ASYMPTOTIC BOUNDS FOR THE NUMBER OF CONVEX n-OMINOES*

David A. KLARNER and Ronald L. RIVEST

Computer Science Department, Stanford University, Stanford, Calif. 94305, USA

Received 18 May 1973**

Abstract. Unit squares having their vertices at integer points in the Cartesian plane are called cells. A point set equal to a union of n distinct cells which is connected and has no finite cut set is called an *n-omino*. Two *n-ominoes* are considered the same if one is mapped onto the other by some translation of the plane. An *n-omino* is convex if all cells in a row or column form a connected strip. Letting c(n) denote the number of different convex *n-ominoes*, we show that the sequence $((c(n))^{1/n}: n = 1, 2, ...)$ tends to a limit γ , and $\gamma = 2.309138...$

1. Introduction

Unit squares having their vertices at integer points in the Cartesian plane are called *cells*. A point set equal to a union of n distinct cells which is connected and has no finite cut set is called an n-omino. Two n-ominoes are considered the same if one is mapped onto the other by some translation of the plane. (Such n-ominoes were called *fixed* animals with n cells by Read [8].) For example, there are six different 3-ominoes as shown in Fig. 1.

Fig. 1. The 3-ominoes.

^{*} This research was supported in part by National Science Foundation Grant GJ-992, and Office of Naval Research Contract N-00014-67-A-0112-0057 NR 044-402.

^{**} Original version received 29 December 1972.

Let t(n) denote the number of distinct n-ominoes. It is known [3] that the sequence $((t(n))^{1/n}: n=1,2,...)$ tends to a limit θ . The investigation of θ began with Eden's work [1]; he managed to prove that $3.14 < \theta \le 6.75$. There has been considerable effort expended to improve these bounds. Currently, the best lower bound (given in [3]) is $3.72 < \theta$, while the best upper bound (given in [5]) is $\theta < 4.65$.

An *n*-omino is *row-convex* when each row of the *n*-omino is a connected strip of cells. *Column-convex n*-ominoes are defined analogously. All six of the 3-ominoes (shown in Fig. 1) are both row-convex and column-convex; in general, such *n*-ominoes are said to be *row-column-convex*, or just *convex* for short. It was shown in [2] (and in [3] by a second method) that

(1)
$$\frac{x(1-x)^3}{1-4x+7x^2-5x^3} = \sum_{n=1}^{\infty} b(n) x^n,$$

where b(n) denotes the number of distinct row-convex *n*-ominoes. (This result was also obtained by Pólya [6].) Thus it follows that the sequence $((b(n))^{1/n}: n = 1, 2, ...)$ tends to a limit β which is equal to the largest real root of $y^3 - 4y^2 + 7y - 5 = 0$; that is, $\beta = 3.20...$.

Recently, Donald Knuth wrote us and asked us if the number c(n) of convex n-ominoes had been investigated. This paper is entirely motivated by Knuth's question. We shall be concerned with the problem of effectively calculating the limit γ of the sequence $((c(n))^{1/n}: n = 1, 2, ...)$. One of the first things we prove is that this limit exists. Later on we show how to calculate upper and lower bounds for γ and give the best results obtained by these methods.

2. Existence of $\lim_{n\to\infty} (c(n))^{1/n}$

Following Ceasar's admonition, we divide, then conquer. A convex n-omino may be split into three parts by making two cuts between certain rows so that the upper and lower parts are roughly trapezoids and the middle part is roughly a parallelogram. A typical sectioning of this sort is shown in Fig. 2. More precisely, the trisection of a convex n-omino A is accomplished by cutting along the lowest level of A where the left boundary of A goes to the right and by cutting along the lowest level of A where the right boundary of A goes to the left.

Fig. 2. Trisection of a convex 28-omino.

A convex n-omino whose left boundary climbs to the right and whose right boundary climbs to the left corresponds to a partition of n called a stack by Wright [9]. We let s(n) denote the number of distinct n-ominoes corresponding to stacks; for example, there are four 3-ominoes shown in Fig. 1 which correspond to stacks, so s(3) = 4. A convex n-omino whose left and right boundaries both climb to the right is called a parallelogram, and p(n) will denote the number of distinct n-ominoes which are parallelograms. Clearly, $p(n) \le c(n)$ for all n; also, $s(n) \le p(n)$ for all n (the diagram in Fig. 3 suggests a proof of this fact). Finally, an obvious construction establishes that $p(m) p(n) \le p(m+n)$ for all m, n. Now we use the fact that if $\{u_n\}$ is a sequence of natural numbers such that $((u_n)^{1/n}: n = 1, 2, ...)$ is bounded and $u_m u_n \le u_{m+n}$ for all m, n, then $\lim_{n \to \infty} (u_n)^{1/n}$ exists. (For similar results, see Pólya and Szegő

Fig. 3. An injection showing $s(n) \le p(n)$.

