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INTRODUCTION

Theories of intelligence can be of use to neuroscientists if they:

1. provide illuminating suggestions about the functional architecture of neural
systems;
2. suggest specific models of processing that neural circuits might implement.

— !, ~The objective of our session was 10 stand back and consider the prospects for this
interdisciplinary exchange. ,

One of the facts that emerged early in our discussions was that given our current
level of knowledge, it is hard to tie theories and models of intelligence to actual neural
machinery. Skeptics see this bridging problem as nonaccidental. We know, for in-
stance, that human intelligence depends on a range of knowledge representation
capacities, reasoning methods and additional computational mechanisms that have
both principled and unprincipled components. Theorists in artificial intelligence (AI),
cognitive science, linguistics and psychology are beginning to tell us something about
the principled components—the core competences of human intelligence. But there
is widespread disagreement about how much of cognition is principled. Most of human
intelligence has evolved through extension and repair of simpler cognitive systems.
This suggests that biological designs may not be as cleanly principled as engineers
would like. If intelligence is really the product of prolonged tinkering, high-level
accounts of cognitive designs may be misleading. Each intelligent system might have
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its own idiosyncratic design, depending on its evolutionary history, and so theories of
intelligence could be of use to neuroscience in one way alone: as specifications of
behavi(?ral capacities intelligent systems display. They could offer few concrete design
constraints neuroscientists might find useful.

" In our discussions we did not take this skeptical stance for two reasons. First, it is
harq to imagine how any biologically designed intelligence, no matter how idiosyn-
cratic, can fail to be organized around certain high-level principles of functional
organization characteristic of rational systems. We may be wrong in some of the details
of our account of these principles; however, it is unlikely that we could be wrong about
the key competences underpinning rational intelligence. This is particularly so if we
are motivated not only by abstract considerations of what is necessary for intelligence
but by studies of human subjects with brain damage and studies of comparativ;
intelligence.

The second reason we rejected the skeptic’s position is that more complex models
f’f dynamical systems allow us to relax, somewhat, our idea of what a principled design
is. PDP systems, cellular automata and other highly connected systems tend to
implement functions in complex ways. These approaches have yet to yield theories
about the global architecture of intelligence, but they are highly suggestive of some
of the forms and properties of neural representations and circuitry.

Our report is organized into six sections, each addressing a particular issue. What
are the key competences underpinning intelligence? How are we to understand the
various levels of functional organization characteristic of brains? What are some of
the forms and properties of neural representations? What makes conceptual knowledge
special? What is the role of expectation in intelligent systems? And finally, because
no free ranging discussion of intelligence would be complete without areconsideration
of consciousness and its functional role, we reviewed a few of the facts and difficulties
associated with consciousness.

COMPETENCES UNDERPINNING INTELLIGENCE

It would be standard in philosophical circles to begin an inquiry into intelligence with
an analysis of what we ordinarily mean by intelligence. The outcome of such an
analys.is might be a list of basic competences, such as the ability to reason and problem
§olve in propositional, spatial and other analogue domains; the ability to learn by
induction, by inference to the best explanation; the ability to be self-aware; and the
ability to explain the conduct of others, to name just a few. The chief element missing
from such an analysis is a structural framework that might explain how basic com-
petefnces interact to produce intelligent behavior. Our first step, accordingly, was to
mfmvate such a list by reviewing some of the abstract properties of intelligent systems
with an eye to uncovering what would be needed to build a computational systerr vith
human-like properties. "
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Intelligence in the Abstract

Following the analysis offered by Rosenbloom and Newell, we began by assuming
that intelligence is a measure of a system’s rationality: the more rational a system, the
more intelligent it is. An agent is perfectly rational if it is able to bring all of its
knowledge to bear in the service of its goals; it always chooses the optimal action,
given its knowledge, goals, and action capabilities.

Intelligence, on this account, is to be sharply distinguished both from knowledge
and behavioral competence per se. In any given case, inadequate performance in a
task may be due either to inadequate knowledge or inadequate intelligence. If a
creature has the requisite knowledge to choose the rational act relative to its goals, we
will say that its failure to do so is evidence that it is not perfectly intelligent; it lacks
certain capacities necessary for making the most of its knowledge. If, by contrast, it
Jacks certain bits of essential knowledge, no amount of intelligence can substitute for
this knowledge. We will say that its inadequate performance is caused by ignorance,
not stupidity.

One feature of this approach is that intelligence can now be understood as an attribute
of design rather than just a set of behavioral competences. If a system is sufficiently
well designed so that it is well adapted to its environment of activity, it is by definition
highly intelligent. At first this may seem counterintuitive for it seems to imply that .
cognitively primitive creatures, such as aplysias or nematodes, no less than cats and
humans, can be assessed for intelligence. But two facts qualify this. First, because
intelligence has to do with using knowledge effectively, only systems that can be
characterized as having knowledge can be assessed for degree of intelligence. Second,
because systems surviving in complex environments require more sophisticated goals,
knowledge, and action capabilities than systems surviving in simpler environments, the
information-processing capacities which more complex creatures require for choosing
rational actions will themselves have to rise in complexity. It is often this requirement
of competence in complex domains that we associate with intellligence.

What then can be said from this perspective about the design of intelligent systems
adapted to complex environments? Since the environments of activity in which
humans operate range from simple physical worlds where obstacle avoidance, loco-
motion, and object manipulation are the basic requirements of life to complex social
worlds where body language, conversational skill, and knowing when to be silent are
critical acts, we know that the type of system that could cope with all of these
requirements will minimally have to have the competence (a) to perceive its situation,
(b) to represent situations in working memory, (c) to select among its goals, (d) to
combine information of that goal and situation with potentially relevant background

knowledge stored in long-term memory, (e) to perform appropriate computations 10
choose a rational or nearly rational action, and (f) to execute that action in the world.
Note that all these are domain-independent competences.

Moreover, since in complex environments it is unlikely that a system has enough
knowledge to attain all of its goals immediately, we can expect at least two additional
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features: a reflective component whose job is to schedule goals, to plan, to determine
relevant implications of existing knowledge, to problem solve; and a leaming compo-
nent that will update existing knowledge in the light of the activities of the reflective
component and perceived consequences of actions on the world (see Fig. 20.1). !
This list of competences and components is, to be sure, abstract: it abstracts from
particular domains, and leaves unspecified all details of representation and algorithm.
Yet any functional decomposition of a system based on an analysis of the requirements
of rationality will be similarly abstract. It is only when we add facts about the
processing time and memory size a system has available, and about the particular task
environments the system must succeed in that we can say much more about the
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Figure 20.1 The key components of an intelligent system, on this view, are a set of actions the
system can perform, goals it seeks to attain, a body of facts, laws, principles rules, etc. that it
knows and can use, as well as a mechanism for selectively retrieving goal-relevant knowledge
and actions, and a mechanism for rationally deciding a course of action given that retrieved
material. Implicated are also a reflection component for overcoming impasses at the original
level and a learning component to ensure continuous adaptation to a dynamic world.
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functional structure of these general mechanisms. One such further decomposition has
formed the basis for the Soar architecture (Newell 1991; Rosenbloom et al. 1991). In
Soar, each of these components is given a specific implementation. The result is a
computational system that has been shown to provide a good match to a range of
human psychological data. ’

Having blocked out some of the abstract requirements for intelligent systems we
next considered evidence from the study of lesions to human brains to gather further
evidence about the key competences of intelligent agents.

