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Abstract

We constder the problemn of partitioning a rectilinear polygon
into disjoint rectangles using the minimum amount of “ink”.
The given polygonal figure may or may not have holes in it,
and the complexity of the problem is shown to depend on this
very facl: For hole-free figures, we provide a polynomial-time
algorithin, whereas for figures containing holes the problem is
shown to be NP-complete.

For the hole-free case, the time complexity of the partilioning
algorithin is O(n*) for arbitrary rectilinear shapes, but for non-
trivial special cases the complexity can be reduced to O(n?).
In the general case it turns out that cven degenerate holes, t.e.
points through which the decomposing edges have to go, are
enough to render the problem intractable.

More interestingly, the proof techniques fer the NP-complete-
ness results can be applied to an even more gereral case, namely
where the polygons are no longer rectilinear and a partitioning
into convex polygons with minimum edge length is sought.

1. Introduction

The problem of dividing a polygonal region inte parts has received considerable attention
recently ([ChDo79], [LLMP79), [LLMPLT79|, [GJI*I78]). ‘Traditionally, convexivity was the
overriding issue and the goal was to obtain a convex partition using the minimura number of
components. In this paper we focus on three new aspects of the problem, two regarding shape,
and ope —- the minimality criterion: First we consider only rectilinear polygons, i.c. figures
with “vertical” and “herizontal” boundary edges; such polvgons can always be partitioncd into
rectangles (with the same orientation as the original figure). Second we allow the inclusion of
holes (or islands) in the given figure, 1.¢. one enclosing polygon may contain several polygonal
shapes cut out of it (see Figure 1). Finally, we introduce and investigate a new minimality
criterion, namely — the total length of the edges (lines) used to form the internal partition; we
call this criterion minimization of edge length.
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Figure 1. A rectilinear figure with three holes (one
1s degenerate).

We investigated various versions of the problem of minimizing the edge length partitioning of
a rectilinear figure. The major result of this paper is that the critical characteristic of an instance
of the problem is whether it has holes or not: If it does not, a pelynomial time algorithm exists
to solve it optimally; otherwise, the problems is NP-complete ([GaJh79]) even if the holes are
degencerate, i.e. they are points through which the partitioning edges have to pass. Interesting
polynomial-time heuristics that can achieve solutions whose edge length is within a constant
factor from optimal are discussed in [Lin81].

The problem of finding optimal partitions of such figures with respect to our criterion has
applications in several domains: Process control (stock cutting), automatic layout systems for
integrated circuits (channel definition), and even architecture (internal partitioning into offices).
The minimum edge-length partition is a natural goal for these problems since there is a certain
arnount of waste (e.g. sawdust) or expense incurred (e.g. for dividing walls in the office) which
is proportional to the sum of edge lengths drawn. For VLSI design, this criterion is used in
the MIT “PI" (Placemenl and Interconuect) System ([RRi82]) to divide the routing region up
into channels — we find that this produces large “natural-looking” channels with a minimum
of ehannel-to-channel interaction to consider. At an intuitive level, these partitions might be
considered analogous to the way rectilinear soap-bubbles would decompose a given space into
convex parts.

Notice that the traditional minimality criterion of reducing the number of components —
which Jeads to different applications — does not coincide with ours. Figure 2{b) shows a trivial
{and generic) example of this phenomenon. Also, the relative difficulties of the various classes of
problems turn out to be different, as discussed in [Lin82].
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hat follows, we first set up some notation {Section 2). Then we present the polynomial-
ﬂlu;l.ithm for the hole-free cases (Section 3) and sketches of the NI>-completeness proofs for
a5 ol case (Section 4). Finally, we pose extensions and open problems (Section 5).

I
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0. Notation and Definitions

A rectilinear boundery is a simple pol}fgnn,.all of whose sldes B.]‘E'i eifher parallel or perpen-
dicular t0 cach other. More precisely, each sadé 1'3 a seg.;nmnt- of a line in the plarfe, ‘and t!l]e‘set. olf
lines corresponding to a boundary can be partitioned into two sets suc‘h that V»'.l.t.h]ﬂ e.aacn.aet all
Jines are parallel to each other, and 1.he.l;wn sels are mutually perpendicular. We arbitrarily call
one direction horizontal, f?-h_e other vertical. Clearly, all corners of a boundary are either of 90°
[wwu) or 2707 (concave). A boundary may be represented by a list of its corners as poinis in
the plane, P1, P2, -+, P, in (say) clockwise order. (Simplicity can then be checked in O(n log n}
time (iShHoTB]}]. _

A rectilinear hole in a rectilinear boundary is a simple rectilinear polygon fully enclosed by
it. We allow only holes whose orientation is the same as that of the enclosing boundary, .e. the
horizontal and vertical directions corresponding to the polygons coincide. A hole is represented
as before by a list of points describing its circumference; a hole is called degenerafe if it consists
of a single point.

