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1. INTRODUCTION 

This paper concerns methods for inferring decision trees from examples 
for classification problems. The reader who is unfamiliar with this problem 
may wish to consult J. R. Quinlan’s paper (1986), or the excellent mono- 
graph by Breiman et al. (1984), although this paper will be self-contained. 

This work is inspired by Rissanen’s work on the Minimum description 
length principle (or MDLP for short) and on his related notion of the 
stochastic complexity of a string Rissanen, 1986b. The reader may also 
want to refer to related work by Boulton and Wallace (1968, 1973a, 
1973b), Georgeff and Wallace (1984), and Hart (1987). 

Roughly speaking, the minimum description length principle states that 
the best “theory” to infer from a set of data is the one which minimizes the 
sum of 

1. the length of the theory, and 

2. the length of the data when encoded using the theory as a 
predictor for the data. 

*This paper prepared with support from NSF Grant DCR-8607494, AR0 Grant 
DAAL03-86-Ktll71, and a grant from the Siemens Corporation. 
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Here both lengths are measured in bits, and the details of the coding 
techniques are relevant. The encoding scheme used to encode the allowable 
theories and data reflect one’s a priori probabilities. 

This paper explores the application of the MDLP to the construction of 
decision trees from data. This turns out to be a reasonably straightforward 
application of the MDLP. It is also an application area that was foreseen 
by Rissanen. (“...the design of an optimal size decision tree can rather 
elegantly be solved by this approach without the usually needed fudge 
factors and arbitrary performance measures” (Rissanen, 1986a, p. 151). 

The purpose of the present paper is thus to examine closely this proposal 
by Rissanen, to work out some of the necessary details, and to test the 
approach empirically against other methods. This paper may also serve as 
an expository introduction to the MDLP for those who are unfamiliar 
with it; but the interested reader is strongly encouraged to consult 
Rissanen’s (1978, 1986a, 1986b) fascinating papers on these subjects (and 
his papers referenced therein). 

We formalize the problem of inferring a decision tree from a set of exam- 
ples as follows. We assume that we are given a data set representing a 
collection of objects. The objects are described in terms of a collection of 
attributes. We assume that we are given, for each object and each attribute, 
the value of that attribute for the given object. In this paper we do not 
consider the possibility that some values may be missing; the reader should 
consult Quinlan (1986) for advice on handing this situation. 

We are also given, for each object, a description of the class of that 
object. The classification problem is often binary, where each object 
represents either a positive instance or a negative instance of some class. 
However, we will also consider non-binary classification problems, where 
the number of object classes is an arbitrary finite number. (As an example, 
consider the problem of classifying handwritten digits.) 

Table I gives an example of a small data set, copied from 
(Quinlan, 1986). Here the attributes are for various Saturday mornings, 
and the classification is positive if the morning is suitable for some 
“unspecified activity.” 

From the given data set, a decision tree can be constructed. A decision 
tree for the data in Table I is given in Fig. 1. We can view the decision tree 
as a classification procedure. Some of the nodes (drawn as solid rectangles) 
are decision nodes; these nodes specify a test that one can apply to an 
object. The possible answers are the labels of the arcs leaving the decision 
node. In Fig. 1, the tests simply name the attribute to be queried; the arcs 
give the possible values for the attribute. The dashed boxes of the figure are 
the leaves of the decision tree. 

A decision tree defines a classification procedure in a natural manner. 
Any object (even one not in the original data set) is associated with a 
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TABLE I 

A Small Data Set 

Attribute 

No. Outlook Temperature Humidity Windy Class 

1 sunny hot high false N 
2 sunny hot high true N 
3 overcast hot high false P 
4 rain mild high false P 
5 rain cool normal false P 
6 rain cool normal true N 
7 overcast cool normal true P 
8 sunny mild high false N 
9 sunny cool normal false P 

10 rain mild normal false P 
11 sunny mild normal true P 
12 overcast mild high true P 
13 overcast hot normal false P 
14 rain mild high true N 

unique leaf of the decision tree. This association is defined by a procedure 
that begins at the root and traces a path to a leaf by following the arcs that 
correspond to the attributes of the object being classified. For example, 
object 10 of Table I would be associated with the rightmost leaf of the 
decision tree of Fig. 1, since it has a rainy outlook but is not windy. A 
decision procedure with c leaves partitions the space of objects into c 
disjoint categories. 

With each leaf the decision tree associates a class; this is the default class 

FIG. 1. A decision tree. 
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assigned by the decision tree to any object in the category associated with 
that leaf. New objects will be classified according to the default class of 
their category. 

In our example, the available attributes are adequate to construct a 
decision tree which predicts the class perfectly (a perfect decision tree). In 
some cases, the objects in a given category may not all be of the same class. 
This may happen if the input data is noisy, if the given attributes are inade- 
quate to make perfect predictions (i.e., the class of the given objects cannot 
be expressed as a function of their attribute values), or if the decision tree is 
small relative to the complexity of the classification being made. If the 
decision tree is not perfect, the default class label for a leaf is usually chosen 
to be the most frequent class of the objects known to be in the associated 
category. 