Lessons from Lesions

According to Damasio, the study of brain damage gives broad confirmation for a
functional decomposition akin to Rosenbloom’s. But from a clinical perspective
planning, attention, and learning (especially learning associated with punishment and
reward) are of particular interest for human intelligence. See Fig. 20.2 for a diagram
of some of the key dependency relations between functional systems that are motivated
by clinical case studies. .

Although lesions in varied sensory cortices can reduce overall intelligence because
of the ensuing deficits in perception, memory, or language, it is damage in the frontal
cortices, especially in the prefrontal sectors, that most consistently produce the defects
in intelligence, in the sense most regularly used in the clinic. Curiously, some of those
defects may not be readily measured by psychological test scores; many frontal lobe
patients maintain IQs in the normal range and may have largely intact basic neuropsy-
chological performances (e.g., in perception, conventional memory, and language).

—» Attention <«——— Innate Knowledge Reasoning Planning
A
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Figure 20.2 In Damasio’s view, human intelligence can break down if lesions are made to any
of several systems in cerebral cortices. The magnitude of the defect varies with the system
affected. When lesions compromise systems which include prefrontal cortices, there tend to be
major defects in reasoning and planning. Yet damage o other systems, by compromising
attention, or active perception, or the retrieval of knowledge, can also diminish the scope and
level of intelligent behavior.
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However, that intelligence is defective is apparent in real-life situations. Patients fail
to plan their activities properly, often in the immediate- and medium-term ranges, and
may be entirely disrupted in their ability to plan for the long-term future. Furthermore,
where their social behavior was intact before the claimed onset, there can develop
marked defects in social conduct.

Aclass of frontal lobe patients that deserves special mention is made up of patients
with ventromedial frontal lesions (involving largely the orbital prefrontal cortices);
they develop profound disturbances of planning and social conduct in the face of
otherwise intact intelligence. Patient EVR is an important example. Up to his mid-
thirties, when he underwent a surgical resection of ventromedial frontal cortex to
remove a meningeoma, he was a successful professional, husband, and parent,
respected and loved by his friends and relatives. After the lesion, he was no longer
able to decide intelligently how to run his daily life—in professional or personal
terms—and he was no longer able to plan for the future. He could not maintain his
job; he made disastrous financial decisions; he was not able to maintain previously
stable and advantageous relationships; and he initiated personal relationships that led
to personal tragedy. He has not been able to learn from any of his mistakes, in spite of
the fact that they have been explained to him in detail and that he has clearly understood
the implications of his actions. Yet EVR is not only psychometrically intelligent, he
is personally pleasant.

In EVR and in four other comparable individuals, recent research has identified a
defect in the ability to generate and experience somatic states relative to emotionally
charged stimuli. In other words, EVR and similar patients, seem to be unable to “feel”
much in situations in which previously they apparently had “normal” feelings, and in
which presumably normal individuals also have normal “feelings.” These findings
have led to the hypothesis that a failure to reenact negative (or positive) somatic states,
clearly associated to punishment and reward, may deprive these individuals of an
important signal marking potentially dangerous (or advantageous) future outcomgs as
they are internally represented in decision-making scenarios. '

WHAT DOMAIN OF KNOWLEDGE IS CRITICALFOR
INTELLIGENCE?

Our account of competences has so far been at the functional level; nothing concrete
has been said about the kind of knowledge essential for human intelligence as we know
it. On the basis of comparative studies with animals and studies in developmental
psychology, Premack approached the question of what knowledge is essential for
minimal performance in human environments. Based on his view, not only must an
agent have certain skills arid mechanisms before it can be intelligent in a human way,
it also must have certain ontological categories and predispositions for conceptualiz-
ing. Chief among the critical elements of knowledge are the capacities to divide the
world into categories, such as physical object, mind, biological kind, and number.
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Possession of these concepts is significant for two reasons. First, it is probable that

* only systems with certain higher functional capacities are capable of possessing such

categories, and second, it is probable that possession of such categories is a pre@ndi—
tion for acquiring a host of additional capacities. We will return to this notion of higher
functional capacity shortly.

It is easy to appreciate how the concept of a physical object is central to' arange of
cognitive capacities we rely on to make sense of our world. Without 'tl.us concept,
systems may have the ability to respond in similar ways to similar stimuli if the .nonon
of “similar” is simple enough; however, a more sensitive response often requires an
ability to identify, individuate, and reidentify entities. .

Evidence suggests that this capacity to identify is innate or nearly innate.

Four-month-old infants tested with habituation/dishabituation, for instance, show
“knowledge” of what an object is; they rely on von Uexkiill’s criterion: an (.)bject
is an item whose parts move in unison (Spelke 1985). Indeed, infants at this age
rely exclusively on this criterion, making no use of the object quality information
that adults and older children use. They also “understand” some basic facts about
the interaction between objects, e.g., that two solid objects cannot occupy the same
place at the same time. In this same period, however, they display no knowledge
of either gravity or inertia. .

The concept of mind and mental causation is equally important for understand‘mg
our world. Teleological, intentional, and purposive explanations are different in logical
structure than simple law-like explanations. This fact is significant because of the
obvious link between explanation and understanding. The more we can explain the
more we can predict and respond adaptively. )

There is some data based on three-year-old children that suggest that humans are
endowed early on with the capacity to distinguish intentional from noninlentiopal
actions and systems (Dasser et al. 1989). For example, children appear to distingu.lsh
objects that seem to be self-propelled, i.e., objects that start and stop their own motion
from objects that move only when acted upon. The self-propelled objects they.seem
to interpret as intentional, whereas non self-propelled objects are not seen as inten-
tional. Moreover, infants further distinguish the valence of intentional actions. Gentle
rubbing is seen as positive, hitting as negative. When an infant perceives one objf:ct
act upon another in a valenced manner, it attributes social intention to the one object
and expects the action to be reciprocated, and for the reciprocation to preserve valence
(Premack 1990). -

Related to the capacity to distinguish intentional from nonintentional actions, but
obviously more sophisticated, is the capacity to attribute'mental states to oneself and
others. Often called possessing a “theory of mind” (TOM), this capacity is acquired
by all children without formal pedagogy (Premack and Woodruff 19785 Premack
1988a). Children attain an adult level of competence by the fourth year (Wimmer and
Perner 1983). This is a vital acquisition, for arguably TOM can be seen as a precon-
dition for pedagogy, the teaching of one organism by another, which is not seen in
other species (Premack 1984; Premack 1991). ‘
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LEVELS OF FUNCTIONAL ORGANIZATION IN BRAIN AND
COMPUTER

If possession of certain concepts is a precondition for some of our higher capa-
cities, it is vital that we understand what the expression “higher functional
capacities” means. The expression is naturally allied to the idea of higher levels
of function, or functional organization. This idea, it seems, has several different
senses. We distinguished three:

1. level of a function as its place in an epistemological hierarchy—processes
nearer the sensory periphery are at lower levels, processes nearer the reasoning
centers are at higher levels;

2. level of a function as its place in a control hierarchy—processes that can turn
on or shut off lower-level processes are higher in a control sense; and

3. level of a function as its level in a decompositional hierarchy—processes
analyzed at higher levels are implemented in processes at lower levels

Level as Epistemological Hierarchy

For Changeux, who introduced the discussions, the aim of the life sciences is not only
to specify function but, most of all, to relate a given function to an appropriate
anatomical organization. In this search for anatomical implementation of functions,
we need to map out an order of functioning. Changeux suggested that the logic of
processing information from sensory perception to understanding (“Verstand” or
“entendement”), up to reasoning (“Vernunft” or “raison”) and planning might be
related to gross neuroanatomical compartments of the brain. These would, for instance,
include primary and secondary cortical areas, parietotemporal cortex with other
association areas, and prefrontal cortex.

