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Abstract  
The Data Encryption Standard (DES) defines an indexed set of permutations acting on the message 

space M = (0,l)". If this set of permutations were closed under functional composition, then DES would 
be vulnerable to a known-plaintext attack that runs in 228 steps, on the average. It is unknown in the 
open literature whether or not DES has this weakness. 

We describe two statistical tests for determining if an indexed set of permutations acting on a finite 
message space forms a group under functional composition. The first test is a "meet-in-themiddle" al- 
gorithm which uses O ( a )  time and space, where X is the size of the key space. The second t a t ,  a 
novel cycling algorithm, usea the same amount of time but only a small constant amount of space. Each 
test yields a known-plaintext attack against any finite, deterministic cryptosystem that generates a small 
group. 

The cycling test takes a pseud-random walk in the message space until a cycle is detected. For each step 
of the pseudo-random walk, the previous ciphertext is encrypted under a key chosen by a pseudo-random 
function of the previous ciphertext. Results of the test are asymmetrical: long cycles are overwhelming 
evidence that the set of permutations is not a group; short cycles are strong evidence that the set of 
permutations has a structure different from that expected from a set of randomly chosen permutations. 

Using a combination of Boftware and special-purpose hardware, we applied the cycling test to DES. 
Our experiments show, with a high degree of confidence, that DES is not a group. 
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1 Introduction 

On November 23, 1976, the United States National Bureau of Standards (NBS) adopted the Data Encryp 
tion Standard (DES) as a federal standard for the cryptographic protection of computer data [2] [281.3 
Although a few studies on DFS have been openly published (41 [30] [35] 1381,' to date, numerous funda- 
mental questions about the standard remain unanswered in the open literature. In this paper, we address 
one such important question: "Is the set of DES transformations closed under functional composition?" 

It ia important to know whether or not DES is closed since, if DES were closed, it would have the 
following two weaknesses. First, both sequential multiple encryption and Tuchrnan's multiple encryption 
scheme-the two most popular proposals for strengthening DES through using multiple encryption-would 
be equivalent to single encryption.' Even worse, DES would be vulnerable to a known-plaintext attack that 
runs in 2'' steps, on the average. Each weakness follows from the fact that the set of cryptographic trans- 
formations of any closed cipher f o r m  a group under functional composition. Although most researchers 
believe DES is not closed, no one has proven this conjecture in the open literature. 

In this paper we present two statistical tests for determining if a finite, deterministic cryptosystem is a 
closed under functional composition. The Erst test is based on a "meet-in-the-middle" strategy and takes 
O ( a )  time and space, where K is the size of the key space. The second test follows a pseuderandom 
walk in the message space until a cycle is detected, using O(J?z) time and constant space. Although we 
focus on DES, the methods presented here are general in nature. 

Using a combination of software and special-purpose hardware, we applied the cycling test to DES. 
Our initial experiments revealed no algebraic weaknesses with DES. 

The body of this paper is organized in six sections. Section 2 discusses the contrasting properties 
of closed and random ciphers. Section 3 presents two statistical closure tests. Section 4 describes how 
each test can be modified into a known-plaintext attack against closed ciphers. Section 5 lists our initial 
experimental results and explains how to interpret them. Section 6 poses several open problem, and 
section 7 summarizes our conclusions. An appendix, which briefly describes our implementation of the 
cycling test, is also included. 

1.1 Definitions and Notations 

A (finite, deterministic) cryptooystern is an ordered 4tuple (K, M, C,T), where K ,  M, and C are tinite sets 
called the key space, message space, and ciphertezt space, and T : K x M 4 C is a transformation such 
that, for each k E K ,  the mapping Tk = T ( k ,  .) is invertible. The order of a cryptosystem is the number of 
distinct transformations; the degree of a cryptosystem is the size of the message space. A cryptosystem is 
endomorphic iff the message space and ciphertext space are the same set. 

C. 
In an endomorphic cryptosystem, each key represents a permutation on M. A cryptosystem is faithful iff 
every key represents a distinct transformation. 

We shall use the following notations throughout the paper. For any cryptosystem ll = ( K ,  M,C,T),  
let 7n = u(Tk : k E K} be the set of all encryption transformations, and let Gn = (&) be the group 
generated by 17. For any transformation Tk E Tn, let Ti1 denobe the inverse of Tk. In addition, let K = 1x1 
be the size of the key space; let M = IMJ be the degree of ll; and let m = ITnI be the order of II. Whenever 
the meaning is clear, we will omit the subscript II. 

Let I be the identity permutation on M, and let AM and SM be, respectively, the alternating group 
and ayrnrnetric group on M [13]. For any permutations g, h we will denote the composition of g and h by 

'We expect the reader to be familiar with the fundamentals of cryptology (as presented in [3] or [I], for example), as well as 
with the basics of DES (aa deacribed in [2] or [4], for example). 

'See bibliography for a liat of additional technical works on DES. 

'To encrypt a message z Ming a c q u e d i d  multiple encryption is to compute T,T,(z), where the keys i and j are chosen 
independently. Similarly, to encrypt a meanage z under ?bchrnon's scheme is to compute T,T;'Tk(z), where the keys i,], 
and k are independently choben 1441 (41 [ r z ] .  

Thus, for any cryptosystem ( K , M , C , T ) ,  each key k E K represents a transformation Tt : M 
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gh = g 0 h = g(h( . ) ] .  
An endomorphic cryptosystem is closed iff its set of encryption transformations is closed under func- 

tional composition6 Shannon’s notion of a pure cipher generalizes the idea of closure to non-endomorphic 
cryptosystem [57]. A cryptosystem ll = (K,M,C,T) is pure iff, for every TO E T i ,  the set T i l l *  is 
closed.’ Every closed cryptosystem is pure, but not every endomorphic pure cryptosystem is closed (see 
section 2.2). 

To analyze the cycling test, it is useful to introduce the following standard terminology from permu- 
tation group theory (131 [15] [16]. For any subgroup G G SH, for any z E M, the G-orbit of x is the set 
G-orbit(z) = {g(z) : g E G} and the G-etabilizet of z is the set G-stabilizer(%) = {g E G : g(%) = s}. 
If f is any function (not necessarily a permutation) and if z E Domain(f), the f-closure ofz is the set 
f-closure(z) = { f ( z )  : i 2 0). For any permutation g E S M ,  we will sometimes write g-orbit(z) to denote 
the &)-orbit of 2. For any subgroup G C_ SM, the order of G is the number of elements in G; for any 
g E SM, the order ofg is the order of (g). 

Whenever T E Sw , we say T acts transitively on M iff, for every pair of messages x ,  y E M, there exists 
8ome transformation Tk E 1 euch that Tk(z) = y. 