The problem is to construct the “best” decision tree, given the data. Of 
course, what is “best” depends on how one plans to use the tree. For 
example, a tree might be considered “best” if: 

1. It is the smallest “perfect” tree. 

2. It has the smallest possible error rate when classifying previously 
unseen objects. 

In this paper we are primarily concerned with objective 2. 
For this purpose, it is well known that it is not always best to construct 

a perfect decision tree, even if this is possible with the given data. One often 
achieves greater accuracy in the classification of new objects by using an 
imperfect, smaller decision tree rather than one which perfectly classifies all 
the known objects (Breiman et al., 1984). The reason is that a decision tree 
which is perfect for the known objects may be overly sensitive to statistical 
irregularities and idiosyncrasies of the given data set. 

However, it is generally not possible for a decision tree inference 
procedure to explicitly minimize the error rate on new examples, since the 
“real world” probability distribution generating the examples may be 
unknown or may not even exist. 

Consequently, a number of different approximate measures have been 
proposed for this purpose. For example, Quinlan (1986) studies some infor- 
mation-theoretic measures similar to the MDLP in spirit. The MDLP is an 
approximate criteria in the same sense: minimizing the appropriate 
“description-length” (to be defined) can be viewed as an attempt to 
minimize the “true” error rate for the classification procedure. 

Another level of approximation usually arises because it is usually 
infeasible in practice to determine which decision tree actually minimizes 
the desired measure. There are just too many candidate decision trees, and 
there seems to be no efficient way of identifying the one which optimizes 
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the chosen measure. Thus one is forced to adopt heuristics here as well 
which attempt to find a tree that is good or near-optimal with respect to 
the chosen measure. A commonly used heuristic is to build a large tree in a 
top-down manner, and then to iteratively prune leaves off until a tree is 
found that seems to minimize the desired measure (Breiman et al., 1984). It 
is not ucommon for different criteria to be used during the pruning phase 
than during the initial building phase. Growing an overly large initial tree 
will often allow dependencies between the attributes to be discovered which 
might not reveal themselves quickly enough if an attempt was made to 
grow the tree top-down until it seemed that the measure was minimized. 

No matter what search technique is used to find a good tree according to 
the desired measure, the choice of the approximate measure itself can have 
a large effect on the quality of the resulting decision tree. 

2. THE MINIMUM DESCRIPTION LENGTH PRINCIPLE 

In this section, we describe how Rissanen’s (1978, 1986a, 1986b) 
minimum length description principle naturally defines a measure on 
decision trees (relative to a given set of data), where the decision tree which 
minimizes this measure is proposed as a “best” decision tree to infer from 
the given data. 

We will motivate the minimum description length principle by consider- 
ing a communication problem based on the given data. The minimum 
description length principle will define the “best” decision tree to be the one 
that allows us to solve our communication problem by transmitting the 
fewest total bits. Of course, this communication problem is just an artifice 
used in the definition of the “best” tree; the real objective is to produce that 
decision tree which will have the greatest accuracy when classifying new 
objects. 

Our communication problem is the following. You and I have copies of 
the data set (e.g., Table I), but in your copy the last column-giving the 
class of each object-is missing. I wish to send you an exact description of 
the missing column using as few bits as possible. We agree in advance on 
an encoding technique to be used to transmit the missing column to you. 
The simplest technique would be for me to transmit the column itself to 
you directly. In our example this would require exactly 14 bits, independent 
of what classifications the objects have. 

However, if the class of an object depends to any significant extent on its 
attributes, then I may be able to dramatically reduce the number of bits I 
need to send, if we have agreed to use an encoding technique that allows 
me to express such dependencies. For example, suppose it sufficed for me 
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to say, “an object is in the positive class if and only if it has high humidity.” 
This would require only a few bits, independent of the size of the table. 

In general, the more predictable that the class of an object is from the 
object’s attributes, the fewer bits I may need to send in order to com- 
municate to you the missing class column. To this end, it may be helpful 
for us to agree on an encoding technique that allows reference to various 
subsets of the objects defined by their attributes, such as “all windy high 
humidity objects.” Since both of us know the attributes of each object, you 
can determine which objects I am referring to when I use such descriptions. 

In general, I may find it worthwhile to: 

1. Partition the set of objects into a number of subsets or categories, 
based on the attributes of the objects. 

2. Send you a description of this partition. 

3. Send you a description of the most frequent (or default) class to be 
associated with each subset. 

4. For each category of objects, send you a description of the excep- 
tions-by naming those objects in the category whose actual classification 
is different than the default class, together with the correct classification for 
those objects. 

This may be worthwhile since if there are few exceptions in a category, 
only a few bits will be needed to describe them. Although I need to use 
some bits in order to describe to you the partition, this partition may more 
than pay for its cost by means of the data compression I can later achieve 
in step 4. 

A natural and efficient way of partitioning the set of objects into disjoint 
categories, and associating a default class with each category, is to use a 
decision tree. This is the approach we will use in this paper. 

The “best” decision tree, for our communication problem, is defined to 
be the one which enables me to send you the fewest possible bits in order 
to describe to you the missing class column in your table. For this tree, the 
combined length of the description of the decision tree, plus the description 
of the exceptions, must be as small as possible. Of course, the actual cost 
will depend on the methods used to encode the decision tree and the 
exceptions-more about this later. 

