
US008966276B2

(12) United States Patent
Nanopoulos et a].

US 8,966,276 B2
Feb. 24, 2015

(10) Patent N0.:
(45) Date of Patent:

(54) SYSTEM AND METHOD PROVIDING (56) References Cited
DISCONNECTED AUTHENTICATION

(75) Inventors: Andrew Nanopoulos, Wake?eld, MA US PATENT DOCUMENTS

(US); Klarl Ackerman, Boston, MA 4,609,777 A 9/1986 Cargile
(US); Piers Bowness, Westford, MA 4,720,860 A M988 Weiss
(US); William Duane, Westford, MA _
(US); Markus Jakobsson, Bloomington, (connnued)
IN (US); Burt Kaliski, Wellesley, MA
(Us); Dmitri P a1, Framingham, MA FOREIGN PATENT DOCUMENTS

(US); Shane D. Rice, Boston, MA (US); CN 1181560 A 5/2008
~ Ronald L. Rivest, Arlington, MA (US) EP 1 255 392 A2 60002

(73) Assignee: EMC Corporation, Hopkinton, MA _
(Us) (Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS

USC' 1540’) by 2057 days' PCT?JSZOO4/029776 Partial Search Report.

(21) Appl. No.: 10/938,422 (Continued)
(22) Filed: Sep. 10, 2004

(65) Prior Publication Data Primary Examiner * Harunur Rashid

Us Zoos/0166263 A1 Jul_ 28’ 2005 (74)kAllorney, Agent, or Firm * Daly, Crowley, MOffOl‘d &
Related US. Application Data Dur ee’ LLP

(60) Provisional application No. 60/502,546, ?led on Sep.
12, 2003' (57) ABSTRACT

(51) Int C]_ In a system for disconnected authentication, veri?cation
G06F 21/00 (201301) records corresponding to given authentication token outputs
H04L 29/06 (200601) over a predetermined period of time, sequence of events,

(Continued) and/or set of challenges are downloaded to a veri?er. The
records include encrypted or hashed information for the given

(52) US. Cl. authentication token outputs. In one embodiment using time
CPC H04L 63/0838 (2013.01); G06F 21/31 intervals, for each time interval, token output data, a salt

(2013.01); G06F 21/34 (2013,01); value, and a pepper value, are hashed and compared With the
(Continued) veri?cation record for the time interval. After a successful

_ _ _ comparison, a user can access the computer. A PIN value can

(58) Fleld 0f ClaSSI?catlon seaI‘Ch also be provided as an input the hash function. A portion of the
CPC . G06F 21/31; G06F 21/34; G06F 2221/2103;

H04L 9/3271; H04L 63/0838; H04L 9/002;
H04L 9/3228; H04L 9/3234; H04L 9/3236;

H04L 63/0853; H04L 2209/80; H04L 2209/38
USPC 726/4, 8, 9, 10; 713/183, 184, 185
See application ?le for complete search history.

[210 f204

hash function output can be used as a key to decrypt an
encrypted (Windows) password, or other sensitive informa
tion.

59 Claims, 4 Drawing Sheets

[206 f 208

lPINl Saltl Peppert

K 202
200

Recordt

US 8,966,276 B2
Page 2

(51) Int. Cl.
G06F 21/31 (2013.01)
G06F 21/34 (2013.01)
H04L 9/32 (2006.01)
H04L 9/00 (2006.01)

(52) US. Cl.
CPC H04L 9/3271 (2013.01); H04L 63/0853

(2013.01); H04L 9/002 (2013.01); H04L
9/3228 (2013.01); H04L 9/3234 (2013.01);
H04L 9/3236 (2013.01); G06F 2221/2103
(2013.01); H04L 2209/38 (2013.01); H04L

2209/80 (2013.01)
USPC 713/183; 713/184; 713/185; 726/8;

726/ 10

(56) References Cited

U.S. PATENT DOCUMENTS

5,528,231 A 6/1996 Patarin
5,737,421 A 4/1998 Audebert
5,787,169 A * 7/1998 Eldridge et al. . 713/165
5,995,624 A * 11/1999 Fielder et al. .. . 713/169

6,064,736 A * 5/2000 Davis et al. 713/155

6,067,621 A 5/2000 Yu et al.
6,115,472 A * 9/2000 Shimizu et al. 380/262

6,154,543 A * 11/2000 BaltZley 380/255

6,173,400 B1 * 1/2001 Perlman et al . 713/172
6,178,508 B1 * 1/2001 Kaufman . 713/183
6,263,446 B1 * 7/2001 Kausik et al. 726/5
6,339,828 B1 * 1/2002 Grawrock et al. 713/183
6,484,174 B1 * 11/2002 Wall et al. 707/9

6,523,027 B1 2/2003 Underwood
6,766,454 B1 * 7/2004 Riggins 713/185

6,826,686 B1 * 11/2004 Peyravian et al. . . 713/168
6,954,740 B2* 10/2005 Talker 705/75

726/9 6,988,210 B1* 1/2006 Audebert

7,228,438 B2 * 6/2007 Bushmitch et al. . 713/193
7,320,139 B2 * 1/2008 Audebert 726/5

7,343,014 B2 * 3/2008 Sovio et al. 380/278
2002/0034301 A1* 3/2002 Andersson . 380/270
2002/0095588 A1* 7/2002 Shigematsu et al. . 713/186
2002/0144128 A1* 10/2002 Rahman et al. 713/186

2002/0166048 A1 11/2002 Coulier
2002/0198848 A1* 12/2002 Michener 705/75

2003/0014315 A1* 1/2003 Jaalinoja et al. 705/18
2003/0037261 A1* 2/2003 Meffert et al. . 713/201
2003/0163739 A1* 8/2003 Armington et al. . 713/202
2003/0236975 A1* 12/2003 Birk et al. 713/156

2004/0030932 A1* 2/2004 Juels et al. .. . 713/202
2004/0103290 A1* 5/2004 Mankins .. . 713/193

2004/0107146 A1* 6/2004 Alfano 705/26

2005/0067485 A1 3/2005 Caron
2005/0081045 A1* 4/2005 Nicodemus et al. 713/182

FOREIGN PATENT DOCUMENTS

EP 1 255 392 A3 6/2002
EP 1 320 014 A2 6/2003
JP Hei 02-302141 12/1990
JP Hei 07-271729 10/1995
JP 2002-259344 9/2002
JP 2002-259344 A 9/2002
JP 2002-312319 10/2002
JP 2003-122719 4/2003
JP 2003-122719 A 4/2003
JP 2003-178027 6/2003
W0 W0 9927676 A2 6/1999
W0 WO 01/31840 A1 5/2001
W0 WO 02/48846 A2 6/2002
W0 WO 02/48846 A3 6/2002
W0 W0 03/063099 A2 7/2003

OTHER PUBLICATIONS

N. Haller, A One-Time Password System, Mar. 1, 1998, pp. 1-25.
N. Haller, Belicore, C. MetZ, P. Nesser, M. Straw, A One-Time
Password System, Feb. 1998, pp. 1-25, Network Working Group.

Niels Provos and David MaZieres, A Future-Adaptable Password
Scheme, Jun. 6-11, 1999, pp. 1-13, Monterey, California.
Ronald L. Rivest, Adi Shamir and David A. Wagner, Time-Lock
Puzzels and Time-Release Crypto, Mar. 10, 1996, pp. 1-9, Cam
bridge, Massachusetts.
PCT/US2004/029776 International Search Report dated Jun. 13,
2005.
Of?ce Action dated Jan. 4, 2008 from Chinese Patent Appln.
2004800330595, National Phase of PCT Appln. (PCT/US2004/
029776).
Notice ofAllowance datedAug. 15, 2008 from Chinese Patent Appln.
2004800330595, National Phase of PCT Appln. (PCT/US2004/
029776).
Of?ce Action dated Jan. 28, 2008 from European Patent Application
No. 047838396.
Response to Of?ce Action, letter dated Jul. 28, 2008, from European
Patent Application No. 047838396.
Examiner’s report from Australian Patent Of?ce dated Jun. 9, 2010,
Australian Application No. 20044305800, ?led Mar. 10, 2006, 2
pages.
Japanese Of?ce Action dated Nov. 11, 2010 for Japanese Patent
Application No. 2006-526361, from which present US. Application
claims priority, 6 pages.
European Patent Of?ce Examination Report for Application No. 04
783 839.6-1245 dated Jul. 21, 2011, 7 pages.
Japanese Of?cial Action dated Jul. 29, 2013 in Japanese Patent Appli
cation No. 2012-014358, partial translation only, 3 pages.
Response Filed Nov. 12, 2013 to Japenese Of?cial Action dated Jul.
29, 2013 in Japanese Patent Application No. 2012-014358, 7 pages.
Patent Examination Report No. 5 dated Sep. 9, 2013, Application No.
2011202930, pp. 1-6.
Japanese Of?ce Action dated Jul. 29, 2013 in Japanese Patent Appli
cation No. 2012-014358, translation only, 3 pages.
Response to Examination Report of Nov. 2, 2013, Application No.
2011202930, pp. 1-11.
Of?ce Action in EP Application No. 04 783 839.6 dated Feb. 17,
2014, 3 pages.
Bellovin et al., “Limitations of the Kerberos Authentication System”,
USENIX, Winter ’91, Dallas, TX, 16 pages. [Please Note: we have
con?rmed with the APO that this reference was mis-cited and that the
D6 reference actually considered by the APO examiner is being
cited].
PomeranZ “One-Time Passwords”, Deer Run Associates, PO Box
20370, Oakland, CA 94620-0370, 2000, 37 pages, http://wwwdeer
run.com/.
RSA Security “Hardware Token” Jun. 5, 2003, 2 pages, http://web.
archive.org/web/2003060511295 8/http://www.rsasecurity.com/
product s/ securid/hardwareitoken .htrnl.
RSA-505AEP European Application No. 047838396 Response to
Of?ce Action dated Jul. 21, 2011 (previously cited) ?led on Jan. 31,
2012, 24 pages. European Application No. 047838396 Response to
Of?ce Action dated Feb. 17, 2014 (previously cited) ?led on Aug. 15,
2014, 22 pages.
RSA-505ACN Chinese Application No. 2004800330595 Response
to Of?ceAction ofJan. 4, 2008 (previously cited) ?led on Jun. 2,2008
including foreign associate cover letter dated Jun. 24, 2008 and
emailed inventor comments used to prepare response dated May 27,
2008, 17 pages. Chinese Application No. 2004800330595, Certi?
cate of Invention Patent dated Nov. 12, 2008 and translation thereof,
including foreign associate cover letter dated Dec. 18, 2008 and
English translation of allowed claims, 13 pages.
RSA-505AAU Australian Application No. 2004305800 Of?ce
Action dated Sep. 22, 2009, 2 pages. Australian Application No.
2004305800 Response to Of?ce Action dated Sep. 22, 2009 ?led on
May 12, 2010, 41 pages. Australian Application No. 2004305800
Response to Of?ce Action dated Jun. 9, 2010 (previously cited) ?led
on May 16, 2011, 21 pages. Australian Application No. 2004305800
Of?ce Action dated Jun. 7, 2011, 3 pages.
RSA-505AJP Japanese Patent Application No. 2006-526361
Response to Of?ce Action dated Nov. 11, 2010 (previously cited)
?led on May 10, 2011, including foreign associate cover letter and