For any any string 8 E (0, l}*, let Z denote the bitwise complement of 3. 
The Data Encryption Standard defines a particular endomorphic cryptosystem with M = C = {0,1}6‘ 

and K = {0,1}66. Because DES has degree Z6‘, but order at most Z56, DES is intransitive. It is unknown if 
DES is faithful, closed, or pure. It is also unknown whether or not any DES transformation is the identity 
permutation. See NBS FIPS publication 46 [28] or most any cryptography survey work ( e . g .  [2] or [4]) for 
a detailed definition of the DES encryption function. 

1.2 A Priori Beliefs 

The question of whether or not DES is closed is a question about the order of the group generated by DES. 
Grossman and Coppersmith observed that GDES G A M  [48], but no one ha9 disproved the possibility that 
GDES = TDES.’ 

There are several reasons to suspect DES is not closed. First, Coppersmith and Grossman proved 
“DESlike” permutations generate the alternating group [48Is9 Second, if even just two permutations are 
chosen at random from Sw, then there is an overwhelming chance (greater than 1 - e - a )  that these 
permutations generate either AH or SM [12] [14]. Third, no one has announced finding any three keys 
i ,  j ,  k E K such that Tk = TiTj. Finally, according to a 1977 unclassified summary of a report of the Senate 
Select Committee on Intelligence, the National Security Agency certified that “the final DES algorithm 
wag, to the best of their knowledge, free of any statistical or mathematical weaknesses” [SS]. 

On the other hand, DES is not a set of randomly chosen permutations, and Coppersmith and Grossman 
did not prove that DES generates A H .  Furthermore, DES is known to have the following three regularities 

- PI 141 1301 1381. 

1. Complementation Property. For every key k and every message z, TK(Z) = Tk(z). 

2. Ezistence of Weak Keys. There exist a t  least four distinct keys k such that T i  = I. 

3.  Ezistence of Semi-weak Keys. There exist at least six distinct pairs of keys kl # kz such that 
Tk,Tk, = I .  

‘Note that we are using the term cloucd cipher to refer to what Shannon calla an idempotent cipher [ST]. Shannon de6nea a 

‘Shannon defines purity in a different but essentially equivalent way. Shannon also requires each transformation of a pure 

‘TO see that GDES 

*See Goldreich’s paper [37] for a minor extension of this result. 

closed cipher to be any cryptosystem with the property that each cryptographic transformation is surjective. 

cipher to be equaUy likely. 

A H ,  note that each round of DES is an even permutation. 
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The last two properties, however, apparently involve only a small fraction of the total number of DES 
transformations. While many people may have a strong belief that DES is not closed, there is a need for 
convincing objective evidence to answer this question. 

1.3 

To the best of our knowledge, only three other cycling experiments on DES have been reported in the open 
literature. These experiments were performed by Gait; Davies and Parkin; and Hellman and Reyneri. 
Each of these experiments differs from our cycling closure teat, and none of these previous experiments 
answered the question, ''Does DES generate a small group?" 

The analysis of each of these previous experimenta depends heavily on the following two facts [S] 
[lo] (1201, exercise 3.1.121). Let zo E M be any message. For a randomly selected function f on M, the 
expected eize of f-cloaure(zo) is about \/7i?. (This follows from the Birthday Paradox.) But for a randomly 
selected permutation g on M ,  the expected size of g-orbit(z0) is about M/2. (Thie is true because, for any 
1 51 5 MI the probability that the cycle containing 20 haa length exactly 1 is l /M.)  

Gait (381 inveatigated the statistical properties of pseuderandom key streams produced by DES in 
outputfeedback mode [29]- Provided the feedback width is exactly 64 bits, each such key stream describes 
the orbit of a DES transformation on mme initial measage. In a series of software experiments, Gait 
computed the key stream produced by DES in output-feedback mode to at  most 10' 2 2'') places. Gait 
found no cycles for nonweak keys.1° Unfortunately, Gait did not state what feedback width he used. Gait 
also p r o p d  a new power-spectrum test for nonrandomnesa and applied it to each of the pseudesequences 
he computed from non-weak keys. Gait observed that each of these sequences waa considered random by 
his test. 

Provided a feedback width of 64 bits is used, the cycling study considered by Gait can be viewed as a 
closure teat. If DES were d d ,  then each of the orbits considered by Gait would have at  moat K = 256 
messages (see lemma 2.2). Hence, observing an orbit of length greater than 266 would be direct proof that 
DES ia not closed. Although we wil l  not do so in this preliminary abetract, it is also possible to interpret 
Gait's orbit test M a statistical dcaure teat. Viewed aa a statistical closure test, the orbit test can be 
strengthened by combining the test with tests for other algebraic propertiea. 

Davies and Parkin [31] [32] and Jueneman [40] studied mathematically the cycle structure of the key 
stream produced in output-feedback mode. Each of these studies concluded that, if DES is used in output 
feedback mode with a feedback-width of less than 64 bits, then the resulting key stream will cyde in about 
2'* steps, on the average (the exact expected cycle length depende slightly on the feedback width). If all 
64 bits are fed back, then the expected cycle length is about 2=. The point is that the state transition 
function in outputfeedback mode is a permutation if and only if all 64 bits are fed back. Although Daviea 
and Parkin did not report performing any experiments on the full DES algorithm, Davies and Parkin 
did run a series of experiments on DES substitutes consisting of random permutations on {0,1}*. Their 
experimental results agreed with their theoretical predictions. 

In an attempt to better understand how effectively the Hellman time-space tradeoff [53] could be 
applied to  DES, Hell- and Reyneri [39] examined the cycle structure of mappings induced by DES on 
the keyspace. Specifically, they considered mappings F+ : K -t K defined by F,(k) = p(Tk(z)), where 
p : M 4 K is a projection" and z E M is some fixed message. Their studies detected no significant 
statistical irregularities. Whether or not DES is closed, the expected cycle length of the Hellman/Reyneri 
experiment is about a = 2*'. 

Each of these previous cycling projects studied the behavior of the powers of some indexed function 
( i . e .  Ti(zo) or I";(ko) for i = 1,2 , .  . .) where the index of the function waa held fixed throughout the 
experiment: Gait and Daviea and Parkin held the key fixed; Hellman and Reyneri held the message fixed. 
By contrast, our cycling test computes the sequence z; = Tk,Tki-, . . . Tk,(zo) for i = 1,2 , .  . . where at each 

"Since TI' = I for any weak key k, the key stream produced in output-feedbxk mode with feedback width 64 bits cycles 

"Hellman and h y n e r i  rusd the projection that removes each of the 8 parity bits. 

Previous Cycling Studies on DES 

after 128 bits whenever a weak key id wed. 



step i the key ki is chosen as a pseudo-random function of the previous ciphertext zi-1. 