This “optimal” (according to the MDLP) decision tree can then be used 
to classify new objects. 

The communication problem defined above captures the essence of 
Rissanen’s minimum description length principle. The “best” tree for the 
communication problem is proposed as the “best” tree to infer from the 
given data. Dependencies between an object’s class and its attributes which 
are pronounced and prevalent enough to allow me to save bits in the com- 
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munications problem are judged to be significant and worth including in 
the inferred decision tree. Dependencies which are weak or are only 
represented in a few cases are judged to be insignificant and are omitted 
from the tree. The communication problem thus provides a mathematically 
clean and rigorous way of defining the “best” decision tree to infer from a 
given set of data, relative to the method used to encode the tree and the 
exceptions. Furthermore, since coding length and predictability are 
intimately related, one has reason to expect that such a decision tree will 
do well at classifying new, unseen cases (see Rissanen, 1986a, 1986b). 

2.1. A Bavesian Interpretation of the MDLP 

In the next section we turn to the question of coding techniques. Before 
doing so, we point out that the MDLP can be naturally viewed as a 
Bayesian MAP (maximum a posteriori) estimator. Let T denote our 
decision tree, and let t denote its length in bits when encoded as described 
in the next section. Similarly, let D denote the data to be transmited (the 
last column of the object description table), and let d denote its length 
when encoded as described in the next section, using the tree to describe all 
the “non-exceptional” classes. 

Let r be a fixed parameter, r > 1. (In typical usage, r = 2.) We associate 
with each binary string of length t (here t > 0) the probability 

(l -t)(k)*? (1) 

so ,4 (the empty string) has probability (1 - l/r), the strings 0 and 1 each 
have probability (1 - l/r)( 1/2r), and so on. It is easy to check that the total 
probability assigned to strings of length t is (1 - l/r)( l/r)’ and that the 
total probability assigned to all strings is 1. The parameter r controls how 
quickly these probabilities decrease as the length t of the string increases; as 
r increases these probabilities decrease more quickly. This procedure allows 
us naturally to associate a probability with a string. 

Let rT and rg be two fixed parameters with r,> 1 and rg > 1. Then we 
can interpret the minimum description length principle in a Bayesian 
manner as follows, using the above procedure for associating probabilities 
with strings: 

1. The length t of encoding of the tree T is used to determine the 
a priori probability of the theory represented by the decision tree, 
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2. The length d of the data is used to determine the conditional 
probability of the observed data, given the theory, 

P(DIT)=(l-r,) $ Y 
( > D 

(3) 

3. The negative of the logarithm of the a posteriori probability of the 
theory is by Bayes’ formula a linear function of r and d; 

P(T(D)= P(D I T) P(T) 
P(D) (4) 

implies that 

-k(l -r,)-kid1 -r~)+f(D) 

= fcT+dcD+g(r,, rD, D), (5) 

wheref(D) is a constant that depends on the data D but not on the tree T, 
and where g(rT, rD, D) is a constant depending only on D and the 
parameters rT and r D; these constant values can thus be safely ignored 
when trying to find the best tree T for the data D. The tree which 
minimizes tc,+ dc, will have maximum a posteriori probability. 

If, for example, we choose rT = rD = 2, then cT. = c, = 2, and finding the 
best theory is equivalent to minimizing the sum t + d. Choosing other 
values for rT and/or rD will give rise to other linear combinations of t and 
d. If rT is large, then large trees T will be penalized more heavily, and a 
more compact tree will have maximum a posteriori probability. In the 
limit, as rT + co, the resulting tree will be the trivial decision tree consisting 
of a single node giving the most common class among the given objects. If 
rD is large, then a large tree, which explains the given data most accurately, 
is likely to result, since exceptions will be penalized heavily. In the limit, as 
rD -+ co, the resulting decision tree will be a perfect decision tree, if one 
exists. Thus, choosing rT and rD amount to choosing one’s a priori bias 
against large trees or large numbers of exceptions. 

In the rest of this paper, unless stated otherwise, we will assume 
that rT= rD, so that cT=cg, and we will wish to minimize t + d; this 
corresponds to the minimum description length principle in its simplest 
form. 

One can view the contribution of the minimum description length prin- 
ciple, in comparison with a Bayesian approach, as providing the user with 
the conceptually simpler problem of computing code lengths, rather than 
estimating probabilities. It is easier to think about the problem of coding a 
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decision tree than it is to think about assigning an a priori probability to 
the tree. 

3. CHOICE OF CODING TECHNIQUES 

There are many different techniques one could use to encode the decision 
tree and the exceptions. In this section we propose some particular techni- 
ques for consideration. For a given set of data, and for each possible 
encoding technique, a “best” tree can be computed (in principle, although 
in practice it may be difficult to compute such a “best” tree). 

It is important that the encoding techniques chosen be efficient. An 
inefficient method of encoding trees will cause decision trees which are too 
small to be produced, since the “tree” portion of our communication cost 
will be too high. Symmetrically, an inefficient method for encoding excep- 
tions will tend to result in overly large trees being produced. 

This paper suggests some particular encoding techniques. The utility of 
the minimum description length principle is not based on the use of any 
particular techniques. 