US 8,966,276 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

English translation of claims, 23 pages. Japanese Patent Application
No. 2006-526361 Of?ce Action dated Sep. 27, 2011, foreign associ
ate cover letter dated Nov. 22, 2011 only, 4 pages. Japanese Patent
Application No. 2006-526361 Response to Of?ce Action dated Sep.
27, 2011 ?led on Jan. 26, 2012, including foreign associate email
dated Jan. 10, 2012 attaching suggested amended claims, our letter to
foreign associate dated Jan. 25, 2012 instructing to ?le amended
claims, foreign associate cover letter dated Mar. 22, 2012 stating
response ?led on Jan. 26, 2012, 15 pages. Japanese Patent Applica
tion No. 2006-526361 Of?ce Action dated Apr. 3, 2012, foreign
associate cover letter dated May 1, 2012 English translation of of?ce
action and claims only, 6 pages. Japanese Patent Application No.
2006-526361 Response to Of?ce Action dated Apr. 3, 2012 ?led on
Jun. 7, 2012 including foreign associate cover letter dated Jun. 21,
2012 and English translation of claims, 6 pages. Japanese Patent
Application No. 2006-526361 Allowance Report dated Jul. 3, 2012
including foreign associate cover letter dated Jul. 4, 2012, 4 pages.
RSA-505BJP Japanese Application No. 2012-014358, copy of Let
ters Patent and foreign associate cover letter dated Feb. 5, 2014, 5

pages. Japanese Application No. 2012-014358, copy of Japanese
Of?cial Patent Gazette dated Mar. 26, 2014, foreign associate cover
letter dated Apr. 25, 2014, English translation of particulars of the
Japanese Of?cial Patent Gazette and claims as published, 31 pages.

RSA-505BAU Australian Application No. 2011202930 1" Of?ce
Action dated Mar. 26, 2012, 2 pages. Australian Application No.
2011202930 1" Response to Of?ce Action dated Mar. 26, 2012 ?led
on Apr. 23, 2012, 4 pages. Australian Application No. 2011202930
2nd Of?ce Action dated May 4, 2012, 3 pages. Australian Application
No. 2011202930 2'” Response Of?ce Action dated May 4, 2012 ?led
on May 10, 2012, 6 pages. Australian Application No. 2011202930
3rd Of?ce Action dated Aug. 9, 2012, 4 pages. Australian Application
No. 2011202930 3rd Response Of?ce Action dated Aug. 9, 2012 ?led
on Oct. 10, 2012, 23 pages. Australian Application No. 2011202930
4th Of?ce Action dated Nov. 2, 2012, 5 pages. (Australian Applica
tion No. 2011202930 4th Response Of?ce Action previously cited).
International Preliminary Report on Patentability, PCT/US2004/
029776, International Filing Date Sep. 10, 2004, andWritten Opinion
of the International Searching Authority, 11 pages.

* cited by examiner

US. Patent Feb. 24, 2015 Sheet 1 0f4 US 8,966,276 B2

/100

106

f 102

Agent _ '“ w

Token

\\ 108

[104
Server

FIG. 1

US 8,966,276 B2 Sheet 2 0f 4 Feb. 24, 2015 US. Patent

No?

N .@NE 5:22

US. Patent Feb. 24, 2015 Sheet 3 0f4 US 8,966,276 B2

210 204 206 208
[__.C__| / r f

At (c) Saltt Peppert

7 V I 7 7

Hash

\ 202
200

‘ V f

Recordt

FIG. 3

h(x) = SHA256(x)

h'(Ax) h"(x)

128 128

h'(A,(c), salt, pepp'"
E h" (Winpwd)

FIG. 4

US. Patent Feb. 24, 2015 Sheet 4 0f4 US 8,966,276 B2

[250 // 252
254

Record Salt Value [

h()\ Salt Saltxl SaltZZ
\\ /

\\/\
h()\\ //’ Salt Saltyl SaltXZ

>'\
\

/ \\
h() Salt Saltzl Salty2

P A
e

p 2 2 243
12—- ' ' p 2243

e 11" 243
r10--... ---------—----

l? //
|

t
s

l I

day one I day two I day three D t

Days

FIG. 6

US 8,966,276 B2
1

SYSTEM AND METHOD PROVIDING
DISCONNECTED AUTHENTICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the bene?t of US. Provisional
Patent Application No. 60/502,546 ?led on Sep. 12, 2003,
which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

Not Applicable.

FIELD OF THE INVENTION

The present invention relates generally to cryptography
and, more particularly, to systems for computer security.

BACKGROUND OF THE INVENTION

As is known in the art, there are a variety of systems for
authenticating a user to a computer and/ or computer network.
For example, to log on to a computer, a user typically types in
a password. However, as is well known in the art, a password
only system provides a limited level of security.

Other known authentication systems require two factors of
identi?cation. One such system is the RSA SECURID system
by RSA Security Inc., of Bedford, Mass. In general, this
system requires a user to input an alpha-numeric Personal
Identi?cation Number (PIN) and data from a device in form
of an authentication token in possession of the user. A server
veri?es the user PIN and the security data from the token,
which is known by the server. The RSA SECURID system is
generally described in US. Pat. No. 4,720,860 to Weiss,
which is incorporated herein by reference.

Authentication tokens, such as the RSA SECURID token,
are becoming increasingly common for authenticating a user
to a server over an insecure channel. The bene?ts of authen

tication tokens over the use of standard passwords are numer
ous, relating primarily to the reduced risks of impersonation
attacks. Impersonation attacks refer to an unauthorized per
son attempting authentication to a secure server, and thereby
access a corporate network, for example.

Typically, the authentication token shares some informa
tion with an authentication server, such as an RSA Security
ACE server, where this information is typically not known to
other entities, and where this information allows the genera
tion and veri?cation of at least parts of some authentication
string. This authentication string commonly also includes, or
is a function of, some information that is memorized by the

20

25

30

35

40

45

50

2
E-mail account, a storage unit, or processing ability. It can be
assumed that this resource does not need to store any infor
mation useful for generating authentication strings, unless the
resource coincides with the server performing the veri?ca
tion.

While such systems are effective for authentication of
users in conjunction with a remote authentication server, the
current system may not be effective when the authentication
server is not available or impractical if the resource to which
access is wanted is a computer that the token owner is in
possession of. Under such circumstances, it would be bene?
cial if the computer could verify the authentication code
without interaction with the remote authentication server.
However, if the computer is lost or stolen, or otherwise con
trolled by an intruder, then this intruder could potentially
obtain veri?cation information and use this to attempt to
impersonate the user (i.e., the token) to the remote authenti
cation server. Thus, while some information may be stored on
the computer in order to allow for authentication of token
outputs, it should not introduce unacceptable security vulner
abilities.

It would, therefore, be desirable to overcome the aforesaid
and other disadvantages.

SUMMARY OF THE INVENTION

The present invention provides a system for disconnected
authentication. A server downloads a series of veri?cation

records to a computer, such as a laptop computer, that has
been authenticated to the server. In one embodiment, the
records correspond to a predetermined period of time. In
another embodiment, the records correspond to events. The
records are stored on the laptop and include information
corresponding to data output, e.g., a passcode, by an authen
tication token for the predetermined period of time. The
records are stored in a manner and format for minimiZing the
likelihood that an attacker can discover the token output for a
given future time so as prevent authentication to the laptop
and/or impersonation of the user upon reconnection to the
server.

In general, a veri?er authenticates a user who possesses an
authentication token capable of providing one or more one
time passcodes. A veri?cation record is obtained and a pass
code is obtained. It is then determined whether the passocde
is consistent with the veri?cation record, where the veri?ca
tion record is a function of a reference passcode.

In one embodiment, the records include values that have
been encrypted, obfuscated, or otherwise made unreadable
using a one-way function. A hash function is one example of
such a one-way function. In one particular embodiment, a

owner of the token and also stored on the server. The authen

tication may be interactive, e.g., a challenge-response format,
or non-interactive, e. g., no information is sent from the server
to the user/token in order to complete the generation of the
authentication string.

Currently, the information that constitutes the authentica
tion attempt is sent over some potentially insecure commu
nication link, such as a wireless or wired network. In one
common scenario, the user in possession of the authentication
token wishes to access some resource controlled by the
server. The server can be assumed to be secure against attacks
so that it can also be assumed that the secret information
stored by the server cannot be compromised and used for
purposes of impersonation of the user in question. The above
mentioned resource may be, for example, a database, an

55

60

65

hash algorithm receives as input a token output value for a
given time, a so-called salt value, and a so-called pepper
value. The resulting hash output, which is downloaded from
the server, is stored on the laptop as part of a record. Records
for each token output time interval over the predetermined
period of time can be stored. The user is authenticated to the
laptop if the token output is provided by the user and a hash of
the token data, salt value, and pepper value matches the record
corresponding to the give time interval.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood from the fol
lowing detailed description taken in conjunction with the
accompanying drawings, in which:

US 8,966,276 B2
3

FIG. 1 is a block diagram of a system providing discon
nected authentication in accordance with the present inven
tion;

FIG. 2 is a pictorial representation showing exemplary
time-based information that can be downloaded to provide
disconnected authentication in accordance with the present
invention;

FIG. 3 is a block diagram showing exemplary components
of disconnected authentication in accordance with the present
invention;

FIG. 4 is a textual representation of an exemplary record
that can form a part of disconnected authentication in accor
dance with the present invention;

FIG. 5 is a pictorial representation of a further feature of
disconnected authentication in accordance with the present
invention; and

FIG. 6 is a graphical representation of an additional feature
of disconnected authentication in accordance with the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a system that facilitates
disconnected authentication at an agent, e.g., a laptop per
sonal computer (PC), that is not able to communicate with an
authentication server. When connected to the authentication
server (prior to the period of disconnection), a series of veri
?cation records corresponding to a predetermined period of
time are downloaded to the agent. In one embodiment, the
agent stores processed, e. g., hashed, versions of one-time
passcodes generated by the authentication server.

In general, a veri?er authenticates a user who possesses an
authentication token capable of providing one or more one
time passcodes. A veri?cation record, which is a function of
a reference passcode, is obtained. It is determined whether a
submitted passcode, which can be generated as a function of
time, event, challenge, etc., is consistent with the veri?cation
record, as described below in detail. In one embodiment, a
disconnecteduser submits a passcode from the authentication
token to the veri?er for authentication of the user by deter
mining whether the submitted passocode is consistent with
the corresponding veri?cation record.