A rectilinear figure is a set of rectilinear boundaries, each of which may contain an arbitrary
aumber of non-overlapping hoeles in it. Notice that holes are not allowed to contain further
holes. From here on, we shall consider (without loss of generality) only figures consisting of one
boundary and its holes; for the problems considered in this papes, an optimal solution for a set
of boundaries may be obtained by solving the problem for each member separalely. Figure 1
shows a typical figure consisting of a boundary with several holes in it.

A rectangular partition of a figure is a set of line segments, li,la,.. ., lm, lying within its
boundary and not crossing any holes, so that when drawn into the figure the area not enclosed
by holes is partitioned into rectangles; clearly, no “loose ends” are allowed. Figure 2(a) is an
example of such a partition. We could have given a formal definition of what it means for 3
set of line segments to partition an area {(with holes) into rectangles, but it would not serve any
useful purpose in the extext of this abstract.

Finally, the partitioning line segments are called edges. A minimum edge length partitioning
of a figure is a rectangular partitioning such that the sum of lengths of its edges is smallest among
all valid partitionings. Incidentally, this is equivalent to requiring that the total of all perimeters
of the resulting rectangles be minimized.

3. A Polynomial-time Partitioning Algorithm for Hole-free Figures

In this section we show that a minimum edge length partitioning of a rectilinear figure
~ consisting only of a simple boundary (henceforth hole-free) can be found in polynomial time.
The complexity in the general hole-[ree case is O(n*) (where n is-the number of sides on the
boundary), but in case the boundary has a shape of a histogram (to be defined in due course), an
O(n?) algorithm exists.

The algorithin used makes use of dynamic programming (see, for example, [AHUT4]) — a
rather natural approach for this problem: minimum edge length triangulation can be easily solved
using the this technique. The difficult part of the proof for the rectangular case involves showing
how a given polygon can be split in a small number of ways while guaranteeing that the optimal
partilioning is consistent with one of these splits.
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Belore we proceed, Jet us add two definitions used only in this section: IMirst, the grid induced
by a boundary is the set of horizontal and vertical lines (and their intersection points) on which
segments of the boundary lie. Second, a constructed line is a maximal extension of a partitioning
edge to include any sides of the boundary that are contiguous to the edge and go in the same
direction. Two or more aligned edges may be put on the same constructed line, but this is not
always the case. This is exemplilied in Figure 3 where constructed lines are dotted, whereas
edges are dashed. \

The following two lemmas serve to center our attention on the crux of the matter:

Lemma 1. In all minimuin edge length solutions for any given boundary B, all edges and
internal corners lie on the induced grid.

Lemma 2. For any given boundary 8, there exists a minimum edge length partitioning
such that every constructed line has at least one end on the original boundary
B.
Ends of consiructed lines that lie on the boundary are called anchors; thus Lemma 2 can
be restated as saying that every constructed line has at least one anchor. An anchor may be a
corner or 4 point on a side perpendicular to the edge. In Figure 3 we marked anchors with solid
circles; in 3(a) an optimal solution satislying the lemma is shown, whereas in 3(b) we sce that
there exist figures for which all constructed lines can have at most one anchor in order to obtain
optimality. Thus Lemma 2 cannot be strengthened.
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Figure 3. The constructed lines of a decomposition.

In the process of finding the optimal solution, we shall look at portions of the original figure
which arc in themselves hole-free boundaries. We claim that it is enough to Jook at portions whose
boundary consists of a contignous piece of the eriginal boundary and ¢f most iwo constructed
lines, that again, are contignous. In other words, the most complicated intermediate figure looks
like a piece of the original boundary cut off by a (convex or concave) L-shaped pair of constructed
edges; sometimes it is just cut off by one edge, and initially it is not cut off at all. Figure 5 shows
two such intermediate figures. We shall show that our aigorithm generates only intermediate
figurcs satisfying the above property, and this in fact is the invariant preserved by all partitioning
rules.

