beginning of an epoch
T the red and blue FS-PRNGs exchange hashes of their
partial states that lie at the higher level of the hierarchy.

Steps 2-4: Same as in the hardware case 700.

Server-Side Operation

The usage of split-server passcode verification 312,

requires the use of two servers. FIGS. 9A and 9B, collectively,
illustrate exemplary pseudo code for server operation 900 for
an exemplary split server implementation. As shown in FIG.
9A, upon receipt of candidate passcode P, the operation of
each server 150-blue and 150-red is as follows.

Step 1: The blue server 150-blue maintains the complete
history of silent-alarm and drifting-key states and each
server 150-blue and 150-red maintains a history of FS-
PRNG states related to a slack window of size s around
each current time epoch T, where s is specified by the
exact parameterization of the one-time authentication
token. If the current epoch T is earlier in time than the
epoch T' that was lastly used at a server, then the FS-
PRNG state is updated in a step of the appropriate
length.

Step 2 For each epoch in the slack window:

Step 2a: The blue server 150-blue computes and sends to
the red server 150-red all possible codewords W, for T.

Step 256: Using commitment schemes, the two servers 150-
blue and 150-red exchange their blue and red proto-
codes, gradually for individual pieces of the protocols,

20

25

30

35

40

45

50

55

60

65

20

e.g., by exchanging 2 digits 4 consecutive times in the
case of 8-digit OTP passcodes. They compute the com-
bined protocode PR ;.

Step 2¢: For each W, each server 150-blue and 150-red
checks if P,=PR bW ;. by performing the following:

Replace each non-zero digit in W, with a 1’ value obtain
the candidate binary codeword.

Check if the binary codeword is a valid hamming code
value.

Thereafter, as shown in FI1G. 9B,

Step 3: If no Step 2¢ validates, then each server 150-blue
and 150-red outputs “reject,” otherwise let B.* be the
matching binary codeword for epoch T*. Then binary
codeword B,.* is decoded to a 4-bit value to get the
silent-alarm hit b, and drifting-keys bits b, and b,, and
each server 150-blue and 150-red outputs “accept.” If
both servers 150-blue and 150-red output “accept” the
user is (conditionally) authenticated according to some
server-side policy that is in place.

Step 4: The silent-alarm state is sampled by the blue server
150-blue to get the silent-alarm bit b'. If b'=b, then a
silent-alarm exception is raised by the blue server 150-
blue, and additionally, the blue server 150-blue attempts
to find the concrete values of t and ¢ with which that the
silent alarm test o'y ,~h®(o,, ¢) is validated, where t
and c are treated as additional information about the
current alerting state of the token.

Step 5: The drifting key bits b, and b, are used by the blue
server 150-blue to update the drifting-key state and if an
inconsistency is observed, using the inconsistency
checking described below, a drifting-key exception is
raised by the blue server 150-blue.

Drifting Key Inconsistency Checking

Given the two drifting key bits b, and b, that are provided
to the blue server 150-blue as part of Step 3 above, the blue
server 150-blue can update its drifting key state as follows.

The server 150-blue stores a drifting key state value that is
equal in size to the drifting key state stored by the token. Each
bit of the server state may have three values, ‘0°, *1°, or “don’t
know.” The ‘0’ and ‘1’ values correspond to known values
determined after a successful authentication during the cor-
responding interval. The “don’tknow” value indicates that no
successful authentications were received for the token during
that interval, so the server cannot determine the drifting key
state.

When the blue server 150-blue receives drifting keys b,
and b,, it checks their consistency with respect to the current
drifting key state. This consistency check is performed by
computing the two pseudorandom mask values correspond-
ing to each bit, then determining if the dot product of the
known state and the mask value could equal the candidate b,
and b, values. If b, and b, are both possible dot products, the
value is consistent, otherwise it is inconsistent. If the received
bits are consistent, then the drifting key state for the current
epoch is updated using the equations learned by b, and b,.

If the number of “don’t know” values in the drifting-key
state of the blue server 150-blue is large (for example, if the
token is used infrequently), it becomes unlikely that incon-
sistent codewords will be detected. This will reduce the serv-
er’s ability to detect invalid drifting key states, but will not
interfere with normal use of the token 500.

CONCLUSION

As previously indicated, the above-described embodi-
ments of the invention are presented by way of illustrative
example only. Numerous variations and other alternative

US 9,294,473 B1

21

embodiments may be used, as noted above. The present
invention is provides new general-purpose techniques for
improving resilience to a number of attacks.