In one particular embodiment, time-based passcodes are
generated based upon a seed value of the user’s time or
sequence-based authentication token, such as a RSA SECU
RID token by RSA Security Inc. The veri?cation records may
be downloaded before the user takes a trip, for example.
Alternatively, they may be downloaded for the duration of one
login session, e.g., for a few minutes to a few hours. Each
veri?cation record is thus a function of a reference passcode,
which can be generated from a seed value.

For time-based tokens the one-time passcodes are only
valid for a short duration, e. g., one minute. A record for each
token time interval should be downloaded. Alternatively,
downloaded information, such as (possibly intermediate)
seed values, should be downloaded so as to enable the records
to be generated by the veri?er itself, where the seed values
should be deleted after the records are generated. This is more
appropriate for a scheme involving hierarchical seed deriva
tion as described in FIG. 2 below, since the intermediate seed
values have limited lifetimes, than for a scheme with a single
master seed and no intermediate seed values. The duration of
the token output is independent of any changes to perceived
time on the agent and time is controlled by the token. During
the disconnection period, the agent can hash the passcode
information entered by the user and compare the stored
hashed passcodes to determine the presence of a match and

20

25

30

35

40

45

50

55

60

65

4
thereby authenticate the user. That is, it is determined whether
a passcode submitted for authentication is consistent with a
given veri?cation record, where the veri?cation record is a
function of a reference passcode, which can be generated by
an authentication server, for example.

FIG. 1 shows an exemplary system 100 having discon
nected authentication in accordance with the present inven
tion. An agent 102, such as a personal computer (PC) as the
veri?er, can communicate with a server 104 via an optional
network 106 for authentication by the server. A user can
provide a personal identi?cation number (PIN) and data from
an authentication token 108 to the agent 102, which commu
nicates this information to the server 104. In general, the
token 108 is in the possession of the user controlling the agent
102. Information from the token 108 can be provided to the
agent by the user, such as via keyboard, or can be provided
automatically by wired or wireless communication link, for
example. Information to the token may likewise be provided
in various ways if needed. The token may also be a “virtual”
software token that is implemented within the veri?er. It is
understood that the server may verify the token output against
records of several time intervals (and/or corresponding to
multiple events) so that clock drift or other loss of synchro
nization does not disable the user’s access to the server.

After authentication of the user, the server 104 can provide
information to the agent 102 that facilitates authentication of
the user for a limited period of time, as described more fully
below. With this arrangement, access to the agent 102 by
unauthorized individuals and/or successful impersonation of
the authorized user to the server 104 upon reconnection can
be rendered unlikely.
A variety of token types can be supported, including time

based tokens, where the token output or token code is a
function of a time variable and a token secret (e. g., seed
value); challenge-response tokens, where the token output or
response is a function of a challenge value provided to the
token and a token secret; event-based tokens, where the token
output is a function of an event counter and a token secret, or
where the token output is a function of the token secret, and
the secret is updated in response to some event (e. g., pressing
a button on the token); and tokens involving some combina
tion of the above. Token state information may also be incor
porated into the process of deriving the token output, as
further described in M. Jakobsson and A. Juels, “Identity
Authentication System and Methods,” US. patent applica
tion Ser. No. 10/724,034, ?led Nov. 26, 2003, which is incor
porated herein by reference. Moreover, the one-time pass
codes need not be generated by any particular function; they
may be random values stored in the token and shared with the
authentication server. Also, the token need not be a computing
device per se; it could comprise instead of a card (perhaps of
the “scratch-off" variety) on which the passcodes are printed.
It is understood that the terms passcode and authentication
string are used interchangeably.

In addition, a PIN may be appended to the token output or
otherwise included in the process of computing a one-time
passcode. This combination may be done by the token itself,
or elsewhere. Alternatively, the PIN may be provided to the
token and veri?ed locally by the token before the token pro
duces an output. Biometrics may also be employed to authen
ticate locally to the token. However, a PIN or a biometric is
not required for the methods described herein.

FIG. 2, in combination with FIG. 1, depict information that
can be downloaded for disconnected authentication in accor
dance with the present invention. In one particular embodi
ment, the authentication token 108 includes a root seed 150
that generates annual seeds 152a-m, from which monthly

US 8,966,276 B2
5

seeds 154a-n are generated. Daily seeds 15611-0 are generated
from the monthly seeds 154, then daily seeds 158a-p, hourly
seeds 158a-p and so on until a unique value is generated at the
desired time interval, such as every sixty seconds (one
minute) 160a-q. The seed values can be generated using a
one-way function in a manner well known in the art. The
authentication server 104 can also generate these values so as

to be able to verify the token value. In addition, these values
are used to generate the records to be downloaded to the
agent.

If the user is aware that there will be a disconnection from
the server 104, authentication information in the form of
records can be downloaded by the server to the agent 102
covering a predetermined amount of time, such as three days
162. The records can each correspond to a given time interval
for the token. The downloaded information should enable a
user to access the computer (agent 102) for the three days 162
until re-authentication with the server 104. The downloaded
records should be stored so as to render it quite dif?cult for an
unauthorized person, such as an individual who has stolen the
laptop computer, to access the computer and/or impersonate
the user to the authentication server. It will be appreciated that
in many cases attackers desire to impersonate a user to gain
access to a corporate network, for example.

It is understood that the invention is applicable to embodi
ments in which a password or personal identi?cation number
(PIN) is provided along with information from authentication
tokens, as well as challenge/response embodiments.

The downloaded information can be downloaded using a
variety of automatic and manual mechanisms. However, the
authentication server should verify that the user is authorized
to download the information. In general, the downloaded
information is stored as records on the agent such that the
agent can identify the time interval to which each record is
associated.

In an exemplary embodiment, the downloaded records cor
respond to a predetermined period of time. For example, an
authorized user may have a three-day period of disconnection
from the server. The server can download records for authen
tication during the three-day period. The records can include
information corresponding to challenge/response data. In one
embodiment, the records include encrypted data correspond
ing to a response At(c) of an authentication token at time t in
response to a challenge c, which would form a part of the
record. However, a challenge is not required. As described
further below, a time-based value alone may also be
employed. More generally, the invention is applicable to the
variety of authentication token types mentioned above.

It is understood that a time-based (and in some places also
challenge-based) authentication token is assumed, but the
techniques described herein are readily adapted to event
based and other non-time based embodiments. For instance,
instead of associating a token output with a time variable, the
output can be associated with a counter; records accordingly
may not correspond directly to a period of time (e.g., three
days), but rather to a number of token outputs (e.g., 300 token
outputs). For convenience, the time-based embodiment is
generally described below, but the conversion to an event
based or sequence-based embodiment, and the incorporation
of a challenge will be readily apparent to one of ordinary skill
in the art. The notation At(c) is intended to represent this
variety of alternatives.

While the description below primarily refers to the use of a
hash function, it is understood that a variety of algorithm
types, including one-way algorithms and non one-way algo
rithms are well within the scope of the present invention. As
used herein, a one-way function refers to a one-way function

20

25

30

35

40

45

50

55

60

65

6
for which it is substantially more di?icult to invert than to
compute. A standard hash function such as SHA256 (de?ned
in Federal Information Processing Standard (FIPS) PUB 186
2, “Secure Hash Standard (SHS)”, August 2002), may be
employed. Alternatively, as is well understood, it may be
bene?cial to employ an iterated hash construction, e.g., 1000
successive iterations of SHA256, to increase the computa
tional cost to an attacker while maintaining a modest over

head for the user. Further, while the invention is generally
described in conjunction with providing a time-based vari
able, e.g., token output, to a one-way function, it is under
stood that variables can also correspond to events and the like.

In one particular embodiment, the downloaded records
include a hash of At(c) along with a salt value and a pepper
value for each time interval of the token over the predeter
mined period of time, e.g., three days. The salt value is stored
with the associated record and the pepper value is not stored.
The salt values are likely different for different times. Alter
natively, information, such as one or more seed values, can be
downloaded for enabling the records to be generated.
As used herein, a salt value refers to a value that is included

as part of the information that is hashed (or otherwise
encrypted). The salt value can be provided, for example, as a
random number having a predetermined number of bits. The
salt value may be stored along with the record, or to reduce the
storage requirements, it may be generated from a master salt
value associated with a set of records, and other information
associated with the given record. As is understood by one of
ordinary skill in the art, salt values frustrate a dictionary type
of attack to obtain a security value, such as the token output.
Since the salt values are different for different times, the work
required by an attacker to determine a security value must be
performed for each time interval since the salt is part of the
hashed data.
As used herein, pepper refers to a value having a known or

predictable number of bits that is part of the data that is
hashed. However, unlike a salt value, the pepper value is not
stored. Also, the pepper value is not downloaded. Thus, pos
sible pepper values are computed and the hash function evalu
ated for each pepper value. Pepper slows down a dictionary
type attack since the hash function must be computed for
possible pepper values to identify the actual value.

In one particular embodiment shown in FIG. 3, a given
record 200 corresponding to time t includes information cor
responding to a hash function output 202. Inputs to the hash
function include a token output for time t, At(c) 204, a salt
value 206 for time t, and a pepper value 208 for time t. When
attempting to gain access to the computer, the user may be
asked to provide the token output At(c) 204. It is understood
that since the pepper value 208 is not stored, the hash function
is evaluated at possible pepper values. While the number of
bits for each of these values can vary, exemplary bit numbers
include 20 bits forAt(c), 10 bits of pepper, and 21 bits for salt.
The resulting hash function 202 evaluations are compared to
the stored record 200 for the given time to identify the correct
value and gain access to the computer.

It is understood that if there is no challenge, then c is not
stored. In ddition, where there is not a challenge, At is not a
function of c, and the user is not required to enter c into the
token (or, if the token has a wired or wireless communications
link, the token is not required to receive the challenge c). It is
understood the invention is applicable to challenge and non
challenge embodiments.

To compute the hash function outputs not knowing the
token security data At(c) 204 for a given time and not knowing
the pepper value 208 requires calculations on the order of

US 8,966,276 B2
7

220x210:230, for 20 bits of At and 10 bits of pepper. As noted
above, the salt value 206 is known but prevents a parallel-type
of attack on all records.

In a further embodiment, a personal identi?cation number
(PIN) value 210 (shown in phantom in FIG. 3) can form a part
of the data to be hashed. If the PIN data is 13 bits, then an
attacker has work on the order of 230><213I243 computations
for each time interval. And as described more fully below, the
operations must be performed prior to expiration of the period
of time for which records have been downloaded.