The functional level of a process viewed from this epistemological perspective is
quite distinct from the level at which a process may be analyzed. Changeux emphas-
ized that the Marr/Poggio computational/algorithmic/hardware distinction does not
mark a difference in level of organization, but of analytic understanding. In principle,
any process may be studied at different levels of analysis, the difference being the kind
of questions we answer about the process. For instance, at the computational level we
analyze a process in terms of the informational problem it is meant to solve. We can
ask about the well-posedness of the problem and its absolute complexity. At the
algorithmic level we can ask questions about the costs and benefits of particular
representations and particular algorithms. And at the hardware level we can ask
about the suitability of particular neural mechanisms to instantiate particular
algorithms and representations. In most cases, each of these questions is worth
asking but they are orthogonal to our concern with localization at a compartmental
level.
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Level as Control Hierarchy

Cognitive processes that are deeper or higher in an epistemological sense arc often
higher in a control sense too. Let us say that an event or process is higher up the control
hierarchy if it can initiate, terminate, or interfere with events or processes at lower
levels. Premack offered a thought-provoking experiment to show that human intcl-
ligence is organized hierarchically in a control sense.

Assume we have conditioned both a human and a dog to flex their legs to a
conditioned stimuli associated with a shock to the foot. The next day we run an
extinction session. Before our subjects arrive, however, there is a power failure in the
village so that dog and human find a lab lit by candles. The difference in behavior of
the two species is dramatic. Dogs produce a normal extinction curve; people do not.
They do not flex their leg even to the first presentation of the conditioned stimuli.

The reason, of course, is that in people, knowledge that the shock is caused by
electricity coupled with knowledge that there is a power failure overrides learning.
Learning is not eliminated; when power is restored, people will generate a perfectly
normal extinction curve. The organization of human intelligence, however, grants
knowledge the power to override the performance called for by learning. Whether the
same process operates in nonhumans is an open question. At present, we have little
evidence of this type of knowledge operating in nonhumans. Clearly more must be
said. We need a proper account of the difference between informational states acquired
through nonconditioned learning: (e.g., through reasoning) and informational states
acquired through conditioning or association. Presumably, the two are encoded in
different ways. Information based on conditioning may be represented by low-level
representations (e.g., by sensory images) whereas information based on causal rea-
soning cannot be so represented; it requires more highly processed mental events,
sensory images that are coded for type, token and beyond.

A second example of multilevel organization is the disparity we sometimes find
between habituation/dishabituation and explicit choice. Infants show recognition for
a distinction of which they can make no instrumental use. For example, 18-month-old
infants, both humans and chimpanzees, show differential habituation/dishabituation
to sameness and difference. Following experience with AA (two like objects) they
respond less to BB than CD; likewise, following experience with EF (two different
objects) they respond less to CD, than BB. But they cannot match sameness and
difference, i.e., match AA to BB, or CD to EF. Disparities of this kind speak to the
multilevel organization of intélligence, showing that processing of events which is
successful on one level is unsuccessful at a higher level (Premack 1988b; Wellman
1991; Premack 1976).

. Level as Decompositional Hierarchy

The third type of hierarchy we need to distinguish is, in certain respects, the most well
understood. In computers we know that there are well-defined functional levels, such
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as devices, circuits, register level descriptions, symbolic or program-level descriptions,
agorithmic descriptions, etc. Each level is well defined in terms of components and
operations, and each level can be used to implement the next. A level provides a clean
abstraction in the sense that a function on one level can generally be described without
reference to the levels below.

The question whether analogous decompositional levels exist within the brain is
open for several reasons. First, computers have levels because they have been
engineered to do so. Evolution may have adapted this engineering strategy, but then
again it need not have. In other domains, nature seems disposed to decompositional
hierarchies. Complex organizations are easier to create (Simon 1962) if they are
constructed in Chinese box fashion, and decompositional levels confer a certain
robustness on processors. Yet, as Hillis argued, although decompositional levels are
likely within the brain, they are not nearly as distinct and well-defined as in the
computer, and they stand to each other in more complex relations than simple
hierarchies. 3

A second reason pointed out by Kirsh is that in computers, levels are assumed to
be insulated against processes occuring at lower levels because the speed of processes
occurring at different levels is sufficiently far apart that one can be confident that
lower-level processes will settle fast enough to serve as building blocks for higher-
level processes. Level-specific regularities in computers are reliable as long as there
is no breakdown and a lower level shows through. Programs are excellent descriptions
of system behavior unless registers fail to behave as.assumed. Hence, in normal
conditions, each level can be treated as modular and can be assumed to behave
according to its own laws. However, in biophysical substrates, features of lower levels
may show through regularly because of the importance of timing effects, connectivity,
and local inhomogeneities in detailed aspects of the biophysics of neurons. This means
that information can leak through levels, making it difficult to construct clean models
of the information processes occuring at a given level. (See Koch et al, chapter 6, for
a more complete account of this problem.)

A further, more specific question that provoked discussion was whether there exists
a level of the brain that corresponds to the symbol manipulation level in computers.
It is a central thesis of mainstream Al that there exists such a level—a level where
compositional répresentations can be combined, uncombined, and manipulated. There
was partial consensus on this point; however, those who disagreed rejected the idea
completely.

This led to consideration of a different level at which models of brains and
computers might connect: the level of idealized “neuron,” the level of connection
models, a subset of which are familiar connectionist models. In the ensuing disagree-
ment, a useful consensus was reached in that whatever model—symbolic or connec-
tion —proves more useful, it will largely be irrelevant to the type of regularities to be
found at higher computational levels. '

This is not to say that insight into higher levels may not be obtained by studying
lower levels. Virtually everyone present assumed that biological models of brain

Architectures of Intelligent Systems 303

performance set important constraints on the class of computational models empiri-
cally minded computationalists wish to propose. But, as Hillis pointed out, before
computationalists can exploit these constraints, they must be told the different types
of computational elements experimentalists believe there are; how many of each type
there are; the kinds of patterns they communicate in; and the time scale of their
communication. These questions are more important for the computationalist to know
than details of function. For example,. it is more useful for building computational
models to know how many neurons there are and how fast they are than to understand
their specific responses to stimuli.

Despite periodic moments of agreement in our discussion, true consensus was
seldom reached.

A Cautionary Note (C. Koch, R. Douglas, P. Roland)

The computer is not a model of the brain, and explanations that assume that it is
are actively dangerous and pernicious for the progress of neuroscience. A model

is a simplified description of the system under study. As such, the model must-

reflect the cardinal properties of the architecture and functions of the system that
it models. Because neurons are organized in ways that are fundamentally different
to general purpose computing machines, similes and explanations of behavior that
arise out of computer science are essentially inadequate. Concepts such as “pro-
gramming,” “input buffers,” “pipe-lining,” and the like have no correlates in
biological neuroscience. Because the ontology of computer models is not com-
mitted to brain properties, predictions and proposed experiments will not be
matched to their biological counterparts. This results in a misleading coupling

between theory and experiment.