[7, p. 171].) We have $p(n) \le b(n) < (3.20)^n$ for all large n, and $p(m) p(n) \le p(m+n)$, so

(2)
$$\lim_{n \to \infty} (p(n))^{1/n} = \gamma$$

exists. Using the fact that every convex n-omino splits into two stacks and one parallelogram, we can reconstruct these n-ominoes by pasting together two stacks and one parallelogram in various ways. Again, using an obvious construction, and using the fact that $p(i) p(j) p(k) \le p(i+j+k)$ for all i, j, k, it is easy to show that

(3)
$$c(n) \le 2n^2 \sum_{(i,j,k)} s(i) p(j) s(k) \le 2n^2 \sum_{(i,j,k)} p(i) p(j) p(k)$$
$$\le 2n^2 \binom{n+2}{2} p(n) \le (n+2)^4 p(n) ,$$

where the index of summation in the sums extends over all compositions (i, j, k) of n into non-negative parts. There are $\binom{n+2}{2}$ such compositions.

Using (2) and (3) together with the fact that $p(n) \le c(n)$ for all n, we have

(4)
$$\gamma = \lim_{n \to \infty} (p(n))^{1/n} \le \lim_{n \to \infty} \inf (c(n))^{1/n}$$

$$\le \lim_{n \to \infty} \sup (c(n))^{1/n} \le \lim_{n \to \infty} ((n+2)^4 p(n))^{1/n} = \gamma .$$

Hence $\lim_{n\to\infty} (c(n))^{1/n}$ exists, and

(5)
$$\lim_{n \to \infty} (c(n))^{1/n} = \lim_{n \to \infty} (p(n))^{1/n} = \gamma.$$

3. An integral equation

We shall use a theory developed in [4] concerning a double sequence (b(n, a): n, a = 1, 2, ...) defined in terms of given sequences (f(m, n): m, n = 1, 2, ...) and (g(n): n = 1, 2, ...) as follows:

(6)
$$b(n,a) = \sum f(a_1, a_2) f(a_2, a_3) \dots f(a_{k-1}, a_k) g(a_k),$$

where the index of summation extends over all k-tuples $(a_1, ..., a_k)$ of natural numbers for k = 1, ..., n with $a_1 = a$ and $a_1 + ... + a_k = n$. It was shown that if

(7)
$$G(x) = \sum_{n=1}^{\infty} g(n) x^n$$

and

(8)
$$F(x, y) = \sum_{m, n=1}^{\infty} f(m, n) x^m y^n$$

converge for |x| and |y| sufficiently small, then

(9)
$$B(x, y) = \sum_{n=1}^{\infty} \sum_{a=1}^{n} b(n, a) y^{a} x^{n}$$

converges for |x| and |y| sufficiently small, and

(10)
$$B(x,y) = G(xy) + \frac{1}{2\pi i} \int_{C} F(xy, 1/s) B(x,s) \frac{ds}{s} ,$$

where C is a contour in the s-plane which includes s = 0 and the singularities of F(xy, 1/s) but excludes the singularities of B(x, s). The theory of (10) runs parallel to that of the Fredholm integral equation. In particular, if F(x, y) has the special form

(11)
$$F(x, y) = R_1(x)S_1(y) + ... + R_t(x)S_t(y),$$

we say F is *separable*, and it turns out that (10) can be converted into a system of t equations linear in t unknown functions. The system can be solved and the solution yields a formula for B(x, y). We shall give an example of this later on.

If F is not separable, we can still get information about B by approximating F with something that is separable. Suppose

(12)
$$K(x,y) = \sum k(m,n) x^m y^n$$

and $k(m, n) \le f(m, n)$ for all m, n, then we say K is a lower bound on F, an upper bound on F is defined analogously. If K is separable, we may

substitute K for F in (10) and calculate a lower bound for B. Upper bounds for B may be obtained in a similar fashion. We shall adopt this strategy too, so an example is forthcoming.

The relevance of the foregoing discussion to the enumeration of ncelled parallelograms is as follows: the number of (m+n)-celled parallelograms having m cells in one row and n cells in a second row is

(13)
$$f(m, n) = \min\{m, n\}$$
.

It is fairly easy to show that the number of n-celled parallelograms with exactly k rows of cells having exactly a_i cells in the ith row for i = 1, ..., k is

(14)
$$f(a_1, a_2) f(a_2, a_3) \dots f(a_{k-1}, a_k)$$
.

Thus, if we take f as defined in (13) and put g(j) = 1 for all j, we can sum (6) over a = 1, ..., n and obtain p(n). In this case, we have

(15)
$$F(x,y) = xy/(1-x)(1-y)(1-xy),$$

(16)
$$G(x) = x/(1-x)$$
.