In one particular embodiment shown in FIG. 4, a public
256-bit hash function known as SHA256 is used. The 256-bit
output from the SHA256 hash function is computed from the
inputs of the security information from the authentication
token (i.e., the token output or passcode), the salt, and the
possible peppers. A portion of the SHA256 hash function
output can be compared to the stored record. In an exemplary
embodiment, the most signi?cant 128 bits of the SHA256
output can be de?ned as h'(x) for comparison to the stored
record. If the inputs are correct, h'(x) for one of the hash
results (from the results for possible pepper values) will
match.

The least signi?cant 128 bits (h"(x)) of the SHA256 hash
function output for the correct pepper value are used as a key
to decrypt an encrypted value of a Windows password. With
this arrangement, the correct Windows pas sword can be
extracted only upon entry of the correct security information
from the authentication token.

EXAMPLE

Time is partitioned into intervals equaling the duration one
token output is displayed. One record is associated with each
such time period. The i-th time period after some (arbitrary)
baseline time is referred to as time i, and the record associated
with this time period is called rec_i. Such records are com
puted by a machine, such as an ACE server, with knowledge
of the token seed. A batch of records is then downloaded from
this machine to a machine, which can be referred to as a
veri?er, that will later perform off-line veri?cation of token
outputs. The veri?er is typically a laptop.

The initialization process (performed by the authentication
server each time a batch of records is to be downloaded) is as
follows. A random salt value salt_i with a ?xed length
between 40 and 80 bits, for example, is selected. A random
value pepper_i with a ?xed length between 10 and 25 bits is
selected. The token, e.g., RSA SECURID, output is computed
for time interval i, with the correct PIN appended or otherwise
combined. Let this be the value val_i, which is 34 bits long for
a 6-digit token and a 4-digit PIN. It is possible to let val_i be
only the token output, in which case the PIN will not be
veri?ed via the hash records. The value yISHA256 (pep
per_i, salt_i, val_i) is computed. Let A_i be a ?rst portion of
y, where A_i is of ?xed size between 80 and 128 bits, for
example. Let B_i be a second portion of y, which may be 128
bits (but not contain any part of A_i). The value A_i is later to
be used to verify the correctness of an authentication attempt,
while B_i provides a key that may encrypt a Windows pass
word, a secret key, or any other secret information that is
bene?cial to employ on the veri?er. This piece of information,
also called data element, is referred to as M, and the encryp
tion of M using B_i as E_i. One can use the well-known AES
algorithm for the encryption of M. If M is longer than 128
bits, then the cipher would be used in cipher block chaining
(CBC) mode. Let rec_i:(salt_i, A_i, E_i). Note that the quan
tities pepper_i, val_i and B_i are not included in the record
and are not sent to the veri?er.

5

20

25

30

35

40

45

50

55

60

65

8
It is understood that the piece of information M can take a

variety of forms. In addition to a key for decrypting the
Windows password as already mentioned, the piece of infor
mation can be:
A secret key for a symmetric-key cryptosystem such as the

Advanced Encryption Stande (AES) for decrypting
?les or other data on the veri?er

A secret key for authenticating data with a Message
Authentication Code (MAC)

A private key in an asymmetric (public-key) cryptosystem
such as the RSA public-key cryptosystem, for decrypt
ing ?les or other data

A private key for authenticating data with a digital signa
ture scheme

A secret key or private key for authenticating to an appli
cation, e.g., on another computer

A secret key or private key for unwrapping other keys
(which could themselves be secret keys or private keys
as described above)

A key for protecting sensitive data, such as user pro?le
information (e.g., a credit card number), or a local pass
word table

Any sensitive data
The Windows password itself

In addition, instead of encrypting M with the value B_i, a key
could be derived directly from B_i. Alternatively, the value
B_i itself could be employed as a key.
The authentication process is as follows. The user enters a

usemame (optional), the current token code, and PIN (op
tional), and from these a value val_i is obtained. The veri?er
selects the record rec_i to match the input to based on user
name (if input) and time. Using exhaustive search (in any
desired order) over all possible values of pepper_i, values
yISHA256 (pepper_i, salt_i, val_i) are computed. The ?rst
portion (of the same size as A_i) is compared to the value A_i
in rec_i to determine if there is a match. If there is a match for
some pepper, then authentication succeeds. In that case, let
B_i be the second portion of y. The value B_i can be used to
decrypt E_i to obtain M.
As is well understood for one-time passcodes, there may be

some loss of synchronization between the token and the veri
?er. See Us. Pat. No. 4,885,778 to Weiss, for example, which
is incorporated herein by reference. Accordingly, if authenti
cation with record rec_i does not succeed, the veri?er may try
again with one or more adjacent records. It may also keep
track of which records have been employed in previous suc
cessfully authentications in order to prevent reuse of previous
token codes.

Alternatively, instead of computing an A_i value, the veri
?er could compute only the B_i value, and authenticate the
user based on the successful decryption of E_i alone. For
instance, if the encryption operation includes redundancy
such as padding or a checksum that is checked during decryp
tion, or if the value M encrypted itself has redundancy that can
be veri?ed, then successful decryption provides assurance
that the correct key B_i has been employed. This in turn
provides assurance that the security information provided
was correct. This approach has the bene?t of reduced storage
and computational requirements since the A_i value is not
computed or stored.
As another alternative, the successful use of the value M

could be a means by which the security information is veri
?ed. For instance, if the value M is the Windows password (or
a key by which the password is decrypted), then the Windows
password could be veri?ed by the Windows operating system
as a means of determining whether the security information is
correct. In addition to increasing assurance of correctness,

US 8,966,276 B2
9

this approach also has the bene?t in the case that values are
encrypted without redundancy that the values must be used in
order to be veri?ed, thereby potentially signaling attacks to
the systems in which the values are used. That is, an attacker
who obtains the records may not be able to determine whether
a guess for the security information is correct without using
the value M.

Elements of the various alternatives mentioned can also be
combined, so that the assurance of correctness comes from

the match of A_i, the successful decryption of E_i, and/or the
successful use of M.

In another aspect of the invention shown in FIG. 5, the salt
value for the hash function can be ‘shaken’. In one embodi
ment, the association between each hash record, as shown in
a ?rst column 250 and the corresponding salt value in column
252 is stored in a permuted manner. That is, the salt value
stored with a hash output is not the salt value for that hash
output. With this arrangement, salt values are tested to iden
tify the salt value corresponding to a given hash output. It is
understood that a wide variety of mechanisms known to one
of ordinary skill in the art can be used to permute the salt/hash
associations.

In a further embodiment also shown in FIG. 5, the salt
values are split into ?rst salt1 and second portions salt2 that
are stored separately, as shown in column 254. The ?rst and
second salt portions are separated, permuted, and stored. It
will be readily apparent to one of ordinary skill in the art that
the salt can be split into any number of portions and permuted
in a variety of techniques and manners. It will further be
readily apparent that there are large number of mixtures of
salt and pepper that can be used.

EXAMPLE

As part of the ‘salt shaker’ initialization process, some
number n, e.g., 1000, of records are prepared at the same time.
Pepper is set to the empty string (i.e., no pepper is used). For
each record, this results in a tuple (salt_i, val_i, A_i, B_i, E_i).
Among these, the veri?er receives all but B_i. However,
before any values are sent over, the n salt_i values are ran
domly permuted. Their bitstrings are not modi?ed, but only
the records they are associated with. After the permutations,
there are n records of the format rec_i:(salt_i, A_i, E_i),
where salt_i now is used to mean the salt permuted to the i-th
position. The values A_i or E_i are not permuted.

In the veri?cation process, the veri?er exhaustively tries
every combination of salt_i value and A_i value. It computes
the value yISHA256 (salt_i, val_i) for each such salt value,
comparing the ?rst portion to the A_i value of the selected
record. This process “delays” the computation of the correct
value y by a factor n/ 2 on average, and n as a worst case. This
would therefore correspond to a pepper-value of length 10
bits. It is straightforward to create longer delays without
having to process more records.

To increase the computational cost by an average factor of
n*n/2, one breaks up the salt values in two portions of the
same size and each such portion is then associated with a
random record, i.e., the halves are independently permuted. A
record then has the format (salt_{il}, salt_{i2}, A_i, E_i),
where salt_{il} is a permuted ?rst half, and salt_{i2} is a
permuted second half. To verify a token value, the veri?er
needs to exhaustively search through all combinations of
?rst-half and second-half salt values, which takes on average
n*n/ 2 tries. One can readily increase the computational work
by breaking each salt up into even smaller portions, and also
by not storing them in the order of ?rst half ?rst, etc., but in a

20

25

30

35

40

45

50

55

60

65

10
random order for each record. Another way of increasing the
work is to introduce “dummy” records that must also be
searched.

FIG. 6 shows another aspect of invention in which the
passage of time increases the work required for an attacker to
successfully access the computer. In one particular embodi
ment, a user downloads authentication records for three days,
for example. As described above, the work required for a
successful attack requires 243 computations. If the user does
not login for a predetermined period of time, such as one day,
the amount of work increases to 2><243 for a successful attack
the next day, for example. If the user does not login for two
days, then the work then increases to 4><243 . While the addi
tional work also incrementally increases the time required to
authenticate a user that has provided correct security infor
mation, the work required for an attacker doubles for each
sub sequent time period, e. g., day. The delay for a user to login
may be noticeable but should be acceptable.

In general, the effort of the computer should be about the
same as without the inventive techniques described herein
(and relatively low) when the real user authenticates. It is
acceptable that the computational cost goes up if the user has
not authenticated for a relatively long period of time. How
ever, the system should not allow an attacker a lot of time to
“break up” a record by trying all possible combinations.
Therefore, records that correspond to future time intervals
should be more protected than those corresponding to current
time intervals since the attacker will have more time to attack
those.

It will be appreciated that an attacker attempting to gain
unauthorized access to the computer will be motivated to
obtain entry with the lowest amount of work required. Thus,
an attacker may not be inclined to select a time interval for
which the token output would not be recovered until near the
end of the predetermined period of time, e.g., three days,
corresponding to the downloaded records. The attacker has a
limited time period in which an attack may be feasible due to
the amount of work required.

Still referring to FIG. 6, in one embodiment each success
ful login provides access to a “hint” for the next login or time
period. In an exemplary embodiment, the number of bits for
the pepper value increases for each day that the user does not
login. For example, on day one the pepper value is 10 bits,
which corresponds to a work in the amount of 243 computa
tions, as described above. If the user does not login during day
one, the pepper value increases to 11 bits for day two. If the
user does login on day one, one bit of the day two 11-bit
pepper is obtained for use on day two so as to provide an
effective pepper value of 10 bits for day two.

If the user does not login during day one or day two, the
pepper value for day three increases to 12 bits, which corre
sponds to work of 2><2><243 . If the user does attempt to login
on day two without a login during day one or day two, the
delay in obtaining access may increase due to the increased
number of calculations corresponding to the increased num
ber of pepper values. However, the increased delay should not
be prohibitive.