NEURAL REPRESENTATION

Whether one accepts the standard computer model, a connection model, or some
even less idealized account of neural processing, it is accepted as dogma today
that the central function of neural tissue is to process and represent information.
Some of this information can be implicit in the structural organization of the
cortex, but much of it must be explicitly represented in patterns of neural activity,
which dynamically emerge as functional states in the cortical network. Intelligent
behavior of an organism will certainly be constrained by its ability to create
representations of objects and events in a flexible way. This appears as a prereq-
uisite for the acquisition of memory, for the anticipation of future events in the
outside world, and for the planning and execution of purposeful behavior. Because
of this fundamental importance, it is worth clarifying what some of the means are
for representing information in patterns of neural activity.
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Models of Neural Representation

Engel pointed out that the formation of cortical representations can essentially be
viewed as a problem of binding, which arises from the highly distributed nature of
cortical information processing. The binding problem can be exemplified by conside-
ring the visual system. Due to the finite extension of their receptive fields, most
neurons in visual cortical areas integrate information only from a limited part of the
visual field. In addition, all these neurons respond only to a limited range of feature
constellations. Thus, for instance, certain cells are sensitive to the movement direction
of a figure, but not to its particular shape, orientation, or color. These features, in turn,
are registered by other neurons. Representing a visual object therefore requires the
binding of information between different parts of the visual field. In addition, binding
has to occur across feature domains, that is, the shape of the object has to be linked
with its color, movement trajectory, texture, and all other possible attributes. This need
to integrate distributed information into representational entities is not confined to the
visual modality, but constitutes a general problem which applies to all cortical systems.

A number of models have been proposed which approach the binding problem in
quite different ways. These models are schematically reviewed in Table 20.1. A
well-known classical proposal that has pervaded cortical neurobiology for decades
was made explicit by Barlow. He introduced the notion of “cardinal cells” which
extract (in a serial-hierarchical manner) information from lower-level neurons and
thus acquire sufficient specificity to represent complex objects or events. Thus, in the
visual cortex, for instance, individual dedicated cells were assumed to represent a
whole object such as a grandmother’s face. The difficulties with single-cell repre-
sentations have now been widely recognized. Severe problems arise first from the
enormous number of cells which would be needed to represent all possible feature
constellations (combinatorial explosion); second, representations which rely ona very
small number of cells are highly vulnerable; and third, since in this model binding is
expressed by convergence of anatomical connections, it is not flexible enough to
account for the fact that humans clearly can create novel representations within
100-200 ms, which occurs, for instance, during tachistoscopic presentation of novel
visual scenes.

Thus, an alternative proposal made by Hebb seems to be more advantageous.
Hebb’s fundamental idea was that assemblies of cells rather than single units should
be the correlate of representations. Such assemblies are formed by cooperative
interactions between large numbers of neurons distributed in the cortex. In the I'ebb
model, an assembly is defined by the fact that the participating cells concurrently
elevate their average firing rates. Thus, binding is expressed by response amplitudes.
Clearly, assembly representations provide higher flexibility and reliability than single-
cell representations. Defining assemblies by response amplitudes, however, still
exhibits a major drawback, that has be addressed as the “coexistence problem.” Facing
a natural environment, the organism has to represent multiple objects or events at any
one time. Coexistence of several representations, however, constitutes a major problem
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Table 20.1 Comparison of different models for the formation of cortical representations
(Engel). The rightmost column summarizes fealures which are common to the correlational
models proposed by von der Malsburg, Singer and coworkers, and Damasio. For further details,
see Singer et al. and Damasio and Damasio (chapters 13 and 17, respectively).

Barlow Hebb Correlational Modecls
Neural correlate of single cell assembly assembly
representation
Code for binding anatomical response amplitude synchrony
convergence
Parsimony low, high, the same
combinatorial cells can
explosion participate in
different assemblies
Flexibility low rearrangement by high, rapid changes of
. “slow” plasticity temporal relationships
Coexistence of possible impossible possible, uncorrelated
representations firing of cells
belonging to different
assemblies

for the Hebb model. In this case, several cortical assemblies raise their average firing
rates, and it cannot be determined which of the active cells pertain to which of the
representations.

This severe restriction led to the suggestion of a third class of models which may
be called “correlational models” for assembly formation. Such models have been
suggested by Abeles, von der Malsburg, and more recently also by Singer and
coworkers and by Damasio (Table 20.1). The key assumption of these models is that
temporal correlation on a fast time scale serves a code for binding. Cells representing
a particular object fire synchronously, whereas cells belonging to different repre-
sentations fire in an uncorrelated manner. This mechanism would solve the coexist-
ence problem mentioned above.

Two particular architectures have been discussed. One model that was introduced
by von der Malsburg and later modified by Singer et al. (see chapter 13) implies that
cells with oscillatory firing pattemns, i.e., cells which exhibit recurrent bursting, may
be useful for the establishment of temporal correlation. This notion has now received
experimental support (Singer et al., chapter 13). In particular, it has been verificd in
experiments on cat visual cortex that two assemblies of oscillating cells can coexist
in the same cortical region which are distinguished by the absence of fixed phase-re-
lationships between the assemblies (Engel et al. 1991b). :

A related model has been suggested by Damasio (see chapter 17). In contrast to
Singer and coworkers, Damasio assumes that specialized sets of cells located in
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circumscribed “convergence zones” induce the synchronous firing of lower- level
neurons. This implies that the binding is carried out at anatomical sites which are
different from those containing the elements of the representation. As suggested by
Engel, it may be more economical if those cells that are bound into representations
accomplish the binding by cooperative interactions among themselves. Current data
support this latter possibility. Recent experiments suggest that synchronization of cells
in the visual cortex is mediated by interaction of these cells via tangential connections
(Engel et al. 1991b). Certainly, the existence of “convergence zones” requires further
experimental verification.

Altogether, recent developments in cortical neurobiology provide new ideas about
how representations may be created in a highly parsimonious and flexible manner,
which is certainly required for adaptive intelligent behavior. However, there are a
number of serious and yet unresolved issues that have to be addressed in the future.
First, how can hierarchically structured representations be formed in the cortex, i.e.,
how can a hierarchical relationship be expressed between a representation of the whole
object and representations of its parts? Second, how can one generalize over individual
representations to form more abstract concepts of objects and events? Third, how can
representatlons sequentially be linked in time, which is probably required, for instance,
to track a moving object and establish its identity from one observation to the next?

Argument for a Localist Representation (Durbin)

Despite the reasonableness of accounts for distributed representations, recent evidence
of neural localization of function has strengthened the localist reply.

Although the idea of using a separate cell to represent each possible conjunction
of concepts and percepts is clearly ridiculous, there is a strong case to be made for the
localization of representation even at high levels. By this I mean that the concept is
characterized by an activity pattern within a patch of cortex of perhaps a few hundred
microns in.diameter. There is no real danger of a combinational explosion at the level
of, for example, “grandmother,” since a standard human vocabulary including proper
nouns and known names is under 100,000. Experimental evidence from the last 30
years has been progressively restricting the alternative view that representations are
widely distributed. This comes both from the increasing awareness of specificity of
human lesion deficits and from physiological data about the localization of specific
meaningful properties in progressively higher areas. These data strongly suggest that
there are representations localized to within a centimeter, and do not rule out smaller
scales. The computational advantage of a localist representation is that it provides
independent, nonoverlapping basic components for cogpition to combine and man-
ipulate without problems of interference. :

If mental processing is carried out by activity in the cortex, then the organization
of the substrate for that activity, the cells and connections of the cortex, provide a
fundamental constraint. The vast majority of cortical connections are local (on the
order of a millimeter or less), and it seems inevitable that much of the computational
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processing is local. Even where a concept involves binding together neuronal activity
over widely separated areas, it has been suggested that this is achieved by linking those
areas in an activity pattern in a local patch of higher association corlex (e.g., the
convergence zones) (discussed by Damasio, chapter 17). This emphasis on local
circuitry goes hand in hand with the richness of spatial structure found on the cortical
sheet. Physiologists have observed localization of function at all scales, from major
zones (visual, temporal, frontal, etc.) to areas, to topographic maps in the sensory areas
and finally down to ordered substructures on the submillimeter scale (stripes, “col-
umns,” patches).