2 Closed Ciphers versus Random Ciphers 
In this section, we review several important differences between closed cryptosystems and cryptosystems 
that consist of randomly chosen permutations. These differences will form the basis of the statistical closure 
tests.12 

2.1 

Since every finite cancellation semigroup is a group [IS], any endomorphic cryptosystem is closed iff its set 
of encryption transformations forms a group under functional composition. Thus, closed ciphers have a 
great deal of algebraic structure. By contrast, one expects a set of randomly chosen permutations to have 
virtually no algebraic structure, as the following lemmas makes precise. 

Properties of cryptosystems can be studied both by examining abstractly the set of encryption trans- 
formations and by examining how the transformations act on the message space. Lemma 2.1 captures one 
important difference between closed and random ciphers by focusing on a property of the set of encryption 
transformations. This lemma says that if a cryptosystem is closed, then for every transformation Tk there 
are many pairs Ti,Tj such that Tk = TiT,; but, if a cryptosystem consists of randomly chosen permutations, 
then for every transformation Tk it  is unlikely to find any pair Ti,Tj such that Tk = TiTj. This lemma 
provides the basis of the meet-in-the-middle closure test. 

Lemma 2.1 Let ll = (K ,  M, M,T) be any endomorphic cryptosystem of order rn, and let k E K be any 
key. If ll is closed, then there are exactly rn pairs of keys Ti,Tj E 7 such that TiTj = Tk. If 7 is selected 
at random from SM, then the expected number of pairs of transformations Ti,Tj E 7 such that TiTj = Tk 
is rn2/M!. 
Proof. Part 1: Assume II is closed. For every transformation Ti E 7 ,  there is exactly one transformation 
Tj E 7n such that TiTj = Tk. Part 2:  Assume 7n is chosen at random. There are rn2 pairs Ti,Tj E Tn and 
each pair has a I/ l S ~ l  chance of corresponding to Tk. Moreover, these probabilities are independent. I 

Algebraic Properties of Closed and Random Ciphers 

For unfaithful cryptosystems, it is important to distinguish between drawing a transformation from the 
set of transformations and picking a representation of a transformation from the keyspace. Mathematically, 
it is usually more convenient to think about selecting a transformation from a set of transformations, but 
in practice, one must often select a transformation by choosing a key. Let 7 be the set of cryptographic 
transformations in any cryptosystem with keyspace K. If T k  is selected from 7 at random, then the 
probability of picking any particular transformation in 7 is exactly l/m, where in = 171. However, if a 
key k is selected at  random from K,  then the probability that k represents any particular transformation 
in 7 is between l /m and 1 / K ,  where K = IKI. If the underlying cryptosystem is unfaithful, then m < If. 

The next lemma describes the structure imposed on the message space by any closed cipher; spe~ificall~, 
lemma 2.2 says that the orbits of any closed cipher partition the message space into transitive sets. This 
lemma provides the basis of the cycling closure test. (See section 1.1 for a review of some batnc definitions 
from permutation group theory.) 

Lemma 2.2 Let ll = (K,  M ,  M,T) be any endomorphic cryptosystem of order rn. If ll is closed, then, for 
some 1 5 r 5 m, the T-orbits of M partition M into r mutually disjoint sets M = B1 U .. . U B, such that, 
for each 1 5 i 5 r, the following two statements hold: 

1. 7 acts transitively on Bi. 
2. lB;l divides m; in fact, for any z E B,, IB,/ = rn/ / H z l ,  where H, is the 7-stabilizer of z. 

Proof. (Sketch) For each z E M, consider the left cosets of H, in 7 [15]. I 
''Thin aection draws heavily from basic results in permutation group theory and from Shannon's classic paper 1571 1551. 
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corohry 2.3 If DES is d d ,  then DES partitions its message space into at least 2* mutually disjoint 
transitive sets, each of size at most ZS8. 
Proof. DES has degree 2M, but order a t  most 266. I 

TO implement the cyding test, it is especially convenient that order(DES) < degree(DES). Note, 
however, that for any cryptosystem one can create a similar situation by considering the action of the set 
of transformations on the Cartesian product M’, for a sufficiently large integer I 2 1. 

The next lemma calculates the expected number of spurious decipherments of closed and random 
ciphers; this lemma is useful in the analysis of the tests. 

Lemma 2.4 Let II = ( K , M , M , T )  be any endomorphic cryptosystem of order m, let p E M be any 
message, let k E K be any key, and let c = T k ( p ) .  If II is closed, then the number of transformations that 
map p to c is m/ lEpl = IHpl, where Bp is the 7-orbit of p, and Hp is the 7-stabilizer of p. If 7n is chosen 
at random, then the expected number of transformations that map p to c is mfM. 
Proof. Part 1: (Sketch) By lemma 2.2 and the fact that, for any z , y  E Bp ,  I{T; E Ti : Ti(.) = y}I = 
I{T; E Tn : Ti(p) = c}l. Note that lHp1 = IH,I. Part 2: Each transformation in 7 other than Tk maps p to 
c with probability 1 / M .  I 

2.2 Closed Ciphers: Two Examples 

One interesting example of a closed cipher is a single-key variation of the RSA cryptosystem [SS] in which 
the same modulus is used for every key. Only the encryption exponent varies. In this cryptosystem, the 
modulus n is chosen to be the product of two large primes p , q .  The message space is the multiplicative 
group modulo n, and the key space is the set of all integers 1 < e < 4(n) such that e has a multiplicative 
inverse moddo 4(n), where +(n) = (p- l ) ( q -  1) is the totient function. The encryption function is defined 
by TC,,,(z! = z’ mod n. It is easy to verify that this cryptosystem is closed. 

Although this variation of RSA is vulnerable to the known-plaintext attacks described in this paper, 
t b s e  attacks are less efficient at breaking the cryptosystem than are known factoring techniques [23]. We 
view this example as evidence that, provided the key space is large enough to withstand an O ( a )  time 
and space attack, c l d  ciphers are not necessarily insecure. Of course, the security of thm variation of 
RSA remains to be further evaluated [49]. 

Simple substitution [SO] is also a closed cipher. Note that the restriction of simple substitution where 
the letter ‘A’ is always mapped to ‘B’ is an endomorphic system that is pure but not closed. 

3 Statistical Closure Tests 

In this section we describe two statistical tests for determining if an indexed set of permutations T generates 
a small group. Each test tries to distinguish between the two competing hypotheses: “7 is closed” and 
“7 was selected at random-m Both tests are based heavily on the Birthday Paradox. 