It is understood that while providing hints is described as
obtaining pepper bits the manner of providing hints can vary
in number of bits, time, last login date, value type, etc. in ways
that will be readily apparent to one of ordinary skill in the art
in view of description contained herein. In the following,
hints are treated as variables separate from pepper, although
they may also be implemented as a portion or other property
of pepper.

In another embodiment, hints are provided from selected
portions of the space of pepper values or permutations of

US 8,966,276 B2
11

shaken salt values. For example, unequal portions of the
pepper space canbe selected with randombits having unequal
probabilities of being a logical “l” or “0”.

EXAMPLE

A record rec_i:(A_i, A_i, salt_i) for time interval i. Time is
also partitioned into longer time periods, such as 24-hour
intervals or calendar days, indexed by t. Each time period t is
associated with a value hint_t, which may be in the range of
1-10 bits long, for example. The longer time period to which
time interval i belongs is denoted t_i; several successive time
intervals will belong to the same longer time period (e.g.,
1440 time intervals, if a time interval is one minute and a
longer time period is one day).
When receiving an input value val_i, it is desired to verify

whether it corresponds to rec_i. Assume here that val_i is part
of longer time period t_i, and that hint_{t_i—l } is known. The
hint would be known if the user successfully authenticated to
the server during the previous longer time period. The veri?er
computes the quantity (AIB):h (val_i, hint_{t_i—l}, salt_i,
pepper_i), for all possible values of pepper_i, where h ()
indicates a hash function, where A is of the same size as A_i,
salt_i refers to the salt value for interval i, pepper_i refers to
possible pepper values at interval i, and B refers to a portion
of the hash output that can be used as a decryption key. The
quantity A is compared to the value A_i, and if matching, then
(val_i, pepper_i) is considered to correspond to the record
rec_i for the time interval.

It is understood that the value B can be used to encrypt both
the Windows password or other data and the next hint. Infor
mation suf?cient to decrypt each could be stored as the ?eld
E_i in the record. Alternatively, a delta value A is stored such
that when XOR’d with some portion of B the result generates
a hint for some future time interval. The value A can be
computed by the authentication server and downloaded to the
computer at some previous time.

If the value hint_{t_{i—l}} is not known, all possible val
ues would have to be exhaustively tried. This holds both for
the “honest” use of the system, and for an attack in which the
attacker wishes to determine the quantity val_i given the state
of the corrupted machine.

The hints are computed from value B. In particular,
hint_{t_i}:A_i XOR B' where B' is a bit of B (or a bit other
wise obtained via B). Thus, the party computing rec_i sets
A_i:B XOR hint_{t_i}, where hint_i is chosen independently
of the values in rec_i and XOR refers to the logical exclusive
or function. This allows a “discounted” computation of (Al B)
during the next longer time period by a party who knows
hint_{t_i—l } compared to a party who does not know the hint.
The latter party would have to try all possible hints in com
bination with all possible peppers; the former would only
need to try all possible peppers, having maintained the hint
from a previous successful authentication. Thus, peppers
slow everyone down, hints only slow those down who do not
know them.

In the above, one needs to know the hint revealed in the
immediately previous longer time period in order to get the
computational discount associated with the hints. (Alterna
tively, but without the discount, one could solve for the hint in
the present time period, as it would be the same for other
records in the same time period.) In one embodiment, it is
desired to give parties with knowledge of hints received in yet
earlier time periods similar bene?ts.

If the size of a hint is 10 bits, a 10-bit discount can be given
to a party who knows the hint value of the immediately
previous longer time period. A nine-bit discount can be given

20

25

30

35

40

45

50

55

60

65

12
to a party who knows a hint two longer time periods old, a
eight-bit discount to a party who knows a hint that is three
longer time periods old, etc. This can be achieved by letting
hint_t:f(hint_{t—l },r_t), where r_t is a random bit (or several
bits in case the difference in helpfulness between consecutive
hints should be greater than one). Here, f could be chosen as
an LFSR (Linear Feedback Shift Register), a one-way func
tion, or other mechanism that appropriately combines the
input portions.
The above description corresponds to a setting in which the

computational effort grows exponentially with the number of
time periods since the last known hint.

Alternatively, and as described below, the computational
effort can be made to grow linearly with the number of time
periods. During a setup phase, the system generates a random
encryption key K_t for each longer time period t for which
records are to be stored on the veri?er. The system de?nes A_i
so that B_i' XOR A_i reveals the random encryption key. The
key K_t is recovered after a successful authentication. Using
the daily encryption key K_t, a relatively small table of bit
strings M_1, M_2, . . . M_T is encrypted, where M _j is a
“mask” for the j -th following time period, and T is the number
of time periods ahead that a successful authentication results
in “discounts.” Each value M _j is a T-bit string in which each
bit corresponds to a different portion of the space of possible
pepper values in which the pepper may occur on the j-th
following time period; the value M _j will have j bits set. That
means that the more recent M value that is known (given a
previous and successful authentication attempt), the more the
search space of possible pepper values is reduced, which in
turn speeds up the computation correspondingly.

Later, for a successful authentication attempt, the strings
M_l . . . M_T are derived and stored in plaintext by the

veri?er. This allows a reduction in the computational cost of
future authentication attempts. If a bit of M __j is set, then the
pepper should be searched from that portion of the space, if
clear, then it’s not. M _j will have j bits set, which means the
pepper space is reduced to l/ T of its full size of the next long
time period, 2/T for the following long time period, 3/T for
the next one, etc. The M _j values revealed during successive
long time periods, and which correspond to a given future
time period, should have one more bit clear than what was
revealed during the previous time period, so that M _j values
revealed during different long time periods do not give away
an undesired amount of information.

In one embodiment, new “long periods” of records are
downloaded to the veri?er on a regular basis upon authenti
cation with the server. The masks should work for the new
long time periods, which means the server has to keep track of
the masks. The veri?er’s ?rst download (which will require
an initial authentication) can comprise of an initial set of
masks.
The above-described technique also works for the

so-called salt shaker embodiment; a hint would be input to the
hash function along with the permuted salt value, and the next
hint would be encrypted in the record. In one alternative
embodiment, hint values in the context of the salt shaker
embodiment erase the salt portions that correspond to a pre
vious successful authentication attempt, or otherwise marks
these portions as searched. Then, this record, and the associ
ated salt, are not searched for future authentication attempts,
thereby providing a certain computational discount for each
successful authentication attempt. It can be seen that the more
successful authentication attempts there are for a certain

US 8,966,276 B2
13

bounded time period (associated with the set of records that
are permuted), the lower the computational cost would be.

EXAMPLE

Time is apportioned into days, e.g., 24-hour periods. For
example, if a user successfully authenticates to the veri?er
during a ?rst 24-hour period, it should be less ‘expensive’ to
verify token outputs for the period starting 24 hours after
wards; much less expensive for the next 24-hour period, and
signi?cantly less expensive for the same 24-hour period.

Pepper values are selected from a range [0 . . . maxpepper],

where maxpepper equals 4095, for example. This range can
be divided into four portions, [0 . . . 1023], [1024 . . .0.2047],

[2048. . .3071], [3072. . . 4095].All pepper values ofa given
day are selected within the same one of these four ranges.
Once a user has successfully authenticated to the veri?er, the
veri?er knows what portion this is so that any further attempts
within the same day will cost only 1A of what they normally
do, in computational effort. This is due to the fact that it is
known that the pepper of later that day is from the same range
as from earlier in the day, and the veri?er recalls the range.
This will not give a discount for the next day. However, if the
value M contains information about two intervals (out of the
four) that are not used for peppers for the next day, that allows
all authentication attempts of the next day to be performed at
half the cost of what they would otherwise be.

Furthermore, if the value M contains information about
one pepper interval that is not used for the day after next, then
this would give a 1/4 computational discount for the day after
next. Note that the two-day hint would have to be a subset of
the next-day hint in order for the two hints not to reduce the
cost to 1/4, unless this is the desired behavior.
An advantage of the various pepper and salt shaker

approaches above is that the cost to an attacker is substantially
increased with only a modest impact on the cost of generating
the records. This is attractive if a large number of records are
required to be generated at an authentication server, which
can be the case if there are many users, particularly for time
based authentication tokens where new token outputs are
generated frequently (e. g., every minute). However, the pep
per and salt shaker approaches are not required. An alternative
approach is to employ an iterated or otherwise slowed hash
function. This also substantially increases the cost to an
attacker, though it can have a larger impact on generation
(since the party generating the records must also employ the
slower hash function, as opposed to just selecting a pepper or
a salt permutation).

Another alternative to the pepper or salt shaker approaches
is to employ a time-lock puZZle such as described in R. L.
Rivest, A. Shamir, and D. A. Wagner, “Time-Lock PuZZles
and Timed-Release Crypto”, technical memo MIT/LCS/TR
684, MIT Laboratory for Computer Science, February 1996.
A time-lock puZZle is one that can be constructed ef?ciently,
but whose solution takes a large number of operations. As an
example, the puZZle may require the calculation of a value
yq9(29k) mod n where n is a large composite modulus and x
and k are given integers. The party constructing the puZZle
also knows the factors of n and hence phi(n), where phi(n) is
Euler’s totient function. This party can therefore compute y
ef?ciently as y:xAr mod n, where r:2Ak mod phi (n). However,
the party solving the puZZle only knows the modulus n and
does not know phi(n), so must perform k successive modular
squarings. For the purposes here, the input x would take the
place of the input to the hash function; the value k would be a
variable integer controlling the cost; and the output y would
take the place of the output of the hash function.

20

25

30

35

40

45

50

55

60

65

14
A time-lock puZZle has the same characteristic as the pep

per or salt shaker, namely that the cost of veri?cation is
increased without a signi?cant increase in the cost of genera
tion. However, in the pepper and salt shaker approaches, there
remains a possibility that an attacker, by chance, may guess
the pepper or the salt permutation correctly in fewer opera
tions than expected. In the time-lock puZZle approach, like the
iterated-hash approach, an attacker must essentially perform
all the steps required; there are no unknowns to guess, just
work to be done. (Nevertheless, such “unknowns” can readily
be accommodated if needed, for instance as additional parts
of the input to the hash or puZZle; this would provide a way to
incorporate hints into these approaches.)

In a further embodiment, a “long term” hint can be pro
vided for access at a time past the predetermined interval for
which records were downloaded. For example, if records for
a 30-day time period were downloaded and the user did not
login for the 30-day period, the user may need to contact the
authentication server or a call center, such as via phone, to
obtain a further passcode. This can be considered an emer
gency access code, which would be relatively long.

In an exemplary embodiment, downloaded records include
records stored in a ?rst format, such as described above, for a
?rst period of time, e.g., the ?rst 30 days, and in a second
format for a second period of time, e.g., the next 30 days. In
one embodiment, the records for the second 30 days are
encrypted with an emergency access code in addition to the
encryption described above. With this arrangement, upon
obtaining the emergency access code, the user can authenti
cate during the second thirty day period. The emergency
access code can be considered a hint to facilitate veri?cation

of a hash for a time interval in the second 30-day period. The
emergency code can also be used to enable access to a hint.