The intimate relationship between this spatial localization and function is emphas-
ized by experiments showing that functional activity is required for the organization
of the spatial structure on scales below that of areas. There is a family of models that
have been developed over the last 20 years (e.g., von der Malsburg 1973; Willshaw
and von der Malsburg 1976; Durbin and Mitchison 1990) that are effective in modeling
the experience-dependent development of cortical structure, including the results of
experiments which perturb that structure. These models tie important aspects of the
large scale layout of the cortex to a small number of basic mechanisms (competition
for activity, Hebbian-type synaptic adaptation and local interactions).

An overlapping set of models (e.g., Linsker 1986; Miller et al. 1989) using the same
mechanisms give indications of some expected properties of the wiring between
neurons. In particular, they suggest that cells will tend to come to respond to expected
correlation among their inputs i.e., to patterns repeatedly seen in their input that might
provide a good basis for a description of the world. Of course this does not imply that
cortical processing is simply correlation. Cognition requires suitable components to
work with, and detected correlations may well provide such basic components (Barlow
and Foldiak 1989).

Cautionary Note against Localizationism (A.K. Engel, P. Konig)

We want to express our disagreement with the view that recent findings provide any
particular support for localized representations. There can be little doubt that percep-
tion of natural scenes and control of complex behavior involve enormously large
numbers of cells in the brain, distributed through widely different regions and areas.
Contrary to Durbin, it seems to us that a combinatorial problem certainly arises from
the fact that one does not only want to represent individual items such as words, but
also combinations of words into sentences and paragraphs, for which there are
infinitely many possibilities. Apparently, this task cannot be accomplished by small
numbers of neurons in a particular location. Recent data from single unit recordings
do not seem to support the localist view because receptive field properties are never
highly specific. The so-called “face-selective” cells do actually respond to a whole
class of objects, and they are never specifically tuned to one particular face. Even if
this happened to be the case, there would still be the combinatorial problem of, for
instance, linking the activity of the face cell to that of cells representing other parts of
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the body. Thus, interactions are certainly required between spatially separate popula-
tions of neurons. Finally, it seems erroneous to cite Damasio for a localist viewpoint.
His data support the idea that the process of representation requires binding between
quite different brain arcas, and he explicitly argues for the distributed nature of cortical

representations.

CONCEPTUALKNOWLEDGE

Whatever one’s opinion of local vs. distributed representation, one fact that must be
explained, or explained away, is the compositional nature of much higher-level
knowledge. The very idea that there is such a thing as higher-level knowledge was a
recurrent theme in our discussion. Changeux emphasized the need for tracking the
logical or epistemological path of information from the level of sensory input to the
level of reasoning and planning, the implication being that at higher levels of
functional organization, higher forms of knowledge were created. Premack, even more
explicitly, pointed out the importance of higher-level knowledge in the control of
voluntary action and the significance of the categories of object, mind and number for
higher cognitive capacities. Damasio, too, reported on instances of the need for
apparently higher-level knowledge, such as might be found in the planning centers, to
help agents act with foresight. The common theme to these discussions is that not all
information is represented in the same way, nor does it have the same logical struciure.

Kirsh followed this theme by elaborating on some of the special features of cono'épts
and conceptual knowledge. He argued that it is possible to distinguish at least three
logically distinct capacities involved in the human ability to use concepts:

1. the ability to partition entities into equivalence classes; that is, to recognize,
classify, and categorize; .

2. the ability to know the meaning of a linguistic term, even if one does not yet
attach the right lexeme to the concept; and

3. the ability to combine more or less arbitrarily elements of a scene or an
abstraction into a thought.

Research tends to focus on one or the other of these abilities. Of particular interest,
however, are the second and third abilities; the capacities to grasp linguistic meanings
and to create structured thought. For whereas the ability to partition a set is an ability
animals, even low mammals, display, we have yet to find convincing proof that
animals can form arbitrary combinations of ideas, such as are displayed by humans
in speech. ,

In current Al theory (Winston 1992), the output of linguistic processing and the
output of visual processing are both structure descriptions: a linked list of symbols
organized into certain framelike structures. Although there are constraints govemning
the filling of such frames, there is tremendous freedom too. Within the confines of
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semantic and syntactic well formedness, we are free to construct arbitrary proposi-
tions. The same applies to visual imagery: we are free to put together arbitrary elements
of scenes we have perceived or imagined, providing certain semaiitic and syntactic
constraints are obeyed. This ability to detach elements of a scene and make them
separate objects of thought confers on the agent the ability to construct thoughts about
how the world might be, and what the world that is distant to it in space and time might
be like.

One reason to view these thoughts and expectations to be higher forms of knowl-
edge is that they presuppose the ability to refer to enduring objects. The notion of
reference is itself the subject of a vast literature (Evans 1982). But minimumally, if a
creature has the capacity to refer, to have thoughts about things, as opposed to just
respond to things, it must be able to grasp the difference between being presented with
identical twins, one after the other, and being presented with the same person twice
__ a distinction known as the difference between two tokens of the same type and
similar tokens of different types. Creatures who possess the capacity to classify by
appearances alone, will be unable to distinguish the two cases.

The formal defence of the type-token capacity flows from an analysis of predica-
tion. It is inconceivable that a person can genuinely understand the meaning of a
sentence such as “John loves Mary” without also having the ability to understand the
meaning of the sentence “Mary loves John.” That is because an agent who grasps the
concept love, as we mean it, knows that it takes two arguments (love x y). Itis possible,
of course, that the agent only knows the concept loved-by-John — a predicate taking
one argument. But the fact that we distinguish these predicates is proof that we refuse

* to grant that an agent has the normal concept of love unless it grasps that it is possible

to apply the predicate to different x’s and y’s . More generally, the ability to predicate
H of a presupposes the ability to predicate H of b, H of c, and also the ability to use
different predicates for the same individual, as in Ha, Ga, Ja, so as to guarantee the
capacity to refer to individuals (ibid.).

A second and equally profound ability that human concept users posscss is the
social skill necessary to bind ourselves to the norms of the correct application of a
concept, so that we learn to partition sets the way our neighbors do, even if there is no
natural grouping based on structural features. Premack mentioned earlier that pos-
session of certain concepts are necessary for pedagogy. One crucial element necessary
for higher types of learning is to be able to understand what it is necessary for an
answer to be correct, or relevantly similar. This is one factor making explanation-
based learning and one-shot learning possible.

Finally, and perhaps most significant of all, the ability to use concepts means that
we are able to recognize a public nonegocentric space where other agents have
different spatial perspectives on objects (Kirsh 1991). That is, we have a theory of
mind. Not all forms of cooperation require knowing what one’s partners will perceive;
however, there is a large class of cooperative actions that does, since to distribute goals
so as to cooperate in a planned way, we must be able to aim for the same objective
states of the world—a capacity not shared by animals, to our knowledge.
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This difference has deep consequences for theories of behavior because it implies
that some behavior does not require fully blown concepts while other behavior clearly
does. Concept-free behaviors are the product of skills, which may be defined as
complex organizations of perceptuo-motor control systems that enable a creature to
manipulate objects in order to regulate certain properties. A cook, for example, has
knife-using skills, frying skills, and so on which are highly tuned to local properties
that are learned to be important for the task. These properties are monitored from the

agent’s egocentric perspective. Globally managing such skills, however (Kirsh 1990), -

requires some element of planning and hence concepts for understanding states of the
public, nonegocentric world.