Now we have to devise the rule for partitioning: For each intermediate figure we define a
candidate point depending on the number of constructed lines it has: If 0, then any convex corner
may be chosen; if 1, then cither end of the constructed line is chosen; and if 2, then we have to
choose the common end of the two constructed lines (remember they are adjacent).

The matching point is defined as one lying on the induced grid, and such that there exists
a (not necessarily optimal!) partitioning of the partial figure in which the candidate point and
the matching point are kitty comers of a rectangle. Figure 5 shows forbidden cases of matching
points. Furthermore, in order to maintain optimality, the matching point is restricted to lie in
certain arcas with respect to the candidate point as characterized by Lemmas 3 and 4 below.

Note that without loss of generality, we can always assume that the partial figure has two

56



S O~ |

o — -

T S

(a} Anchors are denoted by ¥ (b} A "pinvheel®: only one

anchor per const. line.

Figure 4. There exist optimal solutions in which every
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Figure 6. The four gquadrants around the kitty-corner origin {4).

constructed lines and that the candidate point is at their common end. Now the candidate point
can be either convex or concave with respect to the rest of the partial figure.

First let us assume it is convex. Then let us define the kitty-corner origin as the kitty corner
of the rectangle that would have been formed by using the two constructed lines as its sides (see
Figure 6). There are four quadrants defined with respect to this origin. We claim that

Lemma 3. The matlching peint of a convex candidate cannot reside in the quadrant
including the candidate point (IV in the Figure 6). Whenever it resides in one
of the other quadrants, the basic invariant is preserved.

The first part is proven by realizing that one edge will be superfluous in any solution placing
the matching point in this quadrant (IPigure 7(a)), thus defying its optimality. The second part is
proven by inspeetion, showing that the only possible partitions that will not violate minimality
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Figure 8. Proof of Lemma 4; same legend as in Figure 7.

are as shown schematically in Figure 7(b),{c) and (d). Notice that constructed lines are extended
in the process in a manner consistent with their definition.
If the candidate point is concave, the situation is simpler:

Lemma 4. The matching point of a concave candidate must have a horizontal or vertical

projection on one of the constructing edges.

The proof is similar to that of Lemma 3, and is illustrated in Figure 8.

For each candidate point there are O(n?) possible matching points, and the (intermediate)
minimuin edge length partitioning resulting from each match has to be evaluated. But since the
induced grid has O(n?) points, there are only that many intermediate figures looked at during
the whole algorithm. If we maintain a table of all such possible figures (sorted, say, by area), we
can apply dynamic programming successfully to obtain a global minimum.

Putting everything together, we obtain

Theorem 1. Minimum edge length partitioning of a hole-free figure can be found in time
O(n?).

Il the hole-less figure can be described by a list Py, Ps, ..., P, such that the z-coordinates of
toe points form a monotonically non-decreasing sequence, or — alternatively -— the y-coordinates
have this property, then we say that the figure is a histogram. In this case, a faster algorithm
exists, which is easiest to visualize when histograms are being drawn upside down, as in Figure
9; the long edge at the top is the sky and ali sides parallel to it are roof tops.

We take the roof top closest to the sky, and at each of its corners (unless it is at the left
or right end) we have to decide whether to draw a vertical or a horizontal edge. We can show
that one of these edges {in its entirety) appears in a minimum edge length solution. Again, we
use dynamic programming to keep track of optimality of partial figures. For coenvergence, notice
that the sky is lowered for a contiguous portion of the histogram each time a horizontal edge
is drawn, or we are left with a shorter histogram if a vertical edge is drawn. This procedure is
faster than the general one, and we have
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Figure 9. An upside-down histogranm.

Theorem 2. Minimurn edge length partitiening of a histogram can be found in time O(n?).

4. Partitioning Figures with Holes is NP-complete

In this section we show that the following decision problems are strongly NP-complete:

(1) Mirimum Edge Length Rectangular Partitioning (MELRP): Given a rectilinear figure
as defined in Section 2 and a number k, is there a rectangular partitioning whose edée
lengih does not exceed k?