Additional details regarding certain conventional crypto-
graphic techniques referred to herein may be found in, e.g., A.
J. Menezes et al., Handbook of Applied Cryptography, CRC
Press, 1997, which is incorporated by reference herein.

Advantageously, the illustrative embodiments do not
require changes to existing communication protocols. It is
therefore transparent to both existing applications and com-
munication protocols.

While exemplary embodiments of the present invention
have been described with respect to processing steps in a
software program, as would be apparent to one skilled in the
art, various functions may be implemented in the digital
domain as processing steps in a software program, in hard-
ware by a programmed general-purpose computer, circuit
elements or state machines, or in combination of both soft-
ware and hardware. Such software may be employed in, for
example, a hardware device, such as a digital signal proces-
sor, application specific integrated circuit, micro-controller,
or general-purpose computer. Such hardware and software
may be embodied within circuits implemented within an inte-
grated circuit.

Thus, the functions of the present invention can be embod-
ied in the form of methods and apparatuses for practicing
those methods. One or more aspects of the present invention
can be embodied in the form of program code, for example,
whether stored in a storage medium, loaded into and/or
executed by a machine, or transmitted over some transmis-
sion medium, wherein, when the program code is loaded into
and executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code segments combine with the processor to provide a
device that operates analogously to specific logic circuits.
The invention can also be implemented in one or more of an
integrated circuit, a digital signal processor, a microproces-
sor, and a micro-controller.

System and Article of Manufacture Details

Asisknown in the art, the methods and apparatus discussed
herein may be distributed as an article of manufacture that
itself comprises a computer readable medium having com-
puter readable code means embodied thereon. The computer
readable program code means is operable, in conjunction
with a computer system, to carry out all or some of the steps
to perform the methods or create the apparatuses discussed
herein. The computer readable medium may be a recordable
medium (e.g., floppy disks, hard drives, compact disks,
memory cards, semiconductor devices, chips, application
specific integrated circuits (ASICs)) or may be a transmission
medium (e.g., a network comprising fiber-optics, the world-
wide web, cables, or a wireless channel using time-division
multiple access, code-division multiple access, or other
radio-frequency channel). Any medium known or developed
that can store information suitable for use with a computer
system may be used. The computer-readable code means is
any mechanism for allowing a computer to read instructions
and data, such as magnetic variations on a magnetic media or
height variations on the surface of a compact disk.

The computer systems and servers described herein each
contain a memory that will configure associated processors to
implement the methods, steps, and functions disclosed
herein. The memories could be distributed or local and the
processors could be distributed or singular. The memories
could be implemented as an electrical, magnetic or optical
memory, or any combination of these or other types of storage

20

25

30

35

40

45

55

60

65

22

devices. Moreover, the term “memory” should be construed
broadly enough to encompass any information able to be read
from or written to an address in the addressable space
accessed by an associated processor. With this definition,
information on a network is still within a memory because the
associated processor can retrieve the information from the
network.
It should again be emphasized that the particular authenti-
cation and communication techniques described above are
provided by way of illustration, and should not be construed
as limiting the present invention to any specific embodiment
or group of embodiments. Also, the particular configuration
of system elements, and their interactions, may be varied in
other embodiments. Moreover, the various simplifying
assumptions made above in the course of describing the illus-
trative embodiments should also be viewed as exemplary
rather than as requirements or limitations of the invention.
Numerous alternative embodiments within the scope of the
appended claims will be readily apparent to those skilled in
the art.
What is claimed is:
1. A method for configuring at least one authentication
server for processing an original passcode generated by a
configurable one-time authentication token, comprising the
steps of:
configuring said at least one authentication server to have a
server configuration that is compatible with a selected
configuration of said configurable one-time authentica-
tion token, wherein said selected configuration of said
configurable one-time authentication token must always
enable a forward-secure pseudorandom number genera-
tion feature for said one-time authentication token and at
least one additional selected token feature selected from
a group comprising a split-server passcode verification
feature, a silent alarms feature, a drifting keys feature, a
token randomness generation feature used for the gen-
eration of passcodes, a randomized state transitions fea-
ture, a data-transaction signing feature, an auxiliary
channel feature and a time synchronization feature used
to maintain synchronization between said one-time
authentication token and said at least one authentication
server, wherein said time synchronization feature com-
municates that a forward clock attack has occurred;

receiving a candidate passcode based on said original pass-
code generated by said configurable one-time authenti-
cation token; and

processing said candidate passcode based on said server

configuration.