3.1 The Birthday Paradax 

The Birthday Paradox [6] involves the question, “If r people are selected at  random, what is the chance 
that no two people will have the same birthday?” If birthdays are independently and uniformly distributed 
between 1 and m, then the answer to this question is about pr = 1 - (i), since there are (5) pairs of 
people and each pair has a l /m chance of having the same birthday. This approximate analysis, however, 
ignores the possibility that more than two people might have the same birthday. The ‘paradox” is that 
many students are surprised to learn that the probability pr is so low: with only r = 6 people, the 
clqance is about .5 that a t  least two people will have the same birthday. 

More exactly, 
(m), - m! 

Pr = ,t - mr(m - r ) !  
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where (m), = m(m - l ) - - . ( m  - r + 1). Using Stirling's formula [6] [24], it can be shown that, for any 
constant c > 0, if r = c f i  then for sdcient ly  large m 

Thus, by choosin,g r = c f i  with c sufficiently large, pr can be made ,as small as desired. 
The meet-in-themiddle teat uses a variation of the Birthday Paradox in which two samples X and Y, 

each of size r,  are drawn at random from a universe of m elements. If X and Y each are drawn without 
replacement, and if each element is drawn independently with probability l / m  then, the chance that X 
and Y do not intersect ia exactly ( m ) ~ ~ / ( ( m ) ~ ) ~ .  If r = c f i ,  then this chance is about e-"'. 

3.2 Meet-in-theMiddle Closure Test 

The meebin-the-middle dosure test is based on lemma 2.1 and the Birthday Paradox: given any endomor- 
phic cryptosyatem ll = (K, M ,  M,T) ,  pick any key k E K and search for keys a, b E K such that Tk = TbTa. 
If ll is closed, then such a pair of keys a, I can be efficiently found, on the average. If T were selected at 
random, then it is unlikely to find any such pair. 

To search for a pair of keys a,b E K such that Tk = TbT,, we use a standard 'rneet-in-th*middle" 
attack similar to that described in [42], for example. To wit, choose 2r keys a l l  (12,. . . , a, and b ~ ,  62,. . . , br at 
random" and look for a pair of keys &, bj for some 1 5 i , j  5 r such that Tk = TbjTa;. To find such a match, 
represent the cryptographic transformations by their images or preimages of some particular message. 
Specifically, pick any message p E M ,  calculate c = TL1(p), and compute q = T,;(p) and y; = T;'(C), 
for 1 5 i 5 r. Then, look for matches zi = yj by sorting the triples (zi, &, "A") and (yj, b,, =Bn) for 
1 5 i , j  5 r on their first components. Screen out false matches by h t i n g  if Tk(pi) = TbjTa,(pi), for all 
1 5 i 5 I ,  for a small number of additional messages p I , p 2 , .  . . , P I  E M. (A false match is a pair of keys 
a', b' E K such that Tk@) = TvT,,(p) even though Tk # Tb,T,,.) 

is c l o d ,  thk procedure will find a match TI = TbT, with probability qr 2 1 - ,'*IK. The 
situation is a variation of the Birthday Paradox in which we are drawing two samples X and Y, each of 
size r, from an urn containing m elements. We are interested in the probability that the samples overlap. 
If ll is faithful, each element ia drawn with probability exactly 1 / K ;  otherwise, each element is drawn with 
probability a t  least 1/K. If T was chosen at random, then, for any Th E 7,  we would expect T to contain 
a pair T,, Tb E T such that Tk = TbT, with probability at most K Z / M !  I 0. By choosing r = c f i  with C 

sufficiently large, we can make the probability qr Y 1 - 
The expected number of false matches is very small, as shown by lemma 2.4. If ll is closed, then at  

most (K - 1)/ ]BPI keys other than k map p to c ,  where Ep is the 7-orbit of p .  Conversely, if 7 was chosen 
at random, then we would expect at most (rn - 1)/M 5 2-8 keys other than k to map p to c .  

This statistical test requires O(r) steps and O(r) words of memory. The two most time consuming 
operations are generating and sorting the lists q, z2, . . . , zv and yl, y2,. . . , yr. The required number of 
encryptions is 2r plus the number of additional evaluations used to screen out false matches. If sorting 
performed in main memory using radix sort, then sorting will take O(r) machine operations; otherwise, 
O(r1ogr) external memory operations would be needed. The main problem with carrying out this test on 
DES is the high space requirement, but even today using 228 words of external tape storage is not tot&' 
unreasonable. Most s t e p  of this test can be performed in parallel. 

If 

of finding a match as large as desired. 

3.3 Cycling Closure.Test 

Given any endomorphic cryptosystem It = ( K ,  M, M,T), the cycling test takes a pseuderandom walk in 
Gn, the group generated by ll. By the Birthday Paradox, the expected cycle length of such a walk is about 
6, where A = IGnl. If ll is closed, then rh = rn, where m = order(ll). But if 7n is chosen at  random, 
then with extremely high probability Ti = A M  or 7n = SM and hence A 2 (M!)/2. 

laActnally, it suffices to choose b; = a;, for 1 5 a 5 r.  
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The walk i i , i z , .  . . in Gn is computed from a pseudo-random sequence of transformations go,gi,. . . E Tn 
by letting 80 = I and j i  = g;a;-I, for i >_ 1. Each g; is chosen by sekting a key ki and letting g; = Tki. 

To implement this cycling test e5ciently, represent the walk 81,$2,. . . in Gn by an induced walk 
&1,12.2,. . . in M', for some 1. Specifically, select some message sequence ;O E M' at random and represent 
each 8; by its image Pi = ai(&). To prevent the induced walk in MI from cycling before the main walk in 
Gn cycles, the integer I must be chosen sufficiently large. For DES, 1 = 1 suffices, since DES has many 
more messages than keys. 

To enable the cycle length of the walk to be computed efficiently and exactly, take a deterministic 
pseudo-random walk rather than a truly random walk. In particular, for i = 1 , 2 , .  . . , choose the key ki 
88 a pseuderandom function of %;-I. For i = 1,2 ,... , let = Tk(&o), where ki = p ( % ; - l )  for some 
deterministic pseuderandom function p : M' + K. Finally, to detect cycles and to compute the lengths 
of cycles and their leaders, use the efficient algorithms described by Sedgewick and Seymanski [27] that 
generalize the well-known "two-finger" algorithm due to Floyd [20]. 

The validity of the cycling test depends in part on the extent to which the pseudo-randxn walk behaves 
like a truly random walk. To increase one's confidence that the pseudo-random function does not interact 
with the cryptosystem in a way that would invalidate the statistical analysis, we recommend that each trial 
of the experiment be repeated with several different types of pseuderandom functions." (See section 5.2 
and Appendix A for a description of the particular pseudo-random functions used in our experiments.) 