More Lessons from Lesions

Damasio presented a series of results illustrating how patients with lesions in occipito-
temporal cortices may have selective losses of access to concepts of concrete entities.
For instance, they may be unable to recognize the pictures of certain animals, but be
perfectly capable of recognizing most human-made and manipulable items. Those
same patients will have no difficulty in comprehending the actions or relationships
instantiated by the entities whose concept they fail to access, e.g., a patient with
bilateral damage to infero-temporal cortex may consistently fail to recognize pictures
of raccoons, but shown pictures of raccoons eating, or fighting, or protecting their
offspring will easily identify those actions in spite of not identifying the subject of the
picture, i.e.,“it is eating,” or “mothering.”

Some patients with left anterior temporal lobe lesions become unable to access the
names that denote certain entities, but are perfectly able to retrieve the concepts related
to those entities and can access the concepts that describe those stimuli. Those same
patients can easily access verbs or functions (closed class words such as prepositions
or conjunctions), which denote actions or relationships of entities or among entities.

These results imply that the brain utilizes different neural systems to map the
properties, actions, and relations of different entities and that, furthermore, it utilizes
different systems for the representation of objects and for the representation of the
names that denote them. The evidence also makes specific suggestions about how
conceptual knowledge is inscribed in neural systems. For instance, as far as concrete
entities are concerned, it suggests that the brain does not carry a permanent lexico-
graphic definition of each concept but rather that it reconstructs representations of
appropriate elements of typical exemplars of the entity and generates a narrative out
of those representations.

The mechanisms for accessing nouns given concepts, or for the reverse operation,
uses the framework of synchronous multiregional retroactivation (see Damasio and
Damasio, chapter 17). The mechanism calls for a “third party” convergence zone, that
mediates between convergence zones related to concept representation, on the one
hand, and word reactivation, on the other. This binding device is bidirectional and does
not embody knowledge about either concept or word but rather knowledge about the

-
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probability of the two having been linked in experience. The framework predicts that
such a “third party” mediation should occur at a hierarchy higher than that required
for either concept or word processing, and the lesion data offers some support for this
prediction: lesions that disrupt name access (or access of concept given the name) are
located in left anterior temporal lobe, and more anteriorly than lesions that would
disrupt either concept access or word generalization.

We have argued that with concepts comes the ability to plan in the full and proper
seiise. But much adaptive response does not require planning so defined. Appropriately
tuned perceptually driven control systems — skills — can serve a creature remarkably
well.

It is characteristic of skills that they evolve as a result of a dynamic relationship
with the environment actively organizing perception to probe the environment for
properties that are maximally informative relative to the tasks and goals the creature
has. We therefore next inquired into expectation-based perception and behavior.

EXPECTATION-BASED PERCEPTION AND BEHAVIOR

Most animal, if not human, behavior is goal-directed, that is, it aims to fulfill the needs
of the animal: safety, food, shelter, reproduction. The existence of a goal presupposes
that the animal has an expectation that is matched when the goal is fulfilled. Altman
contended that to analyze these expectations, it is first necessary to appreciate that a
large part of an animal’s sensory input arises from self-generated stimuli: as an animal
moves through the world, its changing relationship with the world provides a continual
stream of input to the sensory system; likewise the internal state (equivalent to the
somatic states posited by Damasio) continually changes, both on the level of short-
term proprioceptive information and changes in concentrations of chemicals, such as
glucose and hormones. These on-going changes, generated by action, form intcrnal
and external loops through which the animal receives information about the results of
its action.

Novel stimuli, that is, changes arising in the environment independent of the
animal’s actions, actually form a small part of the input, except in humans, who have
specialized in collecting and dealing with novel stimuli. Both our anthropocentric view
of behavior and the prevalence of experimental designs in which stimuli are presented
to and responses demanded of immobilized subjects have tended to emphasize the
input—output aspect and have léd to the neglect of the far more important output—input
component. Furthermore, once an animal starts responding to a novel stimulus, that
stimulus loses its novelty and becomes part of the animal’s world, thus part of the
ouput-input loop. , . :

Information flowing through the output—input loop is matched against the expec-
tation, or internal representation, of the goal. This may be either hard-wired or learned:
crickets with species-specific courtship songs have neurons tuned to specific features
of that song (Schildberger 1987). Hebb made the point that even the organization of
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stepping involves a hard-wired expectation, in the form of sensory information that is
gated to be available only in the appropriate phase of the movement.

Adescriptive model of the insect motor system that includes the output-input loops
(external and internal), as well as internal loops between the local networks at various
levels of the nervous system (Altman and Kien 1989) has the form of an attractor
neural network. Dynamic forms of such networks turn out to be excellent for formal
modelling of this system on an abstract level (Niitzel, Kien, Bauer, Altman and Krey,
in preparation). One problem that is being examined with this method is the deiermi-
nation of the conditions that cause an animal to switch from one behavior to another
when there is no sudden discontinuity in the intensity of the input conditions; in other
words, what determines whether an expectation has been fulfilled? This turns out to
be a general class of problem that applies to many dynamic systems from chemical
oscillators to weather forecasting.

Expectation-based Learning: A Computational Viewpoint

Expectations may provide a bridge between low-level stimulus-response behavior and
- higher-order mental activities, according to remarks made by Rivest.

In this view, expectations provide a first mechanism for representing the future—
certainly a key requirement for survival in a complicated world. In its simplest form,
an expectation may merely be an anticipation that some event is about to happen.
(Seeing the lightning, one expects to hear thunder.) Given that the future is also
affected by one’s own actions, an expectation may also represent a potentiality present
in the current situation that may or may not be realized, depending on what actions
are taken. (One may expect to find coins in one’s pocket if one looks or to see a door
if one turns around.) Such expectations can be simple or complicated, but will always
have the property that they correspond to testable predictions about the current state
of the world; an expectation is the belief that a certain prediction is true in the current
state of the world. We may conjecture that a key function of intelligence is to maintain
an accurate set of expectations in a dynamic environment.

It is also useful to consider an expectation as itself a sensation; expecting to see the
door behind oneself if one tums around is a vision of a (possible) future. Such
expectations help one to perceive one’s immediate world as if one had greatly extended
sensory capabilities (in this case, eyes in the back of one’s head).

However, expectations are not founded on immediate sensory perception but derive
from knowledge gleaned about the structure of the world. One learns to expect thunder
after lightning or to expect to find food in the refrigerator if one opens it. Such
knowledge may relate sensations to expectations (thunder after lightning), actions to
expectations (if I look up I will see blue sky), or even expectations and actions to
expectations (if I expect to get a coke from the vending machine after I put two quarters
in it, then if I put one quarter in, I expect to get a coke if I put another quarter in). The
way in which expectations are affected by sensations, actions taken, and other
expectations forms an elementary “world model.”
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Nontrivial concept formation can be based upon the recognition of equivalences
between expectations. A notion of an object may evolve from the cluster of interrelated
expectations learned about that object. In a theoretical study, Rivest and Schapire
(1990) demonstrated the application of this principle to “Rubik’s Cube”; a learning

algorithm was able to infer the structure of Rubik’s Cube by experimentation, even,

though only three squares of the front face of the cube were observable. The algorithm
invented concepts representing the other 51 visible squares of the cube by detecting
equivalences between expectations.

We surmise that expectations will play an increasingly important role in our
understanding of intelligence and its neural underpinnings.

CONSCIOUSNESS

To understand the function of consciousness it may be helpful to define the part of the
brain involved in its mediation and to then try to evaluate its possible contribution to
intelligence.