(2) Minimum Edge Length Rectangular Partitioning with Points (MELRPP): Given a
rectilinear figure as defined in Section 2 all of whose holes are degenerate, and a
number k, is there a rectangular partitioning whose edge length does not exceed &?

(3) Minimum Edge Length Convex Partitioning (MELCP): Given a simple polygon with
non-overlapping, polygonal holes in it, and a number k, is there a partitioning of its
area into convex parts whose edge length does not exceed k?

{4) Minimum Edge Length Convex Partitioning with Points (MELCPP): Given a simple
polygon, a set of points within its area, and a number £, is there a partitioning of its
area into convex parts such that all given points reside on decomposing edges whose
edge length does not exceed k?

We chose to transform MELRP from planar satisfiability (PLSAT), shown to be NP-complete
in [Lich82]. MELRP transforms to MELRPP, and the proofs for MELCP and MELCPP are
analogous (with slight modifications). In fact, we use a slightly iess resiricted version of PLSAT
defined as follows: A formula 7 in conjunetive normal form with exactly 3 literals per clause
(3CNF), whose variables z,,i = 1,...,n form the set X and clauses ¢,,j = 1,...,m form
the set C, is said to be planar if the bipartite graph G(7) = (XUC, E) with E = {(zi,¢;) |
7; or T, is a literal in ¢, } is planar. PLSAT is the problem of deciding whether a given planar
formula 7 is satisfiable or not.

In order to transform PLSAT to MIELRP we construct a reclilinear figure X such that there
exists a partitioning of ¥ into rectangles using edge length of at most k£ il and only if the given-
planar formula 7 is satisftable. The key idea is to lay out ¥ as an image of a planar circuit such
that partitionings of ¥ simulate compulations of the truth valué of 7.

The basic component of ¥ is a crooked (geniculated) wire used to transmit 0 (false) and 1
(true) signals. Figure 10 shows a piéce of a wire: Its sides are square waves whose phases are
the same. A wire is most cfficiently partitioned into rectangles (with respect to edge length)
by a series of edges either all perpendicular or all parallel to its direction (see dashed lines in
the figure). We interpret a parallel partitioning as a 1, and a perpendicular one as a 0. A wire
changes the value of the signal it carries if it makes a 90° turn, but it may split (fan-out) without
changing its value; sce Figure 11 for the details.

¥ 1s constructed as a homneomorphic image of the graph G(7). Each vertex in X corresponds
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Figure 10. A piece of a crooked wire including a turn.
Two optimal decompositions are shown: - -—-horizontal
xxAX vertical

Figure 12. An inverter: a '0" (perper-
dicular decomposition} on
the left turns into a '1°'
(parallel decomposition)
the right and vice versa.

Figure 11. A wire-split; the two
decompositions show
a '0' and a '1'.

to a unique 90° turn in a wire of ¥, called a variable turn; cach vertex in C corresponds uniquely
to a junction of three wires in X, called a clause junction. Each edge in E is realized by a
wire path between the correspending variable turn and the clause junction. A wire is supposed
to enter the clause junction carrying the truth value of the literal it corresponds to; since no
distinciion between z, and T; was made in constructing G{F), we need to install inverters on
the entry to a junction, as described in Figure 12. Also, wires have to enter turns and junctions
with an appropriate phase for their sides, thus a phase shifter may be applied, as shown in
Figure 13. Figure 14 shows a clause junction. Note that the pair of points Py, I’ is slightly not
corectilinear {by ¢); so is the pair P3, Pig. Therefore, the wire entering ai the bottom is narrower
by € < IZ%:?}! where v($) denotes the number of concave corners in the figure ¢. We shall see
that clause junctions behave like three-input OR gates.