In other words, the cycling closure test picks an initial message zo at random and computes the 
+,-closure of 20, where the function (CI, : M -+ M is defined by +Jz) = TP(..(z) whenever z E M ,  and 
p : M -P K is a deterministic pseudo-random function. If p is "random,D then ((lP acts like a random function 
on the (7)-orbit of 20. The expected length of the $,-closure computed by the test is about the square 
root of the length of the (T)-orbit of 20. If DES acts like a set of randomly chosen permutations, then we 
would expect (T)-orbit(z0) = M, in which case we would expect I+,,-closure(zo)l = 232. However, if 
DES were closed, then I(T)-orbit(ro)l 5 K, in which case we would expect I$P-closure(zo)l 5 a= zz8. 

The second test is similar in spirit to Pollard's pfactoring method [22] [18]. It is also similar to but 
different from the algorithm discovered by Sattler and Schnorr for determining the order of any element in 
any finite group that has an efficient multiplication procedure [25]. The cycling test differs from the cycling 
experiments performed by Gait [36] and Hellman and Reyneri [39], who held either the key or message 
fixed (see section 1.3). 

If Tn is chosen at  random, then the walk in Gn induces a pseudo-random walk in M'. If r = cMIIZ 
for some constant c > 0, then the chance that the induced walk in M' cycles within r steps is only about 

For the case that II is closed, it helpful to model the pseuderandom walk 81,$z,. . . in Cn as a discrete 
finite Markov Process with a K x K transition matrix A. For each 1 2 i ,  j 5 K, the ( i , j ) th  entry q j  of 
A denotes the probability of selecting i; next, given that i ,  was the last selected transformation. Each 
pseudo-random selection depends only on the immediately preceding state. If II is faithful, then each 
entry of A is exactly 1/K; otherwise, each entry of A is a t  least 1/K. In either case, the probability of a 
pseudo-random walk not cycling within r steps is a t  most (K)r/Kr. 

The second test computm a statistic w = X + p,  where X and p are respectively the leader length and 
cycle length of a particular pseuderandom walk in M', starting at some randomly selected point 20. The 
value of this statistic depends on the size of the Gn-orbit of 20. If II is closed, then by lemma 2.2 this 
orbit contains a t  most K messages. However, if Tn is chosen at random, then with very high confidence 
the Gn-orbit of zo is M'. Therefore, if II is closed, the expected value of w is at most approximately n; 
but, if 7n is chosen at random, then the expected value of w is approximately M'lz.  For DES with 1 = 1, 
the expected value of w is about ZZ8 if DES is closed and about 2" if TL)ES is chosen at random. 

It is possible for the random walk to cycle prematurely if certain special keys are chosen during the 
walk. For example, the cycle will close if a pair of semi-weak keys are chosen one after the other, or, if 

"For example, the pscudo-random function might be table look-up into a table oi randomly generated valuea, modification 
of table look-up in which each input into the table in Iint XOR'd with the previous output from the table, or DES under a 
randomly chosen fixed key. 

e-c=/z, 
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the identity permutation is selected. Such events would be interesting, but are unlikely to hsppen. In any 
case, such events would not contradict any of our analysis, since short cycles are evidence that T is not a 
random set of permutations. 

This test requires O(w) time and a constant amount of space, where w is the statistic computed by the 
test. The cycle detection and cycle length computations use a small constant amount of space and require 
about w encryptions [27]. 

By picking any TO E T and by applying the test to T i ' T ,  the cycling test can be used to  test for 
purity as well. 

4 Known-Plaintext Attacks against Closed Ciphers 

Each of the closure tests can be used with only slight modifications as a known-plaintext attack against 
any closed cipher. The input to  each attack is a short sequence (PI, cl), (p2, 4,. . . , ( P I ,  c i )  of matched 
plaintext/ciphertext pairs derived from the same secret key k. With high probability each attack finds a 
representation of Tk as a product of two or more transformations. The cryptanalyst can use this represen- 
tation of Tk to decrypt additional ciphertexts also encrypted under the same key k. This attack does not 
find k. 

4.1 Meet-in-the-Middle Known-Plaintext Attack 

The meet-in-the-middle test first picks any message p and any key k at  random and then computes the 
ciphertext c = Th(p). Next, the test searches for a pair of keys a, b such that Tk = TbT,. Alternately, a 
cryptanalyst could begin with any matched plaintext/ciphertext pair @, c)  that was encrypted using some 
unknown key k, and then search for a representation of the secret transformation Tk as a product TaT4. 
This attack requires U ( a )  time and apace on the average. 

4.2 Cycling Knuwn-Plaintext Attack 

The cycling test also yields a known-plaintext attack. Given a matched plaintext/ciphertext pair ( p ,  C )  

that was encrypted under some secret key k, the cryptanalyst computes two pseudo-random walks of the 
type used in the cycling test, starting from messages p and c. The same pseudo-random function is used 
for each of the walks. If the attacked cryptosystem is closed, then, since p and c lie in the same orbit, 
with very high probability the two pseudo-random walks will intersect within about steps. Since the 
same deterministic pseudo-random function is used for each of the walks, once the two walks intersect, 
they will forever follow exactly the same path and will therefore drain into the same cycle. By running the 
Sedgewick/Szymanski [27] cycle-detection algorithm for each of the pseudo-random walks, and by sharing 
the same memory for both algorithms, it is easy to find a specific point at which the walks intersect, 
provided the walks intersect. The two walks can be computed sequentially or simultaneously. 

Thus, the cycling test gives a way to generate two sequences of keys 01~02,. . . ,a; and b1, bz ,  , . . , bj such 
that g ( p )  = h(c) = hTk(p), where g = TaiT4i-l . - .T4,  and h = TbjTbj-l ..eTbl. With high probability, 
Tk = h-'g,  which can be statistically verified by applying h-'g to additional matched plaintext/ciphertext 
pairs. If Tk # h - ' g ,  then the entire procedure can be repeated on the next plaintext/ciphertext pair. 

To decrypt each additional ciphertext CO, the cryptanalyst computes TL'(c0) = g- 'h(co) .  To compute 
h in constant space is errsy-aimply generate the sequence of keys b1, b z ,  . . . , b ,  by retracing the pseudo- 
random walk starting from c .  The difficulty is to compute g-' in a time- and space-efficient manner. The 
problem is that each pseudo-random walk is a "one-way walk" in the sense that reversing any step of the 
walk requires inverting the encryption function. 