Stoerig suggested that consciousness allows the reflection on some parts of inner
(motivations, emotions, feelings, and desires) and outer (social and physical environ-
ment) reality which are accessed via our perceptual systems. These systems provide
information about our internal and external states, which to a certain exient only are
consciously represented. Consciousness thus depends on perception and can be seen
as a composite of modality-specific perceptual consciousnesses: to see and know that
you see, to hear and know that you hear, to feel and know that you feel, to want and
know that you want. Perceiving and knowing that you perceive do not always go hand
in hand, and they may be pathologically dissociated in patients.

One example in question is provided by patients with “blindsight.” These
patients have suffered lesions in their primary visual cortex (V1) which cause
visual field defects in the topographically corresponding portion of their contra-
lateral visual hemifield. The field defects are perimetrically assessed and clinically
classified with respect to the extent, density, and position within the visual field.
Defects that are classified as absolute are experienced as blind by the patients.
When visual stimuli are presented within these defects, the patients report no visual
sensation. They may still, however, be able to process the visual information, as
can be shown by measuring skin conductance response or pupil reflexes in
response to visual stimulation or by asking them to guess whether or not a stimulus
has been presented, where it has been presented, or which one of different stimuli
has been presented (see Weiskrantz 1991, for a recent review). Depending on the
experimental conditions, patients may perform at high levels of accuracy and
sensitivity in such tasks, getting 100% correct in a motion detection task or
exhibiting a detection sensitivity which is reduced by no more than 0.5 log units
as compared to sensitivity in the normal hemifield (Stoerig and Cowey 1991).
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Despite this level of performance, however, the patients claim that they do not see
anything, that they are only guessing; in some cases it may even be difficult to
convince them to give it a try because it seems an eccentric request.

It is not difficult to understand how the patients can process visual information
in their field defects since up to nine pathways from the retina remain in the
absence of V1 (Cowey and Stoerig 1991). What is remarkable is the dissociation
between the performance and the visual experience, or lack thereof. It seems as if
the visual information they are able to process can no longer be represented in
perceptual consciousness: they “see” but they do not know that they see. As this
happens only after lesions of V1, while lesions in higher visual areas produce
specific deficits such as cortical color blindness, motion blindness, or face blind-
ness, it may shed some light on the neuronal basis of visual consciousness. It would
be interesting to know whether the loss of visual perception is due to the privileged
position of V1 that distributes a vast part of visual information to the extrastriate
visual cortical areas, or whether V1 is really responsible for accessing perceptual
consciousness in that it not only forwards the information to the specialized higher
areas, but also receives their outputs and maps them on its precise map of the visual
world that the other areas lack (Stoerig and Cowey 1992). If this were the case,
vivid visual dreams or imagery should activate visual cortical areas as far down
as V1 in people who are able to really “see” internally generated images. At
present, it is not known whether complete bilateral destruction of V1 abolishes all
“seeing” in that sense, because no such patients are known.

To better understand the basis of blindsight and visual consciousness, monkeys
with ablations of V1 are studied, who, like the patients, exhibit residual visual
functions in their field defects (e.g., Pasik and Pasik 1982). Yet it is not known
whether the monkeys, like the patients, have blindsight, i.e., whether they are also
convinced that they are only guessing when in fact they perform at high levels of
statistical significance. To test this, Cowey and Stoerig (1991b) are presently
teaching monkeys two different response paradigms, between which they have to
choose to optimize their rewards. They should use the first response when, they
know, or are confident, that they see the stimulus, because they are rewarded for
correct responses only. They should use the second response when the task is very
difficult because they are rewarded for 75% of responses regardless of whether or
not they were correct. This is the better strategy to use when you are only guessing
because in a two alternative forced choice you score approximately 50% correct
when you are in fact just guessing. Therefore, we want to then test them in their
cortically blind fields once they have mastered these strategies to see which
strategy they will adopt. This should tell us whether they experience themselves
as blind, as only guessing. Although this is a specific test for visual conscious-
ness—a test we have yet to prove works—it may eventually help us design tests
to distinguish between the more general “knowing” and “knowing that you know”
by testing both the performance which is based on knowing, and the confidence
or meta-knowledge about this basis.
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Consciousness: A Methodological Comment

Consciousness can be treated as a recursion on knowing—an individual uses informa-
tion, knows that he uses information, knows that he knows he uses information. We
can equate consciousness with the third state—knows that he knows—and equate it,
albeit in lesser degree, to the second state as well.

Of course, every species uses information, but which know that they do? Do
chimpanzees? To answer this question we used a two-step procedure (Premack 1986).
First, four young animals were taught to use-plastic “words” in a simple way. Each
animal was shown a plastic word displayed on a writing board, then trained to select
one of three objects that was “named” by the word. When the animals attained
criterion, we introduced this critical step: the writing board was rotated 180°, conceal-
ing the word and depriving the animal of information. How did they react to this loss?
One animal acted as though nothing had been changed, choosing among the objects
as_promptly as ever, performing, of course, at chance level. A second animal per-
formed in the same way but with great reluctance, whining, and “complaining.” It

appeared to “know” something was wrong, but not what, or how to correct the

problem. The third and fourth animals redeemed the species: from the first trial, they
went directly to the rotated board and turned it around: then they made their choice.
Shyness or a reluctance to handle the board could not explain the behavior of the two
animals that did nothing. On alternate trials, when the board was rotated only 90° (so
that the animals could see the word simply by adjusting their posture) they again did
nothing. Two of the four animals gave clear evidence that they knew they had used
information, for when the information was removed, they took steps to restore it. This
simple paradigm, the restoration of missing information, can be used to determine
whether an individual is conscious of his actions.

A second test entailed a more complicated setting. In the test (Premack 1988a), the
chimpanzees were required to choose between two opaque containers, one of which
held food. The chimpanzee’s view of the baiting was blocked by a barrier but they
could see two onlookers: one who had a clear view, the other’s view was blocked like
that of the animal. Before choosing between the containers, the animal was given the
opportunity “to ask the advice” of one of the onlookers, and then pointed to one
container or the other: the correct container if he was the “clear view” onlooker, the
incorrect one if he was the “blocked” onlooker.

Three of the four chimpanzees chose the correct onlooker from essentially the first
trial, giving evidence for the assumption that chimpanzees have a “theory of mind,”
viz., they understand the conditions on which seeing depends and attribute it appro-
priately. Does the chimpanzee know why it makes the choice it does? Does it know
that it chose a particular onlooker because it attributed seeing to him? To answer this
question we next gave the animal two kinds of trials: those on which it could not see
where food was placed and those on which it could (the barrier was removed). Both
onlookers were available as before, but now the animal had to pay for their advice
(using tokens that it had been taught to exchange for candy). One should not, of course,
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pay to be given information about where food is located if one already knows where
it is: one should pay only if one does not know. An individual who does this can be
said to know why he chooses a particular onlooker and to be conscious of his actions,
" or on the road to becoming so. However, none of the chimpanzees made this
discrimination. They paid for the trainer’s advice on all trials, whether needed or not.
In a simple setting, chimpanzees gave evidence of consciousness, of knowing what
they were doing, but they failed to give evidence of consciousness in a complex one.

Yet More Lesion Lessons

Damasio outlined several results in humans with lesions which exemplify perfor-
mances without consciousness:

For instance, patients with face agnosia are able to generate accurate discriminatory
skin conductance responses to faces which they clearly can not recognize consciously.
Those same patients also generate scanpaths to familiar faces which are clearly
different from those that they would generate for entirely novel faces.

Patients with amnesia provide other examples. For instance, patient Boswell
develops preferences for persons who often reward him and avoids those who do not,
in spite of the fact that he has no conscious knowledge of the person’s identity. This
is an example of habit learning. It does not require hippocampal circuitry and it can
occur below the level of consciousness.