2. The method of claim 1, wherein said step of processing
said candidate passcode further comprises the step of verify-
ing that said candidate passcode is related to said original
passcode generated by said configurable one-time authenti-
cation token.

3. The method of claim 2, wherein said step of verifying
said candidate passcode further comprises the step of com-
paring said candidate passcode to a target passcode in a slack
window of size s corresponding to a current epoch, wherein
said target passcode is computed by said at least one authen-
tication server based on a state corresponding to a current leaf
node in a hierarchical tree in correspondence to said original
passcode.

4. The method of claim 3, wherein said original passcode
comprises a protocode P based on a forward-secure pseudo-
random key K, a current time epoch T of said configurable
one-time authentication token and optionally additional data
input D, and wherein said target passcode is computed by said
at least one authentication server based on said forward-

US 9,294,473 B1

23

secure pseudorandom key K, said current time epoch T and
optionally said additional data input D.

5. The method of claim 2, wherein said original passcode
comprises a plurality of original protocodes for use with a
plurality of said authentication servers and wherein said step
of verifying that said candidate passcode is related to said
original passcode further comprises the step of said plurality
of authentication servers comparing said candidate passcode
to a plurality of target protocodes, wherein each of said target
protocodes corresponds to a slack window of size s corre-
sponding to a current epoch, wherein each of said plurality of
target protocodes is computed individually by said plurality
of authentication servers in correspondence to said original
protocodes.

6. The method of claim 2, further comprising the step of
receiving additional transactional data for a current epoch
corresponding to said candidate passcode and wherein said
step of verifying said candidate passcode further comprises
the step of evaluating said additional transactional data.

7. The method of claim 1, further comprising the step of
ensuring said selected configuration satisfies one or more
dependency rules relating at least two of said token features.

8. The method of claim 7, wherein said one or more depen-
dency rules comprise requiring that said drifting keys feature
and said silent alarms feature require said auxiliary channel
feature.

9. The method of claim 1, wherein said split-server pass-
code verification feature, said silent alarms feature and said
drifting keys feature comprise high-layer protection that pro-
vides one or more of intrusion-detection, instruction-resil-
ience and resistance to cloning of said one-time authentica-
tion token.

10. The method of claim 1, wherein said forward-secure
pseudorandom number generation feature, said token ran-
domness generation feature and said randomized state tran-
sitions feature comprise low-layer protection that provides
one or more of tamper-resistance and leakage resistance by
said one-time authentication token of a secret state of said
one-time authentication token.

11. The method of claim 1, wherein said data-transaction
signing feature, said auxiliary channel feature and said time
synchronization feature comprise intermediate-layer protec-
tion that provides one or more of token-visibility and allow-
ing said one-time authentication token to communicate an
assessment of said one-time authentication token to said at
least one authentication server.

12. The method of claim 1, wherein said original passcode
comprises one or more bits encoded into an original code-
word to embed auxiliary information and said processing of
said candidate passcode by said at least one authentication
server further comprises the steps of extracting a candidate
codeword based on one or more target passcodes that are
computed by said at least one authentication server in corre-
spondence to said original passcode and said original code-
word, decoding one or more bits from said candidate code-
word, wherein said bits comprise auxiliary information, and
verifying said candidate passcode by comparing said candi-
date codeword to one or more target codewords that are
related to said one or more target passcodes.

13. The method of claim 12, wherein said original code-
word embeds one or more of a mapping of one or more silent
alarm bits corresponding to a silent alarm state, computed by
said silent alarm feature, and a mapping of one or more
drifting keys bits corresponding to a drifting keys state,
wherein said drifting keys state comprises an updated set of
keys K, for time t by applying said token randomness genera-
tion feature over the previous setofkeys K, | fortime t-1 and

