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Abstract. Unit squares having their vertices at integer points in the Cartesian plane are called
cells. A point set equal to a union of 7 distinct cells which is connected and has no finite cut
set is called an n-omino. Two n-ominoes are considered the same if one is mapped onto the
other by some translation of the plane. An n-omniino is convex if all cells in a row or column
form a connected strip. Letting c(z) denote the number of different convex n-ominoes, we
show that the sequence ((c(n))l/”: n=1,2,...) tends to a limit v, and v = 2.309138... .

1. Introduction

Unit squares having their vertices at integer points in the Cartesian
plane are called cells. A point set equal to a union of 7 distinct cells
which is connected and has no finite cut set is called an n-omino. Two
n-ominoes are considered the same if one is mapped onto the other by
some translation of the plane. (Such n-ominoes were called fixed animals
with 7 cells by Read [8].) For example, there are six different 3-ominoes
as shown in Fig. 1.

Fig. 1. The 3-ominoes.
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Let #(n) denote the number of distinct #-ominoes. It is known [3]
that the sequence ((2(n))!/* : n=1,2,...) tends to a limit 6. The inves-
tigation of 6 began with Eden’s work [1]; he managed to prove that
3.14 < 0 < 6.75. There has been considerable effort expended to im-
prove these bounds. Currently, the best lower bound (given in [3]) is
3.72 < 0, while the best upper bound (given in [5]) is 6 < 4.65.

An n-omino is row-convex when each row of the n-omino is a con-
nected strip of cells. Column-convex n-ominoes are defined analogously.
All six of the 3-ominoes (shown in Fig. 1) are both row-convex and col-
umn-convex; in general, such n-ominoes are said to be row-column-con-
vex, or just convex for short. It was shown in [2] (and in [3] by a sec-
ond method) that

1—x)3 =
(1) i =27 b(n)x",

1—4x +7x2—5x3 n=1

where b(n) denotes the number of distinct row-convex n-ominoes. (This
result was also obtained by Pdlya [6].) Thus it follows that the sequence
()17 : n=1,2,..) tends to a limit 8 which is equal to the largest real
root of y3—4y2 + 7y—5 = 0; that is, 8 = 3.20... .

Recently, Donald Knuth wrote us and asked us if the number c(n) of
convex n-ominoes had been investigated. This paper is entirely motivated
by Knuth’s question. We shall be concerned with the problem of effec-
tively calculating the limit v of the sequence ((c(n))!/":n=1,2,..).
One of the first things we prove is that this limit exists. Later on we show
how to calculate upper and lower bounds for y and give the best results
obtained by these methods.

2. Existence of lim,,_, , (c(n))tin

Following Ceasar’s admonition, we divide, then conquer. A convex
n-omino may be split into three parts by making two cuts between cer-
tain rows so that the upper and lower parts are roughly trapezoids and
the middle part is roughly a parallelogram. A typical sectioning of this
sort is shown in Fig. 2. More precisely, the trisection of a convex #-omino
A is accomplished by cutting along the lowest level of 4 where the left
boundary of A goes to the right and by cutting along the lowest level of
A where the right boundary of 4 goes to the left.
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Fig. 2. Trisection of a convex 28-omino..

A convex n-omino whose left boundary climbs to the right and whose
right boundary climbs to the left corresponds to a partition of n called
a stack by Wright [9]. We let s(n) denote the number of distinct n-
ominoes corresponding to stacks; for example, there are four 3-ominoes
shown in Fig. 1 which correspond to stacks, so s(3) = 4. A convex n-
omino whose left and right boundaries both climb to the right is called
a parallelogram, and p(n) will denote the number of distinct #-ominoes
which are parallelograms. Clearly, p(n) < c(n) for all ; also, s(n) < p(n)
for all n (the diagram in Fig. 3 suggests a proof of this fact). Finally, an
obvious construction establishes that p(m) p(n) < p(m +n) for all m, n.
Now we use the fact that if {u, } is a sequence of natural numbers such
that ((,,)1/*: n=1,2,...) is bounded and u,, u, < u,,,, forall m, n,
then lim,, ; ., (u; )1/n exists. (For similar results, see Pélya and Szego

Fig. 3. An injection showing s(x) < p(n).
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[7,p.171].) We have p(n) < b(n) < (3.20)" for all large 7, and
p(m)p(n) < p(m+n), so

(2) lim (p(r)/" =~

n—> oo

exists. Using the fact that every convex n-omino splits into two stacks
and one parallelogram, we can reconstruct these z-ominoes by pasting
together two stacks and one parallelogram in various ways. Again, using
an obvious construction, and using the fact that p(i) p(j) p (k) < p(i+j+k)
for all i, j, k, it is easy to show that