Let us now cut ¥ into single wires, wire-splits, inverters, phase shifters and junctions (such
cuts are denoted in our pictures by ragged lines). Let D(¥) denote the set of devices into which X
has been cul. Given a partitioning R of ¥ into rectangles, we associate with each edge ¢ € R the
value sz (e) to be equal to the length of e divided by the number of devices in D{¥) that contain
a continuous piece of e. For every d € D(¥), chargeg{d) is the sum of sz (e} over all edges e € R
that have a continuous piece in d. Clearly,

Z]ength{e] = Z chargez(d).
cER del(¥)

We say that a device d is optimally charged by a partitioning £ of X if for any other partitioning,
<, '
charge g (d) — charge(d) < €-v(d).
Then we have

Lemma 5. For any wire, wire-split, inverter and phase shifter d, d 1s optimally charged
60
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Figure 14. A clause junction and how it is being (negatively)
charged.

by R if and only if d propagates the signal correctly. Otherwise, the charge
is greater by at least § — ¢ - v(d).
If at least onc wire entering a clause junction d carries a 1, then d can be

Lemma 6.
charged optimally by R (of that wire). Otherwise, chargey(d) is greater by at

least § — 2 - €.
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Figure 15. A b-phase-shifter for :E s ‘i E
MELCD. We require 1 y ‘,’ ¢
0<$¢1 and = ———].—.___.
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We say that R charges ¥ optimally if every d € D(¥) is charged optimally by it. For each
device d we can easily find the minimum possible value of chargey{d). Let k be the sum of these
minimum charges over all devices in D(¥) plus € - ¥(¥). From Lemmas 5 and 6 we can conclude
that & charges ¥ optimally if and only if the length of the edges in R is at most k. Also, by these
lemmas and the construction of ¥, if § charges ¥ optimally, then the formula 7 is satisfiable.

Finally, if 7 is satisfiable then a rectangular partitioning of » of edge length not greater
than & can be obtained by partitioning variable turns according to the satisfying truth values.
Then signals are propagated along wires.

So we have

Lemma 7. ¥ is satisfiable if and only if there exists a partitioning of ¥ into rectangles
with edge length not exceeding k.
Since the construction of ¥ can be performed in logarithmic space, k and the dimensions of
¥ are polynomially related to the size of 7. Also, MELRP is obviously in NP. Thus

Theorem 3. MELRP is strongly NP-complete.

Given a rectilinear figure with non-degenerate holes, we can simulate the boundaries of the
holes by appropriately dense (corectilinear) points. Together with the fact that we can find an
optimal rectangular partitioning of each of the holes in polynomial time (by Theorem 1), this
leads to

Theorem 4. MELRP is many-one polynomially reducible to MELRPP; thus MELRPP is

also (strongly) NP-complete.

To prove NP-completeness of MELCP, we slightly modify the construction of ¥. Since now
non-vertical and non-horizontal edges are allowed, the dimensions of the phase shifter have to
be changed. Figure 15 shows the modified phase shifter. All other devices remain unchanged.
Now it is more difficult to show that these devices still propagate signals correctly, since, for
instance, non-vertical and non-horizontal edges may be used inside wire-splits, phase shifters,
and junctions. The proof can be simplified by using a “sprout” in each junction around Pj (in
Figure 14).

The results are similar to the ones in Theorems 3 and 4:

Theorem 5. MELCP and MELCPP are strongly NI>-complete.

5. Extensions and Open Problems

We have shown that the complexity of partitioning a rectilinear figure into rectangles using
minimum edge length depends on whether holes are permitted or not. In general the problem
is NP-complete, but when holes are disallowed the problem becomes tractable. Two major open
problems remain unsolved:

(i) What if all holes are degenerate (i.e. they are points), but no two points are corec-
tilinear (i.e. lie on the same horizontal or vertical line)?
(ii) What if, as in (i), no two points are corectilinear, and the boundary is a rectangle?

We could show neither of the problems to be NP-complete or polynomial-time solvable.
Clearly, (it} is “easier” than (i), so that resolving one in the right direction may solve them both,
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buil on the other hand the border between P and NP may lie just between these two problems.

Other interesting extensions regarding the polynemial-time algorithm of Section 3 are the
following: Tirst, can it be generalized to the non-rectilinear case? That is, can we find a
conves partitioning of a simple polygon using minimum edge length in polynomial time? How
about triangulations that use non-boundary points? There is an interesting balance between the
convexivity that led Chazelle and Dobkin to their polynoriial-time algorithm for minimizing the
number of pieces on one hand, and the Steiner tree-like property of our new minimum edge length
crilerion on the other hand. The latter took over in the rectilinear case, but the general problem
remains open. Second, can the algorithm be generalized {o three dimensions, where the metric
will be minimum surface area? Clearly, the results of Section 4 imply that solid holes make
this problem NP-complete, but it is unclear whether the added dimension in the hole-free case
renders the problem intractable.
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