Substituting these functions in (10) gives

(17)
$$B(x,y) = \frac{xy}{1-xy} + \frac{1}{2\pi i} \int_C \frac{xy \, B(x,s) \, ds}{(1-xy)(s-1)(s-xy)}$$
$$= \frac{xy}{1-xy} + \frac{xy}{(1-xy)^2} \, B(x,1) - \frac{xy}{(1-xy)^2} \, B(x,xy) \, .$$

We can iterate (17) to eliminate B(x, xy), $B(x, x^2y)$, ... successively to find

(18)
$$B(x,y) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k(k+1)/2} y^k (1-x^k y + B(x,1))}{(1-x^2 y)^2 (1-x^2 y)^2 \dots (1-x^k y)^2}.$$

Setting y = 1 in (18), we solve for B(x, 1), the generating function of (p(n): n = 1, 2, ...), which turns out to be

$$(19) \ B(x, 1) = \frac{\frac{x}{1-x} - \frac{x^3}{(1-x)^2 (1-x^2)} + \frac{x^6}{(1-x)^2 (1-x^2)^2 (1-x^3)} - \dots}{1 - \frac{x}{(1-x)^2} + \frac{x^3}{(1-x)^2 (1-x^2)^2} - \frac{x^6}{(1-x)^2 (1-x^2)^2 (1-x^3)^2} + \dots}$$
$$= \sum_{n=1}^{\infty} p(n) x^n .$$

We have been unable to make use of (19) in estimating p(n). Instead, we use upper and lower bounds for F as defined in (15), and then use (10) to calculate upper and lower bounds for B.

4. Lower bounds

Let

(20)
$$F_k(x, y) = \sum_{m, n=1}^k f(m, n) x^m y^n,$$

where $f(m, n) = \min \{m, n\}$ just as in (13), and let $B_k(x, y)$ denote the solution of (10) having F_k substituted for F. Since F_k is a lower bound for F, it follows that B_k is a lower bound for B. It was shown in [4] that when the kernel of (10) is approximated by a polynomial as in this case, then $B_k(x, 1)$ is a rational function, say $B_k = P_k/Q_k$ with P_k and Q_k polynomials, and the denominator of B_k may be expressed as a determinant. In the present situation this turns out to be

(21)
$$Q_k(x) = \begin{vmatrix} 1-x & 1 & 1 & \dots & 1\\ 1 & 2-x^2 & 2 & \dots & 2\\ 1 & 2 & 3-x^3 & \dots & 3\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 2 & 3 & \dots & k-x^k \end{vmatrix}.$$

If we put $Q_0(x) = 1$ and $Q_1(x) = 1 - x$, we can use (21) to verify that

(22)
$$Q_k(x) = (1 - x^{k-1} - x^k) Q_{k-1}(x) - x^{2k-2} Q_{k-2}(x)$$

for $k = 2, 3, \dots$. For example,

$$\begin{split} &Q_2(x) = 1 - 2x - x^2 + x^3 \ , \\ &Q_3(x) = 1 - 2x - 2x^2 + 2x^3 + 2x^4 + x^5 - x^6 \ , \\ &Q_4(x) = 1 - 2x - 2x^2 + x^3 + 3x^4 + 5x^5 - 2x^6 - 2x^7 - 2x^8 - x^9 + x^{10} \, . \end{split}$$

Letting γ_k denote the largest real root of $Q_k(1/x) = 0$, we have $\gamma_1 \leq \gamma_2 \leq ... \leq \gamma$, where γ is defined in (2). We have used a computer to calculate lower bounds for $\gamma_1, \gamma_2, ..., \gamma_{10}$ given in Table 1. Our results indicate that the sequence $\{\gamma_i\}$ converges very quickly to the value 2.30913859..., our best lower bound for γ .

Table 1		
<i>k</i>	γ_k	β_k
1	1.00000000	2.41421356
2	2.24697960	2.33578290
3	2.30855218	2.31475605
4	2.30913772	2.31023504
5	2.30913859	2.30934711
6	2.30913859	2.30917790
7	2.30913859	2.30914598
8	2.30913859	2.30913998
9	2.30913859	2.30913885
10	2.30913859	2.30913864

5. Upper bounds

For k = 1, 2, ..., we define upper bounds $f^k(m, n)$ for $f(m, n) = \min\{m, n\}$ as follows:

(25)
$$f^{k}(m, n) = \begin{cases} m & \text{if } k < n < m, \\ f(m, n) & \text{otherwise.} \end{cases}$$

Hence

(24)
$$F^{k}(m,n) = \sum_{m,n=1}^{\infty} f^{k}(m,n) x^{m} y^{n}$$
$$= \frac{xy}{(1-x)^{2}(1-y)} - \frac{x^{2}y}{(1-x)^{2}} - \dots - \frac{x^{k+1}y^{k}}{(1-x)^{2}}$$

is an upper bound for F; furthermore, note that F^k is separable. Let B^k denote the solution of (10) with F^k substituted for F. Then