In an alternative embodiment, a relatively long pepper
value, e. g., 80 bits, canbe input to the hash function. Of the 80
bits, the veri?er may initially be given 60 of the pepper bits,
which are the same for a predetermined period of time, such
as a calendar month. The 60 bits for the next month are not
known. The 60 bits for the next month can be obtained, for
example, via authentication to the server or via oral telephone
communication, which can be provided by a call center.

It is understood that either all records may be encrypted
together, which would include the user of a relatively long
emergency key, such as 128 bits, or individual record can use
an “extended pepper value” where the extension is the emer
gency key, and is the same for all the records of the 30-day
period. Once the emergency code is revealed and stored along
with the records, the pepper search is as straightforward as it
would have been if there never were any extension of pepper
values.
As a further variation, the user could be required to employ

more than one token output in some cases in order to authen
ticate. The techniques already described are readily modi?ed
to accommodate this case, by deriving the value val_i from
two (or more) token outputs (typically consecutive), and
optionally a PIN. As an example, the veri?er might be pro
vided an ordinary set of records (derived from a single token
output) for a ?rst time period of 30 days, and a modi?ed set of
records (requiring two token outputs) for the next 30 days. In
this way, a user who has been disconnected for more than 30
days would still be able to authenticate, but only with two
token outputs; this would greatly increase the cost to an
attacker of searching for the correct token outputs for those
next 30 days, giving appropriately stronger protection to
future records stored on the veri?er. Indeed, with such strong
protection, one couldpotentially store a year or more of future
records thereby supporting an inde?nite period of disconnec

US 8,966,276 B2
15

tion. In many cases, however, administrative policy may
require that the user authenticate to the server occasionally to
verify that the user remains authorized to use the discon
nected machine. Additional hints downloaded during these
authentications could be incorporated into future records to
enforce that policy.

The hinting mechanism described above may be applied
bene?cially here as well. The modi?ed set of records could
also contain an encrypted hint, so that when the user authen
ticates during the second period of 30 days with two token
outputs, a hint is obtained that enables subsequent authenti
cation with a single token output during those 30 days. One
way to achieve this feature is to have two sets of records for
the second 30 days: a modi?ed set of records requiring two
token outputs that also includes an encrypted hint; and an
ordinary set of records requiring a single token output plus the
hint. The increased cost to an attacker prior to the second
30-day period would still be maintained, since the attacker
would need either to guess two correct token outputs, or one
correct token output and the hint (which could be comparably
long). However, once the user authenticates successfully dur
ing the second 30-day period with two token outputs, the hint
for that time period would be revealed and the user could
authenticate thereafter with a single token output.
A similar structure may be applied for multiple time peri

ods, so that each time a user enters a new time period, two
token outputs are required. As one case, the user could be
required to enter two token outputs initially for the ?rst time
period. Hints from prior time periods could also be combined
with this construction in a variety of ways, perhaps so that the
requirement for two token outputs is superseded if the user
has authenticated su?iciently recently with one token output,
or suf?ciently often.

The modi?ed records employed in conjunction with the
two token outputs need only produce the hint, and do not need
to enable immediate authentication of the two token outputs;
this is an example of the principle described above where the
correctness of a token output may be determined by the use of
the value M recovered from the record. The value M here
would be the hint. After recovering a candidate hint from the
two token outputs, the veri?er would then use the hint to
verify one or both of the token outputs against the ordinary
records. This approach has the advantage that the modi?ed
records need not include the A_i values, but only the E_i
values (and possibly a salt, if it is not derived from a master
salt as also described above). It is clear that these E_i values
for the modi?ed records could simply be stored as another
?eld of the ordinary records rather than having two separate
sets of records.

In another aspect of the invention, only a portion of a user’ s
PIN is employed in generating the records so as to increase
the likelihood of failure of an impersonation attack and to
provide an opportunity to detect an impersonation attack. As
described above, there is a possibility that an attacker may
obtain the security information for the authentication token
for a given time. By using only a portion of the user PIN, an
attacker may not be able to obtain the full value of the correct
PIN from the records. Later, the attacker may attempt to
impersonate the user to the authentication server. Since the
attacker does not yet have the full value of the correct PIN, the
authentication server may be able to detect the attack. It will
be appreciated that storage of PIN information can be modi
?ed to balance security for the authentication server and
security for the laptop computer.

For example, if the PIN is four digits only two digits may be
used. An attacker may obtain the two digits in the record,
however, the other two digits remain unknown and would

20

25

30

35

40

45

50

55

60

65

16
have to be guessed by an attacker. In one embodiment, the
attacker must guess the correct PIN to obtain the Windows
password, e.g., the password is itself combined with at least
part of the PIN. This makes it more dif?cult for an attacker to
obtain the Windows password.
The security threat is that an attacker may learn the PIN

after successful a search and then use the PIN to authenticate
to the secure server. By using only a portion of the PIN on the
disconnected machine, the attacker is not able to obtain the
entire PIN. It is understood that the user may still enter the full
PIN each time to create the same user experience but parts of
the PIN can be ignored before use in computations.

While certain embodiments describe herein refer to a Win
dows password, it is understood that the invention is appli
cable to other operating systems in which a user is requested
to provide identifying information during a login procedure.

In another embodiment, multiple records for the same time
interval can be stored. Each record can correspond to a correct
token output but only one record has the correct PIN. For
example, there can be a number of records, three for example,
for a given time interval where two of the three records have
incorrect PINs. An attacker does not know the correct PIN and
may attempt a guess of the correct PIN from the three records
at the time of attempted online impersonation to the authen
tication server. Since it is likely that the attacker will guess
incorrectly the chances of a successful impersonation attack
are reduced. (Here, the same set of incorrect PINs is
employed for all records, otherwise an attacker would be able
to distinguish the correct PIN from the incorrect ones, since
the correct PIN would occur in many records, whereas the
incorrect ones might not.)

It is understood that various parameters can be readily
modi?ed to meet the needs of a particular application. For
example, the PIN size, the number of incorrect records, the
size of the portion of the PIN that is input to the hash, etc, can
be adjusted as desired. The “portion” of the PIN could itself
be an arbitrary function of the PIN, rather than just a sub
string, so that similar PINs likely produce different portions,
thereby reducing the chance that a user, due to a typing error,
provides an incorrect PIN that has the same portion as the
correct PIN. Also, if a portion of the PIN is combined with the
token output when constructing the value val_i, e. g., by exclu
sive-or, that portion of the PIN cannot be recovered (unless
the attacker cannot gain access to the real token output by
some other means). (See also U.S. Pat. No. 5,168,520 to
Weiss.)

In addition, the authentication server can readily detect an
attempted impersonation if the attacker provides correct
security information (token output) and a ‘bad’ PIN from one
of the incorrect records, or a PIN that has the correct portion,
but is otherwise incorrect. This can serve as a silent alarm that
an impersonation attack has been attempted. It is understood
that the likelihood of an authorized user inadvertently provid
ing the correct token output data together with a PIN from one
of the incorrect records, or that has the correct portion but is
otherwise incorrect, is or can be made extremely low.

Further, if the authentication server detects some type of
irregularity the server can delay and request the next token
output. This would place the further burden on the attacker of
having to have solved for the next token output as well. It is
understood that the server can delay and/ or request additional
security information based upon a variety of factors including
time-of-day, IP address, caller-ID information, time of last
login, ?rst login from trip after receiving downloaded
records, etc. That is, the server can subject an agent to further
scrutiny based upon some type of irregularity. In addition, the

US 8,966,276 B2
17

server can delay and/or request token outputs on a random
basis, such as 10 percent of the time.

EXAMPLE

The veri?er stores a small set of records rec_{ij} for each
time period i. Here, record r_{ij} equals the previously
described value rec_i for one value of j, but not for the others.
For the other values of j, the incorrect PIN is combined with
the token output to obtain val_i for the record in question.
This means that the veri?er accepts authentication attempts
using the correct token output and a small set of PINs, where
only one of these would be the correct PIN for authenticating
to the server. The veri?er does not have any way of determin
ing whether the correct PIN was used or not, but allows access
if any record rec_{ij} was matched. If the veri?er gets cor
rupted by an attacker, the attacker, given suf?cient computa
tional efforts, may be able to compute the values val_i for
certain time periods, but would not know the value of the PIN.
Therefore, if the attacker attempts to impersonate the user at
a future time period by attempting authentication to the
authentication server, then the security breach can be detected
since the server knows that a correct token output used in
conjunction with one of a small set of incorrect PINs means
that the server was corrupted. This allows the server to take
action, which can include alerting the user, restricting access
to the user’s account, restricting access to the resources asso
ciated with the token, etc.

The embodiment above is described in the context of
tokens that are non-interactive. It is understood that the inven
tion is readily extendible to tokens that use a challenge
response protocol. For such tokens, each record rec_i (or
rec_{ij }) contains a random challenge to be sent to the token,
along with the value A_i, which can be a function of the
correct reply to this challenge.

The present invention provides a system that enables a user
to authenticate to a partially secure machine that is not con
nected to a secure server. Partially secure refers to a machine

that may fall under the control of an attacker. For the veri?
cation of the authentication string to be possible, this partially
secure machine (veri?er) stores some information that allows
the veri?cation of authentication strings, whether these are
produced in an interactive or non-interactive fashion. If the
veri?er becomes corrupted by an attacker, which may for
example be a malware program or a computer thief, the sys
tem limits damage. In particular, the information stored on the
veri?er does not allow the attacker to successfully imperson
ate the user to another machine, whether secure or partially
secure. To the extent that these impersonation attacks are
possible, the duration of time during which they are feasible
is limited in time. Moreover, an attempt to perform such an
impersonation requires a large computational effort, poten
tially making it uneconomical to perform within the time the
impersonation attempt is meaningful.

Further, attempts to extract secret information and perform
impersonation attempts can lead to a discovery of this having
taken place. More particularly, the server that the attacker
communicates with can discover that an authentication
attempt has occurred as a result of a previous security breach
of the veri?er; this allows for the server to restrict access to the
resource by the user, and to otherwise alert the user and others
of the problems.
As a general security measure, it may be helpful to include

additional information in the records and/ or in the input to the
hash function which identify the different purposes, as is a
standard practice in cryptographic protocol engineering. For
instance, the user’s name, the token serial number, an identi

20

25

30

35

40

45

50

55

60

65

18
?er for the veri?er, and/or an identi?er of the authentication
server that provided the batch could be included. This is
bene?cial in several embodiments described below.