The minimum description length principle provides a way of comparing 
decision trees, once the encoding techniques are chosen. 

4. DETAILS OF CODING METHODS 

In order to illustrate the details of the approach suggested above, we 
outline techniques for coding messages, strings, and trees in this section. In 
this paper, all logarithms are to the base 2; we denote the base two 
logarithm of n as lg(n). 

4.1. Coding a Message Selected from a Finite Set 

We shall need ways to encode a message that is selected from a finite set. 
If the message to be transmitted is selected from a set of n equality Zikely 
messages, then Ig(n) bits are required to encode the selected message. (In 
this paper we shall generally ignore the issues that arise concerning the use 
of non-integral numbers of bits. The use of techniques such as arithmetic 
coding (Rissanen and Langdon, 1981) can justify using non-integral num- 
bers, rather than rounding up; arithmetic codes can be as efficient as the 
non-integral numbers indicate, when many messages are being sent. Also, 
we are less interested here in actually coding the data than in knowing how 
much information is present.) 

If the messages have unequal likelihoods which are known to the 
receiver, then -lg(p) bits are required to transmit a message which has 
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probability p, using an ideal coding scheme. Of course, if the n messages 
are equally likely, this reduces to our previous measure. 

4.2. Coding Strings of O’s and l’s 

We shall also need techniques for encoding finite-length strings of O’s and 
1’s. In particular, we are interested in the problem of transmitting a string 
of O’s and l’s so that it will be cheaper to transmit strings which have only 
a few 1’s. (The ones will indicate the location of the exceptions.) We 
assume that the string is of length n, that k of the symbols are l’s and that 
(n - k) of the symbols are O’s, and that k < b, where b is a known a priori 
upper bound on k. Typically we will either have b = n or b = (n + 1)/2. 

The procedure we propose is: 

l First I transmit to you the value of k. This requires lg(b + 1) bits. 
(See Appendix A for a variation on this proposal.) 

. Now that you know k, we both know that there are only (;) 
strings possible. Since all these possible strings are equally likely a priori, 
I need only lg( (;)) additional bits to indicate which string actually occurred. 

The total cost for this procedure is thus 

UK k, b) = lg(b + 1) + lg 
(( >> 

; bits. 

When we are transmitting the location of exceptions for a binary 
classification problem, we will have b = (n + 1)/2; in several other cases we 
will have b = n. 

We may consider coding in this manner the string in the last column of 
Table I: 

N, N, P, P, P, N, P, N, P, P, P, P, P, N. (7) 

Treating N as 0 and P as 1, we have n = 14, k = 9, and b = 15, for a total of 

L( 14,9, 14) = lg( 15) + lg(2002) = 14.874 bits. 

This is larger than the “obvious” cost of 14 bits; this coding scheme can 
save substantially when k is small, in return for an increased cost in other 
situations (as in the present example). 

We propose using L(n, k, b) as the standard measure of the complexity of 
a binary string of length n containing exactly k l’s, where k < 6. This is an 
accurate measure of the number of bits needed to transmit such a string 
using the proposed scheme. 

The formula for L(n, k, n) is also derivable by another coding method, 
which we sketch here. (This method and analysis are due to 
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Rissanen, 1986a.) I will transmit O’s and l’s to you one by one. However, 
after I have transmitted t symbols to you, s of which are l’s, we shall con- 
sider the probability of the next symbol as being a 1 as (s + l)/(t + 2kthis 
is Laplace’s famous “Rule of Succession.” Similarly, the probability of the 
next symbol being a 0 is considered to be ((t - s) + 1 )/( t + 2). This can be 
viewed as a straight frequency ratio, where the initial values for the number 
of O’s and the number of l’s seen so far begin at one each rather than zero. 
For example, the initial estimated likelihood of seeing a 1 is 4, and the 
likelihood of seeing an 0 as the second symbol if the first symbol was a 1 is 
f. At each step, the probabilities of O’s and l’s are computable, and these 
probabilities are used in the coding, so that a symbol of probability p only 
requires lg(p) bits to represent, With a little algebra, one can prove that the 
number of bits needed to represent a string of n symbols containing k l’s 
using this technique is exactly L(n, k, n). 

The function L(n, k, b) can be approximated using Stirling’s formula to 
obtain: 

4 k(n) k(k) Mn -k) Wx) L(n, k, b)=nH(k/n)+T-T- -- 
2 2 

-k(b) + Wlln), (8) 

where H(p) is the usual “entropy function”: 

H(P) = -p lg(p) - (1 -p) lg(l -p). (9) 

It is interesting to note that L(n, k, b) does not depend on the position of 
the k l’s within the string of length n; any string of length n which contains 
exactly k l’s will be assigned a codeword of length exactly L(n, k, b) bits. In 
our application, where the order of the objects in the table is arbitrary, this 
seems appropriate. 

Quinlan’s (1986) heuristic is based on related ideas; he measures the 
information content in a string of length n containing k P’s as nH(k/n). 
The use of this under-approximation to L(n, k, b) may result in overly large 
decision trees, by our standards. In addition, he does not consider the cost 
of coding the decision tree at all; his method may be viewed as a maximum 
likelihood technique rather than a MAP technique. 