One could save each of the keys a', a*,. . . ,q, but that would require O( i )  space, where i is the length 
of the walk starting at p .  If the attacked cryptosystem is closed, then i will be about a, on the average. 
On the other hand, one could reverse any step of the walk in constant space by retracing the the walk from 
the beginning, but this procedure would yield an O(i2)  time algorithm for computing g-'. Chandra shows 
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that a range of timespace tradeoffs can be used to solve this type of problem. In particular, for any c > 0, 
it is possible to compute g-’ in constant space and time i1+6 [19]. Therefore, if the attacked cryptosystem 
is closed then, for any 6 > 0, the cycling known-plaintext attack can be carried out in constant space and 
time 0 (K(’+‘)/’), on the average. 

4.3 

Each of the known-plaintext attacks can be applied to any finite, deterministic cryptosystem by launching 
the attack against the group generated by the cryptosystem. For this reason, it is very important to know 
the order of the group generated by DES. 

Since DES’s relatively small key space of 256 keys allows no margin of safety even for 1977 technology 
j35], these attacks would be a devastating weakness for DES, if DES generated a small group. In particular, 
if DES were closed, a personal computer equipped with special-purpose hardware could decrypt DES 
ciphertexts under a known-plaintext attack in less than two hours, on the average (See appendix A). 

Application of Attacks to DES 

5 Experimental Results 

This section explains how to interpret the results of the statistical closure tests and summarizes the initial 
results we obtained by applying the cycling test to DES. 

5.1 Interpreting the Experimental Results 

Each statistical test gives a method for collecting evidence that can be used to compute a measure of our 
relative degree of belief in the foLlowing two competing hypotheses: 

0 HG = “DES is a group.” 

HR = “Each DES transformation was chosen independently with uniform probability from the sym- 
metric group on M.” 

To compute this measure, we will apply the theory of the weight of cuidencc, BS explained by Good i9l (71. 
Each test is asymmetrical in the sense that it allows us to compute the conditional probabilities 

- P(E I HGland P(E I HE), but not P(E I G) nor P(E I HR), where E is experimental evidence and 
HG and HR are the complements of HG and HR respectively. This means that, on the bask of experi- 
mental evidence, we would be able to conclude only that DES is not closed or that DES has a structure 
different from that expected from a set of randomly chosen permutations; we would not be able to conclude 
that DES is dosed. In the worst case, DES could be closed, except for some isolated pair of keys a ,  6 such 
that TbT, is not in 7, even though there exists some key k and some message zo such that TbT0(z) = Ti(z) 
for all measages z E M, z # ZO. 

Initially, each person may have some (subjective) degrees of belief P(HG) and P(HR) in hypothese 
HG and HR respectively. From these initial degrees of belief, each person can compute O(HC/HR) = 
P(HG)/P(HR) as his or her initial odds in favor of Hc over HR. After seeing any experiment4 evidence 
E, however, each rational person should update his or her own odds in favor of Hc over HE. 

Given any evidence E, each believer in the theory of the weight of evidence should update his or her 
odds in favor of HG over HR 89 follows: 

where O(HG/HR I E) is the odds in favor of HG as opposed to HR given E. 

favor of Hc over HR. 
In light of the our experimental evidence, we encourage each reader to update his or her own odds in 
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5.2 Summary of Experimental Results 

On April 4, 1985, we completed the first trial of the cycling test, detecting a cycle of length nearly 
2=. For this test, we chose the pseudc-random function to be the 'identity" pr~jection.'~ Starting with 
the initial message 20 = 0123 4567 89- CDEF (in hexadecimal notation), we found a cycle of length 
exactly p = 7,985,051,916 with a leader of length X = 34,293,589.. As one test of the correctness of our 
computations, we ran a software implementation of the cycling test for 30,000 steps. The software and 
hardware implementations of the cycling test agreed on all values. As a second test of correctness, we 
repeated the initial experiment and obtained identical results. 

This single experiment gives strong evidence that DES is not closed. Let E denote the evidence from our 
experiment. Since p+A FJ = 2 a =  3 2 a ,  it follows that P(E 1 H c ) / P ( E  I HR) u e-32af2/e-'a~2 = 
c-~".  Therefore, each reader should decrease his or her odds in favor of Hc over HR by a factor of about 
e-610 

During May through August 1985, we performed additional trials of the cycling closure test as well 
other cycling experiments on DES. Results of these experiments were described at the Crypto 85 conference 
[41]. All additional trials of the cycling closure test supported our initial findings. 

6 Open Problems 

Although our experiments give strong statistical evidence that DES is not closed, numeroua interesting 
questions remain unanswered. We begin with several questions about the algebraic structure of DES. 

Does DES generate AM? What ia the order of the group generated by DES? What is the group 
generated by DES? For how many keys i ,  j, k is it true that T, = T;Tj? 

Is DES faithful? What is the order of DES? 

What subsets of DES transformations generate small groups? (Note that each weak key represents 
a transformation that generates the cyclic group of order 2.) 

Is DES Lornogeneow in the sense that for every k E K it is true that TL1 E T? For how many k E K 
is it true that TLf E T ?  

Is I E  T? 

Knowing whether or not I E TDEs  ia interesting-not because this property would necessarily be a 
weakness in DES-but because this question would answer several other questions about DES. By the 
complementation property, for any key k, T k  = I implies TpI. Hence, if I E T D E S ,  then DES is not 
faithful. In particular, if DES is closed, then DES is not faithful. Conversely, if K g  TDES, then DES is 
not closed. 

Each of the known-plaintext attacks finds a representation of the secret transformation T k  a a product 
of two or more transformations. In practice, it would suffice to find an approximate representation of Tk. 
To this end, we could say that two permutations Tl,Tz E 7 are q-approzimotcly equd on X C M iff, for 
all z E X, T~(z) and Tz(z) always agree on at least q bits. 

For each 1 5 q 5 64, for how many keys i ,  j, k is it true that Tk is q-approzimatety equd to TiTj on 
M ?  

0 What other notions of 'approximately equal'' transformations would be useful in finding approximate 
representations? 

Since the closure tests do not depend on the detailed definition of DES, it  is natural to ask: 

More specifically, we used the projection that removes each of the eight parity bits. 1b 
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What can be proven from the detailed definition of DES about the order of the group generated by 
DES? 

Are there more powerful statistical closure tests than the two tests presented in this paper that are 
based on the detailed definition of DES? 

Our research dso raises questions involving the design of cryptosystems. 

Is it possible to build asecure, practical cryptosystem for which it can be proven that the cryptosystem 
generates either AH or SA? (See [48] for one suggestion.) 

Is it possible to hide a trapdoor in a cryptosystem by concealing a secret set of generators for a small 
group? (Note that it does not work simply to have a large subset of the transformations generate a 
small group, since the enemy could guess a small number of transformations in the subset and apply 
the cycling closure test to the guessed transformations.) 

We presented two known-plaintext attacks against closed ciphers, but other attacks may also exist. 

What attacks are possible against closed ciphers? How can knowledge of the specific group help? 