Multiple batches of records for different users can be
employed at a given veri?er, and/or multiple batches for
different tokens for the same user. Also, if the user employs
the same token with different authentication servers, each
could provide its own batch of records for that token, or
different authentication servers could share the same batch of
records.
As discussed above, the veri?er is typically a laptop that is

disconnected from an authentication server for some period
of time. However, in a more general setting, the veri?er could
be any computer that wishes to authenticate a user without
necessarily connecting to the authentication server. The term
“disconnected” should be understood to indicate that (a) the
veri?er need not be connected to the authentication server in
order to perform the authentication; and (b) the veri?er need
not have a copy of any secrets stored in the user’s authenti
cation token. The ?rst aspect provides for high availability
and scalability of the authentication system; the second limits
the impact of an attack on the veri?er.
One may consider a system in which there are multiple

veri?ers each capable of authenticating one or more users.
Each veri?er periodically obtains a batch of records for one or
more users and/or tokens. The veri?er is thereby enabled to
authenticate the user for a limited period of time. If the veri?er
is different than the user’s computer, then the user’s authen
tication string would be provided to the veri?er; as a typical
example, the user could provide the authentication string to
the user’s computer, which would then forward the string to
the veri?er, perhaps over a network. In this sense, the user’s
computer and the veri?er are not disconnected from the net
work, but they are disconnected in the authentication sense in
that they do not need to be connected to the authentication
server during the authentication operation.

For clarity, in the following, “veri?er” is the device that
authenticates the user for some purpose according to the
methods described herein, and “user’s computer” is the
device through which the user interacts with other computers
in the system, including the veri?er. As above, “authentica
tion server” is the server that shares a secret with the user’s
authentication token.

In other embodiments, al disconnected authentication sys
tem utilizes a “subscription” model, where a veri?er down
loads or otherwise receives batches of records directly from
the authentication server on a periodic basis. For instance,
batches of records could be provided to a veri?er on a daily
basis.
An exemplary subscription model is described in B. M.

Jakobsson and B. S. Kaliski Jr., “Method and Apparatus for
Graph-Based Partition of Cryptographic Functionality,” U.S.
patent application Ser. No. 10/631,989, ?led Jul. 31, 2003,
which is incorporated herein by reference, in that it enables a
veri?er to authenticate a user for a limited period of time. In
Jakobsson-Kaliski, the veri?er is provided intermediate seeds
from which other seeds and/ or authentication values such as
token outputs may be derived and veri?ed. Here, however, the
veri?er is provided hash values of token outputs (or informa
tion from which they may be generated), and authenticates
the user via those hash values. The veri?ers with intermediate
seeds in Jakobsson-Kaliski can generate a subset of the hash
values for local use, and/or provide them to other veri?ers.

In another embodiment, a system includes a “session”
model, where a veri?er obtains a batch of records for a given
user only after a successful authentication by the user to the
authentication server. The time period covered by the batch

US 8,966,276 B2
19

would typically correspond to the length of a single user
session, e.g., a few minutes to a few hours, depending on
security policy. The veri?er is capable during the session of
re-authenticating the user via the batch of records without
requiring an additional connection to the authentication
server.

The batch of records can be provided to one or more veri
?ers directly by the authentication server following the user’ s
successful authentication, similar to the subscription model.

Alternatively, the batch can be provided indirectly to one or
more veri?ers via the user’s computer. Upon the user’s suc
cessful authentication to the authentication server, the batch
would be provided to the user’s computer. The user’s com
puter could then immediately or later forward the batch to the
veri?er.

Batches of records could be included, for instance, in a
SAML assertion issued by the authentication server (see
“SecurityAssertion Markup Language (SAML) vl .l”, Orga
nization for the Advancement of Structured Information
Standards (OASIS), August 2003). The records would afford
the veri?er a means of obtaining “proof of possession” from
the user, i.e., con?rmation that user continues to possess
authentication credentials (the token in this case) connected
with the assertion.

Veri?ers can also distribute batches to one another, in a
form of “delegation.” As one example, an application server
could distribute a batch of records to another application
server, so that the latter could also authenticate the user, either
for purposes of increased availability, or for its own local
purposes. As another example, a user’s desktop could distrib
ute a batch of records to the user’s laptop. The forwarding of
batches could continue further down a chain of veri?ers.

The distribution of batches assumes some means of

authenticating that the batch is correct, i.e., it corresponds to
the token’s actual authentication strings. Otherwise, an
attacker could potentially impersonate the user by construct
ing a new set of records that it claims is associated with the
user, but for which the attacker knows the authentication
strings, and providing that batch instead to a veri?er. Accord
ingly, data authentication such as a message authentication
code (MAC) or a digital signature should be included, where
the MAC or digital signature key is associated with the
authentication server or another trusted authority. A veri?er
would check the correctness of the MAC or digital signature
before accepting and employing a batch of records. Alterna
tively, a secure, server-authenticated channel from the
authentication server to the veri?er could be employed.

Each record could have its own MAC or digital signature as
evidence, though this may impose overhead in terms of com
putation, storage and transmission. Alternatively, the full
batch of records could have a single MAC or signature, but
this may require the transmission of the full batch between
veri?ers, and does not offer as much granularity in the del
egation. (For instance, a veri?er may wish to delegate only a
few hours’ worth of records to another veri?er, but the batch
itself could span a full day. One advantage of this more
detailed approach is that it limits the exposure of records,
thereby reducing the opportunity for an attacker to obtain
records from which to begin a search for the token outputs.)
As a compromise between signing individual records and

signing full batches, a variety of hash-type constructions can
bene?cially be applied. For instance, each record could be
treated as a leaf of a hash tree. The leaves would be assembled
into a hash tree by standard techniques, and the signature or
MAC applied to the root of the tree. In this way, any subset of
leaves (i.e., records) could be exchanged among veri?ers,
together with a path from that subset to the root and the single

20

25

30

35

40

45

50

55

60

65

20
MAC or signature. The content of the leaves, the number of
children at each level, and the number of levels in the tree can
be varied as is well understood in the standard techniques. As
an example, an hour’ s worth of records could be collected into
one leaf, and 24 leaves hashed together to form a daily root,
which is signed. This would give granularity on an hour basis,
which may be suf?cient for many applications.

It should also be noted that the approaches involving sepa
rate veri?ers are compatible with the password-hash
approaches in B. Kaliski and M. Nystrom, “Password Protec
tion Module” (provisional patent application ?led Jul. 28,
2004 having US. Provisional Patent Application No. 60/591,
672, and B. Kaliski and M. Nystrom, also entitled “Password
Protection Module” (provisional patent application ?led Jul.
2, 2004 having US. Provisional Patent Application No.
60/ 584,997 which are incorporated herein by reference). A
password (or more generally, an authentication string) is
hashed with an application identi?er to produce a protected
password, which is then provided to the application. (The
application identi?er is a string speci?c to a given application
of set of applications, e.g., a network address, URL, or
domain name for the application.)
The hashing steps prevent a corrupt application from

receiving the password directly, which it could then forward
to the legitimate application. When multiple veri?ers are
involved as suggested above, it may be preferable to provide
a protected password (i.e., protected authentication strings) to
the veri?er. This would likewise prevent a corrupt veri?er
from misusing the information obtained to impersonate the
user to other veri?ers. The records provided would accord
ingly be different from one veri?er to another, since they
would be based on protected authentication strings, which
depend on the application identi?er as well as the token
output.
The con?rmation code suggested in Kaliski-Nystrom can

readily be accommodated as part of the sensitive data pro
tected via the record. This would prevent an attacker who
obtains the record from being able to impersonate the veri?er
without knowing the authentication string.
The disconnected authentication approach described here

is particularly ?exible in terms of the authentication architec
tures it supports. Although the authentication to the discon
nected machine itself employs token outputs, after a success
ful authentication has been accomplished, a key or other
sensitive data can be recovered that can be employed for
purposes of authentication to other applications. For
example, a private signature key may be recovered which can
be used in a standard public-key-based authentication proto
col such as SSL/TLS (see T. Dierks and C. Allen, “The TLS
Protocol Version 1.0”, IETF RFC 2246, January 1999), or as
“proof-of-possession” for a SAML assertion. Thus, the user
can authenticate to applications with standard public-key
based techniques, while possessing only a one-time passcode
authentication token, and with reduced risk of compromise of
the private signature key on the disconnected machine com
pared to other approaches. (By contrast, in other approaches,
the user may authenticate to a credential server via an authen

tication token and then download the signature private key,
which is then stored, unencrypted, on the user’s computer.
The approach here is advantageous in that the private key is
encrypted with a value derived from token outputs, so that an
attacker who obtains access to data on the user’s computer
cannot readily recover the private key.)

In the case that a private key is employed for authentication
to other applications, there could be a single private key per
record, a single private key per batch of records, or something
in between. Since the corresponding public key would need to

US 8,966,276 B2
21

be made available to the application, the approach with one
private key perbatch (and hence a single public key per batch)
may have an advantage in terms of key management for many
signature schemes. However, certain signature schemes have
the property that there may be single private key per record,
yet still only one public key per batch.
As one example, a forward-secure signature scheme such

as in M. Bellare and S. Miner, “A Forward-Secure Digital
Signature Scheme,” in M. Wiener, editor, Advances in Cryp
tology4Crypto ’99 Proceedings, Lecture Notes in Computer
Science vol. 1666, Springer, 1999, has one public key and a
succession of private keys, where later private keys can be
computed from earlier ones, but not vice versa. (The veri?er
can determine the position of the private key employed
among the succession of possible private keys.) This is ben
e?cial in that an attacker is prevented from forging what
appear to be older signatures given a private key that is com
promised at a later time. For the purposes here, the various
private keys could be precomputed for the full batch, and then
protected with successive records. It may be preferable here
to reverse the order of private keys compared to the usual
forward-secure sequence, so that an attacker who compro
mises a private key for a given time interval can only compute
the private keys for earlier time intervals. Assuming that the
sensitive data for later time intervals has stronger protection
than that for earlier time intervals as described above, this
approach provides a nice two-level defense for the private
keys.
A Merkle or hash-tree signature scheme (see R. Merkle,

“Secrecy, Authentication, and Public Key Systems”, Ph.D.
dissertation, Dept. of Electrical Engineering, Stanford Univ.,
1979; also M. Jakobsson, F. T. Leighton, S. Micali, and M.
Szydlo, “Fractal Merkle Tree Representation and Traversal,”
in M. Joye, editor, Topics in Cryptology4CT-RSA 2003
Proceedings, Lecture Notes in Computer Science vol. 2612,
Springer, 2003). may also be employed bene?cially here,
since it also has a single public key (the root) yet different
private keys (collections of leaves) for different signature
operations, e.g., for each record. This scheme is both forward
and backward-secure; the compromise of a single private key
does not enable the computation of any other private keys in
either direction.
Many other authentication protocols can be supported. For

instance, a shared symmetric key could be recovered for
purposes of authenticating to an application. The shared key
could be a key in the Kerberos authentication system, for
instance. As another example, a session state could be recov
ered, from which an SSL/TLS session could be resumed.
Alternatively, the sensitive data recovered could be a seed for
a “virtual” or “soft” authentication token, whose outputs
could then be employed to authenticate to other applications.
As another example, token outputs for a different token could
be recovered. Further, the sensitive data could consist of the
inputs to a hash function, where the outputs of the hash
function are available to another application and the inputs
are provided as evidence of authentication to that application.
As another example, the B_i value itself could serve as a