We note that the natural generalization of this method to nonbinary 
classification problems would assign a cost of 

L(n; k,, k,, . . . . k,) = lg 
((“:1i-‘)‘(k,,k;...,k,)) (lo) 

to a string of length n containing kl objects of class 1, . . . . k, objects of class 
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t, where k = k, + . .. + k,. Here the upper bound b on the kis is omitted 
and assumed to be n. 

There are, of course, a number of different variations one could try. Each 
such variation coresponds to a different “model class” or choice of prior 
probabilities for our representation of strings. Appendix A describes one 
technique which encodes small values of k more compactly than our 
standard scheme. An even more highly biased scheme would encode 0 as 0 
and k>O as lkO. 

4.3. Coding Sets of Strings 

In our example, I might partition the objects into those with “high 
humidity,” and those with “normal humidity.” This results in the final 
column being divided into two parts, 

N, N, P, P, N, P, N for the high humidity objects, (11) 

where the default class is “N,” and 

P, N, P, I’, P, P, P for the normal humidity objects, (12) 

where the default class is “P.” To code the exceptions will require only 

L(7, 3, 3) + L(7, 1, 3) = 11.937 (13) 

bits. Since this is less than the “obvious” coding length of 14 bits, there 
seems to be some relationship between the attribute “humidity” and the 
class of the object. The complexity of representing the exceptions has been 
reduced by breaking it into two parts. 

Of course, we would also need to include the the cost of describing this 
simple decision tree (containing only one decision node), before we can 
decide if such a partition is worthwhile. 

4.4. Coding Decision Trees 

How can I code a decision tree efficiently? It seems natural to use a 
coding scheme where smaller decision trees are represented by shorter 
codewords than larger decision trees. 

We assume for now that the attributes have only a finite number of 
values, as in our example. We discuss countable or continuous-valued 
attributes later. Our procedure for encoding the decision tree is a recursive, 
top-down, depth-first procedure. A leaf is encoded as a “0” followed by an 
encoding of the default class for that leaf. 

To code a tree which is not a leaf, we begin with a “1,” followed by the 
code for the attribute at the root of the tree, followed by the encodings of 
the subtrees of the tree, in order. If the root attribute can have v values, 
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then the code for the tree is obtained by concatenating the codes for the u 
subtrees after the code for the root. This procedure is applied recursively to 
encode the entire tree. 

If there are four possible attributes at the root, we need two bits to code 
the selected attribute. However, note that attributes deeper in the tree will 
be cheaper to code, since there are fewer possibilities remaining to be used 
deeper in the tree. As an example, the code for the tree of Fig. 1 would be: 

1 Outlook 1 Humidity 0 N 0 P 0 P 1 Windy 0 N 0 P 

This corresponds to a depth-first traversal of the tree, where O’s indicate 
leaves (with following default class) and l’s indicate decision nodes (with 
following attribute name). The substring “1 Humidity 0 N 0 P” corresponds 
to the left subtree of the root, the substring “0 P” corresponds to the 
middle subtree, and the substring “1 Windy 0 N 0 P,, corresponds to the 
right subtree. Here the code for “Outlook” would indicate that we are 
selecting the first attribute out of four, so this would require two bits. On 
the other hand, the code for “Humidity” would require only lg(3) bits, 
since there are only three attributes remaining at this point in the tree, 
since “Outlook” is already used. The example tree requires 18.170 bits to 
encode. 

The proposed encoding technique above for representing trees is nearly 
optimal for binary trees, but is not so good for trees of higher arity. In 
general, a uniform b-ary tree with n decision nodes and (b - 1) n + 1 leaves 
will require bn + 1 bits using our scheme (not counting the bits required to 
encode the attribute names or default classes), whereas the number of b-ary 
trees with n internal nodes and (b - 1) n + 1 leaves is (see Knuth, 1968, 
Exercise 2.3.4.4.11) 

1 bn 

(b-l)n+l n ’ 0 
the base two logarithm of which is 

bnH 0 1 +1&W -- M(b- 1) n) 271 
b 2 2 ---2+0(l), bit(n) k 2 (15) 

where H(p) is the usual entropy function (using base two logarithms). 
Even counting the extra bits required to specify the size of the tree, the 
proposed coding scheme is not as efficient for high arity trees as one might 
desire. 

To fix this, the following approach can be used. Consider the bit string 
representing the structure of the tree (i.e., excluding the attribute names 
and default classes). For binary trees this string contains nearly as many 

613/80/3-4 
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ones as zeros, whereas for trees using attributes of high arity there will be 
many more zeros than ones. Suppose the tree has k decision nodes and 
n-k leaves. Then the tree’s description string will be of length n and will 
contains k ones. Note that k < n - k since all tests will have arity at least 
two. Thus we should specify the cost of describing the structure of the tree as 
L(n, k, (n + 1)/2). To obtain the total tree description cost, we then add in 
the cost of specifying the attribute names at each node and the cost of 
specifying the default class for each leaf, using the cost measures previously 
described. 

There are several ways one can improve upon the above coding techni- 
que. A simple example is to note that in some cases the default class of a 
leaf is obvious. (If the classification problem is binary, the leaf is the right 
child, and the other child is a leaf, then the default class for the leaf must be 
the complement of its sibling’s default class, otherwise the decision is 
useless.) We do not pursue these approaches here. 