(25)
$$B^{k}(x,y) = \frac{xy}{1-xy} + \frac{xyB^{k}(x,1)}{(1-xy)^{2}} - \frac{xy}{(1-xy)^{2}} \sum_{r=1}^{k} x^{r} y^{r} B_{r}^{k}(x) ,$$

where

$$B_r^k(x) = \frac{1}{k!} \left. \frac{\partial^r}{\partial s^r} B^k(x, s) \right|_{s=0} .$$

Now we use (25) to get a system of equations involving $B_1^k, ..., B_k^k$. Take the rth partial derivative with respect to y at y = 0 and divide by r! in (25) to get

(26)
$$B_r^k(x) = x^r + r x^r B^k(x, 1) - \sum_{j=1}^{r-1} (r-j) x^r B_j^k(x),$$

from which it follows that

(27)
$$B_{r+1}^k(x) = (2x - x^{r+1}) B_r^k(x) - x^2 B_{r-1}^k(x) .$$

Setting $B_r^k(x) = P_r(x) + Q_r(x)B^k(x, 1)$ for r = 1, ..., k, it follows that P_r and Q_r also satisfy the difference equation (27). Also we can substitute $P_r + Q_r B^k$. For B_r in (25) with y = 1 and solve for $B^k(x, 1)$ in terms of $P_1, Q_1, ..., P_k, Q_k$ to obtain

(28)
$$B^{k}(x, 1) = \frac{x - x^{2} - \sum_{j=1}^{k} x^{j+1} P_{j}(x)}{1 - 3x + x^{2} + \sum_{j=1}^{k} x^{j+1} Q_{j}(x)}.$$

Thus B^k is a rational function whose numerator N_k and denominator D_k we know how to compute because they are defined in terms of $P_1, ..., P_k$ and $Q_1, ..., Q_k$ which we know how to compute. Let β_k denote the largest real root of $D_k(1/x)$, then we know

(29)
$$\lim_{n\to\infty} \left(\sum_{a=1}^{n} b^{k}(n,a)\right)^{1/n} = \beta_{k} \leq \gamma,$$

and $\beta_1 \ge \beta_2 \ge ... \ge \gamma$. Thus we can calculate upper bounds for $\beta_1, \beta_2, ...$ to obtain successively better upper bounds for γ .

Using the definitions

(30)
$$D_k = 1 - 3x + x^2 + x^2 Q_1 + \dots + x^{k+1} Q_k ,$$

(31)
$$Q_{r+1} = (2x - x^{r+1}) Q_r - x^2 Q_{r-1} \quad (r > 1),$$

and $Q_1 = x$, $Q_2 = 2x^2 - x^3$, the polynomials D_1 , D_2 , ... are calculated with relative ease. For example, we found

$$\begin{array}{l} D_1 = 1 - 3x + x^2 + x^3 \ , \\ D_2 = 1 - 3x + x^2 + x^3 + 2x^5 - x^6 \ , \\ D_3 = 1 - 3x + x^2 + x^3 + 2x^5 - x^6 + 3x^7 - 2x^8 - 2x^9 + x^{10} \ . \end{array}$$

Using a computer, the polynomials $D_1, ..., D_{10}$ were calculated via (30), and upper bounds for β_k , the largest real root of $D_k(1/x) = 0$, were computed for $1 \le k \le 10$ using the Newton-Raphson method. These upper bounds for β_k are given in Table 1.

Combining our upper and lower bounds, we can conlude that

(32)
$$\gamma = \lim_{n \to \infty} (c(n))^{1/n} = 2.309138...$$

References

- M. Eden, A two-dimensional growth process, Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability, IV (Univ. of California Press, Berkeley, Calif., 1961) 223

 239.
- [2] D.A. Klarner, Some results concerning polynominoes, Fibonacci Quart. 3 (1965) 9-20.
- [3] D.A. Klarner, Cell growth problems, Canad. J. Math. 19 (1967) 851-863.
- [4] D.A. Klarner, A combinatorial formula involving the Fredholm integral equation, J. Combin. Theory 5 (1968) 59-74.
- [5] D.A. Klarner and R.L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canad. J. Math. 15 (3) (1973) 585-602.
- [6] G. Pólya, On the number of certain lattice polygons, J. Combin. Theory 6 (1969) 102-105.
- [7] G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Vol. 1 (Berlin, 1925).
- [8] R.C. Read, Contributions to the cell growth problem, Canad. J. Math. 14 (1962) 1-20.
- [9] E.M. Wright, Stacks, Quart. J. Math. Oxford (2) 19 (1968) 313-320.