“proof of authentication” to another veri?er that also shares
the records, for instance a Windows domain controller. The
user’ s computer would present the B_i value obtained from a
given token output to the other veri?er, and the other veri?er
would determine whether the B_i value correctly decrypts its
copy of the E_i value.
A further example of sensitive data for use in authentica

tion protocols would be a SAML assertion or other signed
value, which could be presented to other applications as proof
of the user’s authentication. One or more SAML assertions

20

25

30

35

40

45

50

55

60

65

22
could be provided by the authentication server and encrypted
for different time intervals. Successful authentications at the
veri?er would recover such assertions, which would be pro
vided to those other applications. This gives an “self-issu
ance” capability to the veri?er, where a sequence of precom
puted assertions is readily obtained at the veri?er without
interacting with the authentication server. The assertions can
therefore potentially have a shorter lifetime and thus be
“fresher” than assertions ordinarily issued by the authentica
tion server, while maintaining a relatively long session. (For
example, a set of records could be downloaded daily by the
veri?er from the authentication server, protecting assertions
that have a lifetime of only an hour. The user would need to
interact with the authentication server only once a day, and
would need to authenticate to the veri?er once an hour to

obtain a fresh assertion.)
Following techniques in B. S. Kaliski Jr., “Client/Server

Protocol for Proving Authenticity,” US. Pat. Nos. 6,085,320
and 6,189,098, it is not necessary to encrypt an entire SAML
assertion. Rather, it can be suf?cient to encrypt only the
information necessary to verify the assertion, such as a sig
nature on the assertion, or an input to a hash function where
the output of the hash function is part of the assertion.
One skilled in the art will appreciate further features and

advantages of the invention based on the above-described
embodiments. Accordingly, the invention is not to be limited
by what has been particularly shown and described, except as
indicated by the appended claims. All publications and refer
ences cited herein are expressly incorporated herein by ref
erence in their entirety.
What is claimed is:
1. A method for authenticating at a veri?er a user who

possesses an authentication token capable of providing one or
more one-time passcodes, comprising:

obtaining a veri?cation record from an authentication

server;
obtaining a passcode from the authentication token sub

mitted to authenticate the user at the veri?er, wherein the
one-time passcodes are generated as a function of a
token secret, and wherein the veri?er is isolated from the
token secret; and

determining whether the submitted passcode is consistent
with the veri?cation record, where the veri?cation
record is a function of a reference passcode, wherein the
veri?er is disconnected from the authentication server
which provided the veri?cation record.

2. The method according to claim 1, wherein the veri?er is
a personal computer.

3. The method according to claim 1, wherein the token
secret is updated in response to an event.

4. The method according to claim 1, wherein the one-time
passcodes are generated as a function of a time variable.

5. The method according to claim 1, wherein the one-time
passcodes are generated as a function of an event variable.

6. The method according to claim 1, wherein the passcodes
are generated as a function of a challenge value.

7. The method according to claim 1, wherein the one-time
passcodes are generated as a function of a PIN.

8. The method according to claim 1, wherein a function for
generating the one-time passcodes comprises generating a
tokencode from the token secret and combining the token
code with the PIN.

9. The method according to claim 1, wherein the one-time
passcodes are generated as a function of a token secret stored
at an authentication server.

10. The method according to claim 9, wherein the token
secret is stored in the authentication token.

US 8,966,276 B2
23

11. The method according to claim 1, wherein the authen
tication server generates at least part of the reference pass
code.

12. The method according to claim 1, wherein the authen
tication token generates at least part of the submitted pass
code.

13. The method according to claim 1, wherein one or more
tokencodes are stored in the authentication token, and the
submitted passcode is obtained as a function of one of said
tokencodes.

14. The method according to claim 1, wherein the veri?
cation record is obtained from an intermediary, and wherein
the intermediary obtains the veri?cation record from the
authentication server.

15. The method according to claim 14, wherein the inter
mediary is a personal computer.

16. The method according to claim 14, wherein the inter
mediary is an application server.

17. The method according to claim 1, wherein the veri?
cation record is obtained as part of a data structure comprising
a plurality of veri?cation records.

18. The method according to claim 1, wherein the veri?
cation record is obtained as part of an authenticated data
structure.

19. The method according to claim 18, wherein the authen
ticated data structure is a SAML assertion.

20. The method according to claim 1, wherein the veri?
cation record is stored at the veri?er.

21. The method according to claim 1, wherein at least part
of the submitted passcode is obtained via user interaction.

22. The method according to claim 1, wherein at least part
of the submitted passcode is obtained via a wired and/or
wireless communications link.

23. The method according to claim 1, wherein consistency
of the submitted passcode is determined with respect to a
plurality of veri?cation records.

24. The method according to claim 1, wherein the function
for generating the veri?cation record comprises a crypto
graphic hash function.

25. The method according to claim 24, wherein the cryp
tographic hash function is iterated multiple times.

26. The method according to claim 24, wherein the func
tion for generating the veri?cation record comprises a cryp
tographic time-lock puZZle.

27. The method according to claim 24, wherein the veri?
cation record comprises a reference hashed passcode, where
the reference hashed passcode is the result of applying a
one-way function to the reference passcode.

28. The method according to claim 1, wherein the veri?
cation record comprises an encrypted data element, where the
encrypted data element is the result of encrypting a data
element with a key, and where the key is the result of applying
a one-way function to the reference passcode.

29. The method according to claim 28, further including
applying the one-way function to the submitted passcode

to obtain a key;
decrypting the encrypted data element with the key to

recover the data element; and
determining consistency based at least in part on whether

the decryption operation is successful.
30. The method according to claim 28, further including
applying the one-way function to the submitted token code

to obtain a key;
decrypting the encrypted data element with the key to

recover the data element;
using the data element; and

20

25

30

35

40

45

50

55

60

65

24
determining consistency based at least in part on whether

the usage of the data element is successful.
31. The method according to claim 28, wherein the data

element comprises a Windows password.
32. The method according to claim 28, wherein the data

element comprises at least part of a pepper value for another
authentication operation.

33. The method according to claim 28, wherein the data
element comprises a hint value for another authentication
operation.

34. The method according to claim 28, wherein the data
element comprises a second key.

35. The method according to claim 34, further including
obtaining a second encrypted data element, where the second
encrypted data element is the result of encrypting a second
data element with the second key.

36. The method according to claim 35,wherein the second
data element comprises a Windows password.

37. The method according to claim 35, wherein the second
data element comprises a hint value.

38. The method according to claim 35, wherein the data
element comprises sensitive data.

39. The method according to claim 1, wherein input to the
function for generating the veri?cation record also comprises
a function of a PIN value.

40. The method according to claim 39, wherein the func
tion of the PIN value contains less information than the entire
PIN value, such that more than one PIN value is consistent
with the veri?cation record.

41. The method according to claim 40, wherein veri?cation
records generated from incorrect PINs are also stored at the
veri?er.

42. The method according to claim 1, wherein the input to
the function for generating the veri?cation record also com
prises a salt value.

43. The method according to claim 42, wherein the veri?
cation record comprises the salt value.

44. The method according to claim 42, wherein part or all
of the salt value is included in another veri?cation record.

45. The method according to claim 44, further including
testing consistency with salt values from one or more other
veri?cation records.

46. The method according to claim 1, wherein input to the
function for generating the veri?cation record also comprises
a pepper value.

47. The method according to claim 46, further including
testing consistency for one or more possible pepper values.

48. The method according to claim 1, wherein the input to
the function for generating the veri?cation record also com
prises a hint value.

49. The method according to claim 48, wherein the hint
value is recovered from one or more other authentication
operations.

50. The method according to claim 1, further including
encrypting the veri?cation record to produce an encrypted
veri?cation record,

obtaining a decryption key; and
decrypting the encrypted veri?cation record to recover the

veri?cation record.
51. The method according to claim 50, wherein the decryp

tion key is derived from an emergency access code.
52. The method according to claim 50, wherein the decryp

tion key is derived from a key recovered in another veri?ca
tion operation.

53. The method according to claim 1, wherein input to the
function for generating the veri?cation record also comprises
at least part of a second reference passcode.

US 8,966,276 B2
25

54. The method according to claim 53, further including
testing consistency of the veri?cation record With both of the
reference passcode and the at least part of the second refer
ence passcode.

55. The method according to claim 1, Wherein the authen
tication token is a software token implemented on a computer.

56. The method according to claim 1, further including
increasing over time an amount of work required to compute
the veri?cation record in an attack.

57. A method for disconnection authentication, compris
ing:

receiving veri?cation records from an authentication
server by an authenticated computer connected to the
authentication server;

storing the veri?cation records on the computer, Wherein
the veri?cation records correspond to a period of time
and/or an event and include information corresponding
to passcodes;

receiving a passcode from an authentication token submit
ted by a user of the computer, Which is disconnected
from the server, Wherein the passcode is generated as a
function of a token secret, and Wherein the veri?er is
isolated from the token secret; and

determining Whether the submitted passcode corresponds
to a given one of the veri?cation records to authenticate
the user and alloW the user to use the computer.

58. A method for authenticating at a laptop computer a user
Who possesses an authentication token capable of providing
one or more one-time passcodes, comprising:

obtaining a veri?cation record from an authentication

server;

20

25

30

26
obtaining a passcode from the authentication token sub

mitted to authenticate the user at the laptop, Wherein the
passcode is generated as a function of a token secret, and
Wherein the laptop computer is isolated from the token
secret; and

determining Whether the submitted passcode is consistent
With the veri?cation record, Where the veri?cation
record is a function of a reference passcode, Wherein the
laptop computer is disconnected from the authentication
server Which provided the veri?cation record, and dis
connected from all network connections.

59. A method for authenticating at a veri?er a user Who
possesses an authentication token capable of providing one or
more one-time passcodes, comprising:

obtaining a veri?cation record from an authentication

server;
obtaining a passcode from the authentication token sub

mitted to authenticate the user at the veri?er; and
determining Whether the submitted passcode is consistent

With the veri?cation record, Where the veri?cation
record is a function of a reference passcode, Wherein the
veri?er is disconnected from the authentication server
Which provided the veri?cation record.

Wherein determining Whether the submitted passcode is
consistent With the veri?cation record includes:

applying a one-way function to the submitted passcode to
obtain a hashed passcode;

comparing the hashed pas scode to a reference hashed pass
code; and

determining consistency based at least in part on the
Whether the comparison is successful.

* * * * *