4.5. Coding Exceptions 

In addition to coding the decision tree, I need to code the exceptional 
objects whose classes are different than the default classes of their 
categories. 

For binary classification problems, this is relatively straightforward, 
since all I need to do is to indicate the positions of the exceptions. 

We prefer to do so on a category-by-category basis, since this works 
most smoothly with our procedures for growing a good decision tree. 
There are other obvious candidate encoding schemes-such as coding up 
the locations of the exceptions in a global manner-which may be more 
efficient as coding techniques overall but which are more difficult to 
integrate into search procedures for good trees. 

Let us return to our example. Given our example decision tree, we have 
divided the set of objects into five subsets: 

sunny outlook & high humidity: N, N N 

sunny outlook & normal humidity: P, P 

overcast outlook: p, p, p, p 

rainy outlook & windy: N N 

rainy outlook & not windy: p, p, p 

The exceptions (there are none) can be encoded with a cost: 

L(3,O,l)+L(2,0, 1)+L(4,0,2)+L(2,0,1)+L(3,0,1)=5.585 bits. 

(16) 

The total cost for our communication problem using the example tree is 



INFERRING DECISION TREES 241 

thus 18.170 bits for the tree, plus 5.585 bits for the exceptions-a total cost 
of 23.754 bits. 

For non-binary classification problems, we propose coding the excep- 
tions using an iterative approach within each category (assuming the 
default class for the category has already been coded in the structure of the 
tree): 

l Identify the locations of the exceptions. 

l Identify the most common class occurring among the exceptions; 
this is the “first alternative class” for that category. 

l Identify the locations of the “second-order” exceptions within the 
exceptions; these objects are neither default class for the category nor the 
first alternative class for that category. 

l Iterate as necessary with higher order exceptions and higher order 
alternative classes until no further exceptions remain. 

4.6. Coding Real- Valued Attributes 

For real-valued attributes (such as age or weight) we must modify our 
coding techniques. The approach we propose is to find a good “cut point”; 
a decision node will not only name the attribute (e.g., age) but also the 
value of the cut point (e.g., 40), so that the decision will be a binary 
decision of the form “Is age < 40?“. In computing the length of the 
description of the decision tree, we will need to explicitly measure the cost 
of representing the value of the cut point. 

There are two approaches that come to mind: 

l Using values of the known objects. Suppose that for the desired 
attribute the n given objects have rn d n distinct values. A decision node can 
specify a real-valued cut-point by sorting the m real values associated with 
the known objects, and specifying the ith such number by specifying i. 
Although one could merely specify i using lg(m) bits, it seems preferable 
to use some short encodings to represent a well-distributed set of i’s. One 
such approach is to order the fractions i/m so that we first have 
an approximation to 4, then approximations to t and $ then good 
approximations to b, & 2, & and so on. The jth such approximation is 
represented by coding j using only lb(j) bits (see Appendix A); this 
represents the ith largest value of the attribute on the given data. A second 
approach is to select approximately J- m evently spaced values from the 
sorted list of values, and to use lg(&) bits to indicate which one to use as 
a cut-point. For a justification of a very similar approach, see Wallace and 
Boulton’s (1968) paper. 

l Using compactly described rational numbers. A binary rational 
fraction with numerator a and denominator 2b can be represented by the 
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pair of integers (a, 6). The coding techniques described, for example, in 
Appendix A, can be used to encode these integers. It may not pay to use a 
high-precision number in a test if a simpler number performs nearly as well. 

Although we have experimented with these approaches, it is difficult to 
distinguish their performance; for definiteness, let us propose the second 
method. 

5. DISCUSSION 

We now have a well-defined procedure for me to use to communicate the 
class column to you. I will pick the decision tree which “pays for itself” in 
terms of the data compression it permits by coding the induced subset 
separately. 

The decision tree I pick will be a good decision tree for the data (relative 
to the coding method selected). It reflects the important structure in the 
relationship between the attributes and the class of the objects but will not 
contain decisions whose effect is not strong enough to justify their inclusion 
in the tree. The communication cost measure provides a rationale for 
picking the right intermediate amount of structure. 

6. COMPUTING GOOD DECISION TREES 

It is probably difficult to compute the best decision tree under our 
measure. Hyalil and Rivest (1976) prove that constructing an optimal 
binary decision tree is NP-compte when the cost of a tree is its external 
path length; it may be possible to modify this proof to handle the current 
situation, although we have not done so. 

Heuristics for growing good trees in a top-down manner derive naturally 
from the discussion of the previous section. 

The incremental cost of replacing a leaf with a decision node is easily 
measured. Suppose there are A attributes altogether in our problem, and 
we are considering replacing a leaf at depth d with a decision node based 
on some attribute. Suppose that on the path from the root to this leaf at 
depth d, there are d’ <d discrete attributes tested. These attributes cannot 
be tested again, so that d’ of the A attributes are not eligible for use in this 
position. Thus, there are A -d’ attributes eligible, and to indicate which 
one is selected will require lg(A -8) bits. If the attribute selected has v 
possible values, the rest of the incremental cost for describing the 
additional tree structure (exclusive of the attribute name but including the 
new default classes) is 20 - 1 bits. 
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This operation splits one subset into v subsets. We can measure the 
extent to which the exceptions can now be coded more efficiently. If the 
savings so obtained is greater than the cost of extending the tree, the exten- 
sion should be selected. If several such extensions are possible, we can pick 
the one that yields the greatest net savings. 