3) c(m) < 2n 25 s pG)stk) < 20 25 p(i)p() p(k)
G7,k) @3,k

< 2m2(" Dp(n) < (n+2) p(n)

where the index of summation in the sums extends over all compositions

(@, ], k) of n into non-negative parts. There are ("; 2) such compositions.
Using (2) and (3) together with the fact that p(n) < c(n) for all n, we

have

4) v = lim (p(n)!/* < lim inf (c(n))/

n—> oo ' Ao

'<'lim sup(c(n)/* < lim ((n+2)* p(n)'/" = .
n— o

n—>o

Henee lim,;, ... (c(n))l/” exists, and

(5) lim (c(m)'/" = lim (p(r)/" =~.

n—>oco

3. An integral equation
We shall use a theory developed in [4] concerning a double sequence
(b(n,a):n,a=1,2,..) defined in terms of given sequences

(fm,n)y:mn=1,2,..)and (gr): n=1,2,...) as follows:

(6) b(n,a)= 27 fla;, ay)f(ay, a3) ... @y _1, a.) 8(ay) ,
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where the index of summation extends over all k-tuples (aq, ..., a; ) of
natural numbers for k = 1,...,n witha; =a anda; +...+a; =n. It was
shown that if

(7) G(x) = :‘:’1 g(n) x™
and i
®  Fey)= 2 fonmamyn

converge for [x| and |y| sufficiently small, then

o0 n
©) Bley) =21 25 b(n,a)y" x"

n=1 a=
converges for |x| and |y| sufficiently small, and

_ 1 ds
(10)  BCx,y)=Gp) + 57 [Fowv, 1) B, )L
&

where C is a contour in the s-plane which includes s = 0 and the singular-
ities of F(xy, 1/s) but excludes the singularities of B(x, s). The theory of
(10) runs parallel to that of the Fredholm integral equation. In particular,
if F(x, y) has the special form

(11) F(x,y)=R1(x)S1(y)+...+Rt(x)St(y),

we say F is separable, and it turns out that (1 0) can be -converted into a
system of # equations linear in # unknown functions. The system can be
solved and the solution yields a formula for B(x, y). We shall give an ex-
ample of this later on.

If F is not separable, we can still get information about B by approxi-
mating F’ with something that is separable. Suppose

2
(12) K(x,y)=23 k(m, n)x™m yn

and k(m, n) < f(m, n) for all m, n, then we say K is a lower bound on F,
an upper bound on F is defined analogously. If X is separable, we may
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substitute K for F in (10) and calculate a lower bound for B. Upper
bounds for B may be obtained in a similar fashion. We shall adopt this

strategy too, so an example is forthcoming.

The relevance of the foregoing discussion to the enumeration of n-
celled parallelograms is as follows: the number of (/1 +n)-celled paral-
lelograms having m cells in one row and 7 cells in a second row is

(13) fm, n) =min{m, n} .

It is fairly easy to show that the number of n-celled parallelograms with
exactly k rows of cells having exactly a; cells in the ith row fori =1, ...,
kis

(14) flay,ay) flay, as) ... flag_q. a;) .

Thus, if we take f as defined in (13) and put g(j) = 1 for all j, we can
sum (6) overa = 1, ...,n and obtain p(n). In this case, we have

(15) Fx,y) =xy/(1 =x)(1 =»)(1 —xy),
(16) G(x)=x/(1-x) .

Substituting these functions in (10) gives

Xy 1 f xy B(x, s) ds

T—xy ' 2mi & A=xy)—Ds—xy)

a7 B(x,y) =

=X 4+ ¥ (x, )—L)zB(x,xy>.

X
l-xy (1-xy)? (1—xy

We can iterate (17) to eliminate B(x, xy), B(x, x2y), ... successively to
find

N (— 1Y+l k(k+1)/2 yh (1 —xk
(18) B(x,y) = > (=)l x yk(1—xky+B(x, 1))
k=1 (1-xy)? (1—x2y)? ...(1—x*y)?
Setting ¥ = 1 in (18), we solve for B(x, 1), the generating function of
(p(n): n=1,2,...), which turns out to be
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x x3 + x6 B
1—x  (1-x)2 (1—x2) (1-x)2(1-x2)2 (1-x3)

+ x3 xS +
0?2 (1=0)2(1—x2)2 (1-x)2(1-x2)2(1—-x3)2

(19) B(x, 1)=

= nzgl p(n)xn .

We have been unable to make use of (19) in estimating p(#n). Instead,
we use upper and lower bounds for F as defined in (15), and then use
(10) to calculate upper and lower bounds for B.