Finally, it would be interesting to apply the closure tests to variations of DES that exaggerate certain 
types of possible weaknesses in the standard. 

What is the order of “crippled” DES transformations formed by reducing the number of rounds or 
by replacing one or more of the S-boxes with linear mappings? 

7 Summary 

We have presented two statiatical tests for determining whether or not any finite, deterministic cryptosys- 
tern generates a small group. Each test yields a known-plaintext attack against closed cryptosystems. 

Using a combination of software and special-purpose hardware, we applied the cycling test to DES. 
Our experiments show, with a high degree of confidence, that DES does not generate a small group. These 
results should incresse our confidence in the security of using DES with multiple encryption. However, 
since cryptosystema that generate large groups are not necessarily secure, our experiments say only that 
DES does not fail in one extreme way. 

This work leaves open the possibility of proving that DES is not closed directly from the detailed 
definition of DES. 
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A A Fast Implementation of the Cycling Closure Test 

To test the DES for closure, we designed and built special-purpose hardware for an IBM PC. Our exper- 
iment required special-purpose hardware for two reasons: we needed to compute about 2" encryptions16 
and we needed to change the key at each step." 

The special-purpose hardware is a custom wire-wrap board for an IBM personal computer," containing 
a microprogrammed finitestate controller and an AMD Am28068 DES chip [52]. Data paths connect the 
DES chip, a 16-byte ciphertext buffer, a PROM computing the next-key function, and the hoet computer 
(see figure 1). The next-key function in computed byte-by-byte. A read-write counter indicatea the number 
of consecutive mesaages to compute. To increase the board's flexibility, the microprogram is stored in 
RAM accessible to the host computer. The PROM can be easily replaced to implement different next-key 
functions. 

We perform cycle detection in two passes: data acquisition and analysis. During data acquisition, the 
host computer stores every ZZ0th mesaage on a floppy disk. During analysis, these messages are loaded into 
main memory, and up to 2'' consecutive messages are computed and compared to those already present. 
In effect, we perform the Sedgewick-Szymanski [26] algorithm with a 6xed estimate of the cycle length. We 
use an open-addressing, doublehashing scheme for stores and lookup [21]. We wrote all data acquisition 
and analysis routines in C. 

Including all overhead for computing and loading a new key for each encryption, our board performs 
about 45K encryptions/eecond, or almost 2" per day. This enables w to carry out each trial of the 
experiment within a few days. Our board alw supports all approved modes of operation for DES. 

I 

Figure 1: Block diagram of special-purpose hardware 

"Software implementatioru of the DES for the IBM PC run at about 200300 encryptiono/sacond. According to Davio, by 
using an eficient space-interuive implementation of the DES, it in pouible to perform about 2.5K encryptiom/oecond on 
the VAX 11/780 1st. Thus, it would taka the IBM PC about 10 to 16 day8 to compote 2'. DES sncryptious; a VAX 11/780 
would require about a day and a half. Running the tmt for Zaa *tap would take at l av t  16 time8 longer. 

"Commercially available DES boardo am not suited for our p u r p w .  To compute and load a new key for each encryption 
would require interaction by the hod  computer, introducing tremendou overhead. 

We choae to urn an IBM P C  baause  an IBM PC waa available to UI, and becausa it is eary to attach special-purpose 
hardware to an IBM PC [ 5 4 .  

11 



94 

References 
1 Survey Works on Cryptology 
[lI Ekker, Henry; and Fred Piper, Cipher System: The Protection of Communicdionn, John Wiley (New York, 1982). 

[21 Davicu, Donald W.; and W. L. Price, Securify for Computer Networb: An Iniroduclion fo D d o  Security in Telcproccanng 

[Sl Diffie, WhitBeld; and Martiin E. Hellman, Trivacy and authentication: Ah introduction to cryptography,’ Proccedinga 

141 Mcyer, Carl H.; and Stephen M. Mayas, Crypfology: A New Dimcm’on in Computer Doto Security, John Wiley (New 

and Electronic h d r  Zhuufer, John Wiley (Chichestar, England, 1984). 

of the IEEE, 67 (Max& 19?9), 397427. 

York, 1982). 
See also [50] [551. 

Works on Probability and Statistics 

Math Society, 12 (1980), 41-46. 
[5] Bovey, J. D., .An approximate probability dutribution for the order of element8 of the symmetric group,” Bull. London 

101 Feller, W., An IdroducCion lo Probability Theory ond ifa Appficatioru, vol. I, John Wiley (New York, 1971). 
171 Good, Irving John, The E a t i d o n  of Probabilities: An Emay on Modern Boycaion Metho&, MIT PreM (1965). 

(81 Harris, Bernard, Trobab i i ty  distribution8 related to random mappings,. Annab of Moth. Sfatirtic8, 31 (1959), 1045- 

IS] Oiteyee, David Bridnton; and Irving John Good, Information, Weighf of Evidence, the Singdorify between Probabifity 

[lo] Purdom, Paul W.; and J. H. Williams, “Cycle length in a random function,’ I).a~ocfioru of the American Mdhemcrth 

1111 Shepp, L. A,; and S. P. Lloyd, ‘Ordered cycle lengths in a random permutation,’ Z ’ r o ~ o c t i o ~  of the Amcricon Mdhe- 

1062. 

Mewurea and Si& Detection, Springer (Berlin, 1974). 

Society, 133 (1968), 547-551. 

maficr Society, (February I-), 340-357. 
See alao [I21 [I41 [25]. 

Works on Algebra 
[I21 Bovey, John; and Alan Williarruon, “The probability of generating the symmetric group,” Bull. London Math Society, 10 

[131 CarmiChad, Robert D.. Introduction to the  Theory of Groups of Finite Order, Dover (New York, 1956). 

I141 Dixon, John D., T h e  probability of generating the symmetric group,’ Maih Zedrum, 110 (1969), 199-205. 
I151 Rotman, J w p h  J., The Theory of Gmuprr A n  Introduction, Allyn and Bacon (Booton, 1978). 
[MI Wielandt, Helmut, Finite Pmmufoiion Groupr, Academic PreM (New York, 1964). 

(1978), 91-96. 

Sw also 151 181 [lo] [ZS] [Ill. 

Works on Algorithms and Complexity Theory 
(171 mender,  Eric; and Maria Khwa, %proved Lower Bounds for the Cycle Detection Problem,’ mrking paper. 
(181 Brent, Richard P., ~Analy8M of mme new cycle-finding and factorization algorithms: technical report, Department of 

[191 Chandra, h h o k  K., “Efficient compilation of linear recuinive programs,’ technical report no. STAN-CS-72-282, Com- 

[20] Knuth, Donald E., Scminumcn’cd Algorithm in The A d  of Computer Progr~mm~ng, vol. 2, Addison-Wesley (1969). 
[21] Knuth, Donald E., Sorting und Scorching in The Arf of Computer Progromming, vol. 3, Addison-Wesley (1973). 