We propose a two-phase process for growing a good decision tree. 
In the first phase we begin with the null tree (a single leaf) and continue 

to extend the tree by iterating the following procedure until the tree is 
perfect or cannot be grown any further: 

1. Let x be a leaf whose corresponding category of objects are of 
varying classes, such that it is possible to replace x with a decision node 
(i.e., x is not at maximum possible depth). 

2. For each possible attribute A that might be specified in the 
decision node to replace x, compute the total communication cost if this 
change is made. (The cost is the resulting description length for the tree 
plus exceptions. Note that only a portion of the code is changed, making 
this computation a local one.) 

3. Replace x with the decision node least total communication cost. 
(Note that the total communication cost may go up.) 

During the second phase, the tree is repeatedly pruned back by replacing 
decision nodes (all of whose children are leaves) by leaves, whenever this 
improves the total communication cost, until no further improvement in 
communication cost is possible. 

One can easily imagine more elaborate search procedures which work 
harder to find better decision trees under our complexity measure. For 
example, we could select the attribute (if any) to use in a given decision 
node by explicitly considering the quality of all of the depth zero, one, or 
two decision subtree trees that can be built at that position. The attribute 
at the root of the best such subtree would be selected as the attribute to use 
at that position, and the process would begin over to select the attributes 
(if any) to use at the positions in the next level of the tree. 

We note that choosing an attribute with a large number of values is 
penalized using the cost measure suggested here. This addresses one of the 
difficulties raised by Quinlan. With many previous methods of growing a 
decision tree, an attribute with many values would have a high chance of 
being chosen, since it split the set of objects into many subsets. One can 
imagine, for example, using the “object number” attribute (the first column 
of our Table I) at the root of the decision tree(!). Although there is no real 
“structure” here, using this attribute in our example allows the object set to 
be divided into sets which are purely of one class or of the other (i.e., the 
individual objects). This approach is penalized using the MDLP, since the 
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TABLE II 

Experimental Results 

Data set Size 

HYPE 11 
Discordant 15 
LED 83 
Credit 14 
Endgame 15 
Prob-Disj 17 

MDLP 

Error rate 

0.6% 
1.9% 

26.9% 
17.4% 
17.9% 
20.5% 

Size 

11.0 
13.6 
56.0 
32.5 
62.6 
42.6 

c4 

Error rate 

0.55% 
1.25% 

28.1 % 
16.1 % 
13.6 % 
14.9 % 

cost of specifying the attribute will not be justified in terms of the extra 
compression achieved in transmitting the class information. 

It is interesting to note that for the small example given above, the 
“humidity” attribute is the most promising according to our measure, 
whereas Quinlan selected the “Outlook” measure for the root of the tree. 
However, with our measure we find that even the “Humidity” decision 
node is too costly; it is better to have the trivial tree consisting of just one 
leaf. The given example is really just a toy example because of its small size, 
and our approach realizes this by noting that for this example, no non- 
trivial tree is worth paying for. For this example, our use of the MDLP 
would suggest that given the available data, it is best to guess that the class 
of an unseen object is “P,” independent of its attributes. (Recall that our 
stated objective is to be able to classify new, unseen, objects well, nor to 
classify the given objects perfectly.) 

7. EMPIRICAL RESULTS 

In order to test this approach of using the MDLP to guide the inference 
of decision trees from data, we implemented it and compared it with one of 
the best-performing alternative approaches. This approach is called “C4 
with pessimistic pruning” and is described by Quinlan (1987). We tested 
our approach on six data sets also used in (Quinlan, 1987). We note that 
the C4 procedure is nondeterministic in nature, and we obtained our 
results by averaging over a number of trees grown with the same data 
set-hence the non-integral average tree sizes in the table. In contrast, our 
MDLP approach is deterministic, and only one tree is produced for a given 
set of data. 

The “Size” columns represent the size of the average size of the decision 
tree computed (number of leaves). The “Errors” columns represent the 



INFERRING DECISION TREES 245 

percentage error rate of the decision trees constructed on new examples. 
These error rates were computed by constructing a decision tree using two- 
thirds of the available data as a training set, and then using the remaining 
one-third as a test set. 

For those data sets which had real-valued attributes, the decision trees 
created used one of the known n values of that attribute as a cut-point, and 
charged the tree lg(n) bits for representing that cut-point. 

The trees created using the MDLP were grown out to the maximum 
possible size first, using MDLP to guide the selection of the attributes, and 
then pruned back in a way that minimized the description length. 

We see that the trees created with the MDLP compare favorably with 
those created using the C4 technique with pessimistic pruning, In the 
“Hypo” data set, they created exactly the same decision tree. In general, the 
MDL method created smaller decision trees (the LED data set was the 
exception). However, for the last two problems the decision trees created 
by using the MDL are probably too small, resulting in a larger error rate. 
It is not unlikely that our coding techniques have some residual inefhcien- 
ties that are particularly relevant for these examples. 