20

25

30

35

40

45

50

55

60

65

24

is computed by said drifting keys feature, wherein said aux-
iliary information of said decoding step comprises said one or
more mappings corresponding to said silent alarm state and
said drifting keys state, and wherein said processing of said
candidate passcode by said at least one authentication server
further comprises updating one or more of a corresponding
target silent alarm state and a target drifting keys state based
on said auxiliary information and checking the consistency of
said one or more of said updated target silent alarm state and
said updated target drifting keys state.
14. The method of claim 1, wherein at least two forward
secure pseudo random number generators of said at least one
authentication server exchange hashes of partial states that lie
at a higher level of a hierarchy.
15. The method of claim 1, further comprising the step of
extracting one or more auxiliary information bits from said
candidate passcode.
16. The method of claim 1, further comprising the step of
generating one or more forward secure pseudorandom num-
bers of a length that defines a slack window that matches a
length that is based on said original passcode generated by
said configurable one-time authentication token.
17. A non-transitory machine-readable recordable storage
medium for configuring at least one authentication server for
processing an original passcode generated by a configurable
one-time authentication token, wherein one or more software
programs when executed by one or more processing devices
implement the following steps:
configuring said at least one authentication server to have a
server configuration that is compatible with a selected
configuration of said configurable one-time authentica-
tion token, wherein said selected configuration of said
configurable one-time authentication token must always
enable a forward-secure pseudorandom number genera-
tion feature for said one-time authentication token and at
least one additional selected token feature selected from
a group comprising a split-server passcode verification
feature, a silent alarms feature, a drifting keys feature, a
token randomness generation feature used for the gen-
eration of passcodes, a randomized state transitions fea-
ture, a data-transaction signing feature, an auxiliary
channel feature and a time synchronization feature used
to maintain synchronization between said one-time
authentication token and said at least one authentication
server, wherein said time synchronization feature com-
municates that a forward clock attack has occurred;

receiving a candidate passcode based on said original pass-
code generated by said configurable one-time authenti-
cation token; and

processing said candidate passcode based on said server

configuration.

18. An apparatus for configuring at least one authentication
server for processing an original passcode generated by a
configurable one-time authentication token, the apparatus
comprising:

a memory; and

at least one hardware device, coupled to the memory, con-

figured to implement the following steps:

configure said authentication server to have a server con-

figuration that is compatible with a selected configura-
tion of said configurable one-time authentication token,
wherein said selected configuration of said configurable
one-time authentication token must always enable a for-
ward-secure pseudorandom number generation feature
for said one-time authentication token and at least one
additional selected token feature selected from a group
comprising a split-server passcode verification feature, a

US 9,294,473 B1

25

silent alarms feature, a drifting keys feature, a token
randomness generation feature used for the generation
of passcodes, a randomized state transitions feature, a
data-transaction signing feature, an auxiliary channel
feature and a time synchronization feature used to main-
tain synchronization between said one-time authentica-
tion token and said at least one authentication server,
wherein said time synchronization feature communi-
cates that a forward clock attack has occurred;

receive said candidate passcode based on said original

passcode generated by said configurable one-time
authentication token; and

process said candidate passcode based on said server con-

figuration.

19. The apparatus of claim 18, wherein said candidate
passcode is processed by verifying that said candidate pass-
code is related to said original passcode generated by said
configurable one-time authentication token by comparing
said candidate passcode to a target passcode in a slack win-
dow of size s corresponding to a current epoch, wherein said
target passcode is computed by said at least one authentica-
tion server based on a state corresponding to a current leaf
node in a hierarchical tree in correspondence to said original
passcode.

20. The apparatus of claim 19, wherein said original pass-
code comprises a plurality of original protocodes for use with
aplurality of said authentication servers and wherein said step
of verifying that said candidate passcode is related to said
original passcode further comprises the step of said plurality
of authentication servers comparing said candidate passcode
to a plurality of target protocodes, wherein each of said target
protocodes corresponds to a slack window of size s corre-
sponding to a current epoch, wherein each of said plurality of

20

25

30

26

target protocodes is computed individually by said plurality
of authentication servers in correspondence to said original
protocodes.

21. The apparatus of claim 19, wherein said original pass-
code comprises a protocode P based on a forward-secure
pseudorandom key K, a current time epoch T of said config-
urable one-time authentication token and optionally addi-
tional data input D, and wherein said target passcode is com-
puted by said at least one authentication server based on said
forward-secure pseudorandom key K, said current time epoch
T and optionally said additional data input D.

22. The apparatus of claim 18, wherein said original pass-
code comprises one or more bits encoded into an original
codeword to embed auxiliary information and said process-
ing of said candidate passcode by said at least one authenti-
cation server further comprises extracting a candidate code-
word based on one or more target passcodes that are
computed by said at least one authentication server in corre-
spondence to said original passcode and said original code-
word, decoding one or more bits from said candidate code-
word, wherein said bits comprise auxiliary information, and
verifying said candidate passcode by comparing said candi-
date codeword to one or more target codewords that are
related to said one or more target passcodes.

23. The apparatus of claim 18, wherein at least two forward
secure pseudo random number generators of said at least one
authentication server exchange hashes of partial states that lie
at a higher level of a hierarchy.

24. The apparatus of claim 18, wherein said at least one
authentication server extracts one or more auxiliary informa-
tion bits from said candidate passcode.

#* #* #* #* #*