[22] Pollard, J. M., ‘A U o n h  Car10 method for factorization,” Bit, 15 (1975), 331-334. 
(231 Pomerance, Carl, ‘Andy~i. and comparimn of some integer factoring algorithma,’ technical report, Math a p t . ,  Univ. 

(241 Purdom, Paul W. Jr.; and Cynthia A. Brown, The Andyaia of Algorithma, Holt, Pinehart, and Winston (New York, 

[25] Sattla, J.; and C. P. Schnorr, %encrating random walks in groupa; unpublished manuscript (October 1983). 
[ZS] Sedgewick, Robert; and Thomaa G. Slymanski, .The complexity of finding periods,. Proceedings of the f f f h  Annud 

[27] Sedgewick, Robert; Thomar G. Szymannki; and Andrew C. Yao, ‘The complexity of finding cycles in periodic functions,’ 

Computer Science, Australian National University (1979). 

puter Science a p t . ,  Stanford Univ (April 1972). 

of Georgia. 

1985). 

STOC Conference (1979), 74-80. 

Siom Journal on Computing, 11 (1982), 376-390. 



95 

Selected Federal Standards Involving DES 

46 (January 15, 1977). 

Selected Technical Works on DES 

(281 ‘Data Encryption Standard,’ National Bureau of Standards, Federal Information Procewing Standards Publications No. 

[29l ‘DES modes of operatiom; Federal Information Standards Publication No. 81 (December 1980). 

[30] Davies, Donald W., 5 o m e  ragnlar properties of the DES,” in [46],8+96. 
1311 Davies, Donald W.; and G. L P. Parkii, T h e  average sire of the key stream in output feedback mode,’ in [46], 97-98. 
[32] Davies, Donald W.; and C. I. P. Parkin, T h e  average sixe of the key stream in output feedback encipherment,’ in 1451, 

[33] Davio, Mark; Yvo Deamedt; Joref Coubert; Frank Hoornaart; and Jean-Jacqua Quiaquater, qfficient hardware and 

[341 Desmedt, YVO, =Analysis of the necnrity and new algorithms for modern induntrial cryptography,’ dissertation, Dep&t- 

[35] Diffle, Whitfield; and Martin E. Hellman, m a u s t i v e  cryptanalyais of the NBS Data Encryption Standard,’ Computer, 

[MI Gait, Juan, =A new nonlinear pseudorandom number generator,’ IEEE Pnruactiom on Sopware Engineering, SE-S 

(371 Goldreich, Oded, ‘DESlike fnnctiono can generate the alternating pup , ’  IEEE Trontactiont on Information Thcoru, 

[381 Hellman, Martin E., et d, ‘Resultn of an initial attempt to cryptanalyse the NBS Data Encryption Standard,. technical 

1391 Hellman, Martin E.; and Justin M Reyneri, T i t r ibu t ion  of Drainage in the DES,’ in [46l (1982), 129-131. 
[40] Jueneman, Robert R, -Analy*. of certain aspects of output-feedback mode,’ in [46] (1982), 99-127. 
1411 Kaliski, Burton S., Jr.; Ronald L. Rivest; and Alan T. Sherman, I?s DES a pure cipher? (Results of more cycling 

1421 Merkle, Ralph C.; and Martin E. Hellman, .On the security of multiple encryption,’ CACM, 24 (July 1981), 465-467. 
1431 Re&, J. A.; and J. L. Manferdell, ‘DES has no per round linear factora,’ Pmcecdingr of Crypfo 84, Springer (1985). 
(441 Tuchman, W. L., talk presented at  the National Computer Conference, (June 1978). 

263-279. 

software implementatiom for the DES,’ Proceedingr of Cqtpto 84, Springer (1985). 

ment Elektrotechniek, Katholieks Univemiteit Leuven (October 1984). 

10 (March 6, 1980), 74-84. 

(September 1977), 359-363. 

IT-29 (1983), 863-865. 

report SEL 76442, Information Systems Laboratory, Stanford Univ. (November 1976). 

experiments on DES); Proceuiinga of Crypt0 85, to appear. 

See aL0 [Z] 141 [48] [SlJ 1531. 

Other Works 

April E, 298.Z, Springer (Berlin, 1983). 

Prew (New York, 1983). 

[451 Beth, Thomaa, ed., Cryptography, Proceedingr of the WorLhop on Cryptogruphy, Burg Fcuerrtein, Germany, M u d  29- 

(461 Chaum, David; Rondd L. Rivest; and Alan T. Sherman, edb., Aduoncer in Cryptology: Proceeding# of Crypt0 82, Plenum 

[47] Chaum, David, cd, A d u m u  in Cqrptology: Proceeding8 of Crypt0 83, Plenum Prew (New York, 1984). 
[48] Coppersmith, Don; and Edna Groedman, .Generators for certain alternating groups with application8 to c ryp tob , ’  

[49] Dehurentis,  John M, =A further weaknew in the common modulus protocol for the RSA cryptonystem,g CryptoIogio, 8 

1501 Gain-, Helen Fouchb, Crypland~&.- A StudV of Ciphcrr ond Their Solution. Dover (1956). 
I511 Growman, Edna; and Bryant Tuckerman, .Analysis of a Feistel-like cipher weakened by having no rotating key,’ IBM 

(52) Data Ciphering P m u u o r r  AmB528, Am9568, Am28068 Tcchnicd Manual, Advanced Micro Devices, Inc. (198.1). 
1531 Hellman, Martin E., ‘A cryptanalytic timbmemoxy tradeoff,’ technical report, Stanford Univ. (1978). 
1541 IBM Perrond Computer Technical Refercre (July 1982). 
[55] Longo, G., ed., Secure Digitd Communi‘edioru, Springer (Vienna 1983). 
[56] Rivest, Ronald; A& Shamir, and Leonard Adleman, ‘On digital signatures and public-key cryptonystemd,* CACM, 21 

(571 Shannon, Claude E., “Communication theory of secrecy aystema,” Bell Syrfem Tcchnicd Journd, 28 (October 1949), 

[58] TJnclassi5ed summary: Involvement of NSA in the development of the Data Encryption Standard,’ ataff report o f  the 

Siom Journd on AppPed Mathematicr, 29 (December 1975), 624-627. 

(July 1984), 253-259. 

research report RC 6375 (#27489), (January 31, 1977). 

(February 1978), 120-126. 

656-715. 

Senate Select Committee on Intelligence, United States Senate (April 1978). 