Overall, we are very encouraged by these experimental results. The 
MDLP provides a unified framework for both growing and pruning the 
decision trees, and these trees seem to compare favorably with those 
created by other high-performance techniques. Moreover, we believe that 
there certainly is room for further study and refinement of our methods, 
which will very likely result in even better overall peformance. 

8. EXTENSIONS 

The proposed procedure for growing decision trees should work well in 
the presence of noisy data. As the noise level increases, the tree grown 
should decrease in size, since the significance of the existing dependencies of 
the class on the attributes will be masked. 

The proposed procedure can easily be adapted to handle “training sets” 
which are especially representative of the concept being learned. One 
simple way to do so is to associate a “frequency count” larger than one 
with each input object in the data set. If it is desired that the decision tree 
produced will classify each object in the training set correctly, these counts 
can be set to a large value. (As the counts increase, the savings that can be 
realized by using a perfect decision tree increases relative to other decision 
trees.) 

As a special case of the above notion, we can imagine replicating the 
data set some number c times. This is approximately equivalent to saying 
that if we separate my communication into t “tree bits” and d “data bits,” 
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TABLE III 

Experimental Results for Various c 

Data set 

C=I c=2 c=8 

Size Error rate Size Error rate Size Error rate 

HYPE 11 0.6% 15 0.6% 19 0.5% 
Discordant 15 1.9% 23 1.8% 31 1.1% 
LED 83 26.9% 93 27.0% 95 27.0% 
Credit 14 17.4% II 13.5% 76 17.0% 
Endgame 15 17.9% 35 11.5% 71 12.0% 
Prob-Disj 17 20.5% 45 13.5% 69 13.0% 

that the total cost should be t + cd rather than just t + d. As c increases, we 
can afford to record in our “best” tree ever more subtle dependencies. In 
the limit as c -+ co, we can afford a perfect decision tree, if one exists. While 
the minimum description length principle suggests using c = 1, we can 
adjust c to reflect our a priori understanding of the representativeness or 
completeness of the given data set. In the notation of Section 2.1, c = c,/c,; 
larger values of c say that as lengths increase the probabilities associated 
with the data strings decrease faster than the probabilities associated with 
the tree strings. Table III gives some experimental results for various values 
of C. At the moment we have little theory or justification for using values of 
c other than 1; however, our empirical results suggest that using values of c 
somewhat greater than 1 may sometimes be advantageous. We leave this 
issue as an open problem. 

9. CONCLUSION 

We have discussed the application of Rissanen’s minimum description 
length principle to the induction of decision trees. While the approach 
proposed here is close in spirit to that of Quinlan in looking at the infor- 
mation content of strings, we also charge for the cost of representing the 
tree itself. Our experimental results demonstrate the viability of this 
approach. 

APPENDIX A: A VARIATION ON CODING STRINGS 

In this section we describe a variation on the above procedure for coding 
strings which more strongly favors strings with high bias and derive a 
different measure L’(n, k, 6) for the complexity of a string of length n 
containing exactly k l’s, where k < 6. The idea is to code the integer k in 
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such a way that smaller k’s have shorter representations. This corresponds 
to a change in the probabilities assigned to data strings by the theories 
associated with the decision trees. 

Consider coding a message k drawn from the set (0, 1, . . . . b}. We will 
also be interested in coding nonnegative natural numbers in a similar man- 
ner. The scheme proposed here is very close to the approach suggested by 
Rissanen (1983) for the latter case and “truncates” this approach to handle 
the former case. (Other schemes are of course possible.) 

We define the cost lb,(k) of coding an integer k chosen from the set 
(0, 1, . . . . b} by the equations 

lb,(O) = 1 
(17) 

lb,(k) = 1+ k(k) + MMk)) + lg(lg(lg(k))) + ... + c,, 

where the sum only includes those terms which are positive and where the 
constant C, is chosen such that 

,co2- 
b(k) = 1. (18) 

(As a mnemonic, think of lb,(k) as the (1)ength of k in (b)its.) We also 
denote by lb(k) the limit of lb,(k) as b + co. 

Note that in the above scheme, the number k = 0 requires only one bit to 
be coded. We note a few values of Cb in Table IV (the latter values of b are 
of the form 10’ - 1 since a given value of b corresponds to selecting from a 
set of size b + 1). Observe that the constant Cb approaches the limit 
2.865064... from below as b -+ cc (the convergence is very slow; see 
Rissanen (1983) for a derivation). 

TABLE IV 

Values for the Constant Cb 

b Cb 

2 
3 
4 
9 

99 
999 

99999 
999999 

co 

O.oOOOOO 
0.584963 
0.774258 
0.876024 
1.024858 
1.161168 
1.198712 
1.218215 
1.230730 
1.239310 
2.865064 
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Given such a representation for integers k, we can represent a string of 
length n containing k l’s (where k <b) using only 

L’(n, k, 6) = lb,(k) + lg bits. (19) 

This coding scheme favors strings with high bias noticeably, since the 
coding of k is quite short for small k. In particular, if k = 0 or k = n, we will 
need only two bits. 
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