4. Lower bounds

Let
k
(200 Feloy)= 25 fom myxmyn,

where f(m, n) = min {m, n) just as in (13), and let B (x, y) denote the
solution of (10) having F; substituted for F. Since F}, is a lower bound
for F, it follows that By, is a lower bound for B. It was shown in [4]
that when the kernel of (10) is approximated by a polynomial as in this
case, then B (x, 1) is a rational function, say B = P;/Q; with P, and
QO polynomials, and the denominator of B; may be expressed as a de-
terminant. In the present situation this turns out to be

1—x 1 | 1

1 2—x2 2 e 2

2D 0 (x)= 1 2 3—x3 .. 3
1 2 3 . k—xk

If we put Qp(x) =1 and Q; (x) = 1—x, we can use (21) to verify that

(22) Qr(x) = (1—xk-"1—xk)Qp_; (x)—x2k=2Q, ,(x)
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for k=2,3,.... For example,

0, (x)=1-2x—x2+x3 |
03(x) = 1-2x—2x2+2x3+ 2x4+ x5 —x6 |
Q4(x) = 1-2x—2x2+x3+ 3x%+ 5x5 —2x6 —2x7 —2x8 _x9+ x10

Letting 7, denote the largest real root of 0, (1/x) =0, we have
Y1 < vy £ ... < v, where v is defined in (2). We have used a computer
to calculate lower bounds for Y15Y25 - Y10 given in Table 1. Our re-
sults indicate that the sequence {v;} converges very quickly to the val-
ue 2.30913859..., our best lower bound for 7.

Table 1
k Yk ﬁk
1 1.00000000 2.41421356
2 2.24697960 2.33578290
3 2.30855218 2.31475605
4 2.30913772 2.31023504
5 2.30913859 2.30934711
6 2.30913859 2.30917790
7 2.30913859 2.30914598
8 2.30913859 2.30913998
9 2.30913859 2.30913885
10 2.30913859 2.30913864

5. Upper bounds

For k =1, 2, ..., we define upper bounds f* (m, n) for f(m,n) =
min {m, n} as follows:

m ifk<n<m,
(25) f*¥(m, n) =

f(m, n) otherwise.
Hence

24) Fk(m, n) = i lfk(m, n)xm yn

m,n=

T2 U2 T (o
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is an upper bound for F; furthermore, note that F¥ is separable.
Let B¥ denote the solution of (10) with F¥ substituted for F. Then

25 Br(ry)= P 40BRe D) xS X" y7 B (x)
T 1y (1) (1—xp)? el T

where

1 9 |
BE ) =55 E%Bk(x, s)

s=0

Now we use (25) to get a system of equations involving B¥, ..., Bg. Take

the rth partial derivative with respect to y at y = 0 and divide by 7! in

(25) to get

r=1

(26)  BYG)=x"+rx"BE(x, )= 2 ()% BF(x),
j=1

from which it follows that

(27) BE, ()= (2x—x""1) B¥(x)—x? B*_ (x).

Setting Bf (x)=P,(x)+Q,(x)Bk(x, 1) forr = 1, ..., k, it follows that P,
and Q, also satisfy the difference equation (27). Also we can substitute
P00, B% . For B, in (25) with y = 1 and solve for B¥(x, 1) in terms of
P, Q1. .... Py, Qi to obtain

X—x% — E]'.‘=1 x/t1 Pi(x)

(28) Bk(x, 1) = - .
1-3x+x2 + 5 | X1 Qy(x)

Thus B is a rational function whose numerator N, and denominator
Dy, we know how to compute because they are defined in terms of
Py, ..., Py and @y, ..., Oy which we know how to compute. Let 8, denote
the largest real root of D (1/x), then we know

' n 1/n
(29) lim (Z) bk (n, a)) =6, <1,

n—oe \g=1

and 8; > 8, 2 ... > . Thus we can calculate upper bounds for By, By, ...
to obtain successively better upper bounds for .
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Using the definitions
(30) Dy =1-3x+x2+x2Q; +...+xk*1 Q. |
(31) Qrp1 = (x—x*1)Q, —x20Q, ; (>1),

and 0, =x, Qp = 2x2—x3, the polynomials D, D,, ... are calculated with
relative ease. For example, we found

D, =1-3x+x2+x3,
Dy =1-3x+x2 +x3+2x5—x6 |
D3 =1-3x+x2 +x3 +2x5—x6 +3x7 —2x8 —2x9 +x10 |

Using a computer, the polynomials Dy, ..., D, were calculated via ~
(30), and upper bounds for f;, the largest real root of Dy (1/x) =0,
were computed for 1 < k£ < 10 using the Newton—Raphson method.
These upper bounds for §; are given in Table 1.

Combining our upper and lower bounds, we can conlude that

(32) v=lim (c(n))" =2.309138... .
n— oo
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