Damasio also outlined some requirements for self-consciousness as a complex
function distinct from awareness and wakefulness. They are:

1. the ability to correlate current knowledge with previously acquired knowledge;
2. the ability to refer the correlated information to the self defined as follows:

a) a repeatedly updated collection of autobiographical items from the
individual’s past and expected future, i.c., a memory of past and planned
future;

b) a repeatedly updated representation of the individual’s somatic state; this
collection may not be sufficient but the different components are seen as
necessary.

It is difficult to imagine that the higher levels of human intelligence (e.g., pertaining
to personal relationships and creativity) could operate in the absence of self-conscious-
ness as defined above.

A Reductionist Account of Consciousness

Koch ar\gued concisely for a radical reductionist thesis concerning the neuronal
localization of awareness (Crick and Koch 1990).

“When will I know that a given neuron is involved in awareness?” Let us consider
an awake monkey shown a rivalrous stimulus. In such an experiment, the left eye is
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presented with an upward moving grating, while the right eye is stimulated by a
downward moving grating. Under these conditions of pinocular rivalry, the percept is
ambiguous and alternates between seeing only upward or only downward. Early on
in its visual system, say in the retina or in primary retinal cortex, neurons will respond
to the physical stimulus present in one or the other eye (that is, to either the upward
or the downward motion, depending on which eye provides the dominant input; similar
to the experiment carried out by Logothetis and Schiller 1989). Yet somewhere in the
higher areas of the monkey visual systems, (in particular, in the superior temporal
sulcus of monkeys), neurons should fire corresponding to what the monkey perceives,
independently from the physical stimulus, thereby reflecting the percept or visual
awareness of the monkey. Where are these neurons? Is there anything particular about
these neurons? Do they fire in a special manner? Thus, we would like to know what
sort of neuronal activity is responsible for awareness.

In general, at least three, nonexclusive criteria exist for the neuronal adequacy of
awareness: :

1. A sensory event causes awareness if a certain minimum number of neurons,
say one million, become active. There is certainly some validity to this
argument. .

2. Neurons in a special part of the brain must become activated, say in IT or in
the frontal lobes. Thus, if these neurons fail to become activated, the animal
can still make a behaviorally relevant response, but the sensory information
will fail to cause awareness. Conversely, one may never become aware of the
activity of neurons, say in the brainstem or in the cerebellum. We currently
believe that there must be some truth to this notion and that neurons have to be
located in the “cortical” system (including neocortex, hippocampus and olfac-
tory cortex) to cause awareness.

3. The neuronal activity has to be of a particular kind, say a high-frequency burst,
an oscillatory response, or a phase-locked activity. This possibility is quite
elegant, since it provides for an explanafion of why certain events (such as
blindsight) fail to cause awareness yet lead to meaningful behavioral motor
output. In this case, the visual stimulus induces. neuronal activity over the
cortical system (inducing a motor output) yet fails to cause this special type of
firing. Thus, it will not cause awareness. Crick and Koch (1990) currently
postulate that phase synchronized oscillations in particular parts of the cortical
system are necessary to cause awareness, while the absence or reduction of
synchronized oscillation will cause a loss or a.reduction of awareness.

Cautionary Comment

Changeux expressed surprise that some of the recent speculations about the mechanics
of conscious awareness are based on experiments carried out with animals in which
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the “state of consciousness” is under control (e.g., anesthesia). Livingstone and Hubel,
in the early 1980s, carried out experiments relevant to this point. They followed the
state of activity of defined neurons from striate cortex for extended periods of time
(hours) during which the cat wakes up (becomes “conscious”) and falls asleep
(drowsiness). Interestingly, oscillations are recorded during the sleep phase—disap-
pear when the cat wakes up. Most characteristic is the “sharpening” of the evoked
signal upon stimulation e.g., by moving bars with reduction of “noise” activity. Such
enhanced signal-to-noise ratio may facilitate traumatic coherency activity between
neurons, through the elimination of redundant “static” oscillations.

Future research might perhaps first be focused on the delimitation of the compart-
ments of the brain (if they exist) which are the most susceptible to the state of
wakefulness (and or attention) and then, but only then, on the analysis of the properties
displayed by the relevant cells, ensemble of cells, or even receptors.

Cautionary Comment (A.K. Engel) . . ’,

(e

Engel commented briefly on the relationship between oscillatory activity and staté of
alertness. In the discussion of this issue, there was certainly some confusion about the
frequency band of the “oscillations” various speakers were referring to. In their 1981
paper, Livingstone and Hubel investigated slow EEG waves in the frequency band
below 10 Hz, and it is certainly true that these slow waves disappear during arousal
of the animal. However, the oscillations that have been considered relevant for visual
cortical information processing (see Singer et al., chapter 13) have frequencies
between 30 and 80 Hz. These fast oscillations are not dependent on the state of
alertness and can well be observed in awake cats and monkeys. In this respect,
Changeux’s statement may be somewhat misleading.

What Happens During Sleep? (Roland)

What happens in the brain during sleep, perception, and when keeping something in
mind in the awake state?

When the brain is asleep or anesthetized it is by definition not conscious. Sleep in
the form of deep sleep (in stages II-1V) reduces the metabolic rate of glucose diffusely
all over the brain by 25-35% (Heiss et al. 1987). Rapid eye movement (REM) sleep
is associated with a general level of metabolic rate for glucose which is identical to
that in awake subjects during rest. Also the pattern of metabolic activity during
REM sleep is the same as that in awake subjects who are just resting with their eyes
closed.

An important faculty which is a subfunction of consciousness is the ability to keep
something in mind for a short time (working memory). In an experiment subjects were
shown two pairs of visual stimuli, of which the first differed in orientation and the
second in grating frequency; they did not know which pair to discriminate until either
a green or ared lamp was lit. This gave an activation of V1 and immediate visual areas
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plus a strong activation of the frontal polar cortex and adjacent part of middle frontal
gyrus. Discrimination of the gratings or the orientation alone did not give this
particular prefrontal activation (Gulyas and Roland 1991). N

Actively keeping something in visual perceptual awareness was associated with
activation of a subset of the visual areas plus activation of frontal polar cortex. During
visual perception, V1 and a subset of visual association areas are active, most often in
combination with activation of a few district fields in the prefrontal cortex and
activation of the frontal eye fields. The subset depends on the nature of visual
stimulation (Roland et al. 1990; Gulyas and Roland 1991; Haxby et al. 1989).

Similarly, during somatosensory perception, S1 and a subset of somatosensory
association areas are active. Again the subset which is activated will depend on the
nature of the stimulation (Seitz et al. 1991, Roland and Seitz 1991). In addition, distinct
fields in the prefrontal cortex (different from these active in visual perception) are
active. These fields each cover at least the space of 10 neurons.

CONCLUSIONS

Our goal, as stated in the introduction, was to consider the prospects for establishing
theoretically fruitful connections between computational models of intelligence and
neural models of the brain. At a detailed level we must admit that we have not ourselves
succeeded in establishing actual connections between specific models. Our inquiry
has been focused more on foundational issues than on comparing specific models of
general intelligence with specific data culled from behavioral and physiological
studies. -

Yet there was a quiet optimism, albeit restrained, that a constructive relation
between computationalist and neuroscientist may be forged in the not too distant
future. The modest success achieved in the study of vision is encouraging, as are some
of the links emerging between lesion studies and computational models even as
universal as Newell and Rosenbloom’s Soar. Perhaps the fields are indeed within
shouting distance of one another.
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