
ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman

Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well—known technique for preserving the
privacy of sensitive information. One of the basic, apparently
inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
the data for the user; any more complicated operations seem to
require that the data be decrypted before being operated on.
This limitation follows from the choice of encryption functions
used, however, and although there are some truly inherent
limitations on what can be accomplished, we shall see that it
appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption
of the operands, for many sets of interesting operations. These
special encryption functions we call “privacy homomorphisms”;
they form an interesting subset of arbitrary encryption schemes
(called “privacy transformations”).

As a sample application, consider a small loan company which
uses a commercial time—sharing service to store its records. The
loan company’s “data bank” obviously contains sensitive informa
tion which should be kept private. On the other hand, suppose
that the information protection techniques employed by the time
sharing service are not considered adequate by the loan company.
In particular, the systems programmers would presumably have
access to the sensitive information. The loan company therefore
decides to encrypt all of its data kept in the data bank and to
maintain a policy of only decrypting data at the home office ——

data will never be decrypted by the time—shared computer. The
situation is thus that of Figure 1, where the wavy line encircles
the physically secure premises of the loan company.

Copyright © 1978 by Academic Press, Inc.

iJencodEJ±tt
—encodes
(—decodes [eta bank Lii:]

Figure .2

This organization permits the loan company to utilize the
storage facilities of the time—sharing service, but generally
makes it difficult to utilize the computational facilities
without compromising the privacy of the stored data. The loan
company, however, wishes to be able to answer such questions as:

What is the size of the average loan outstanding?
How much income from loan payments is expected next month?
How many loans over $5,000 have been granted?

These questions require computation for their answers.

There are four possibilities that the loan company may pursue:
(1) Give up the idea of using the time—shared service and

purchase an in—house computer system.
(2) Use the storage facilities of the time—sharing service

only to store the encrypted data, and use an “intelligent
terminal” at the loan company office to do the necessary decryp
tion and computation.

(3) Persuade the time—sharing company to make hardware
modifications to its computer allowing the data to exist in
decrypted form for brief moments inside its CPU, but such that
the decrypted data is not externally accessable.

(4) Use a special privacy homomorphism to encrypt its data
so that the time—shared computer can operate on the data without
the necessity of decrypting it first.

Option (1) can be very expensive, and does not necessarily
solve the problem —— some form of encryption may be desired to
protect the stored information against theft or malicious tamper
ing by the in—house systems programmers. Option (2) will work,
but entails rather large communications costs in general. Option
(3) is also workable, but requires the cooperation of the time
sharing company. In section 2, we discuss this solution briefly.
Option (4) requires only that a suitable privacy homomorphism

exist and that the loan company obtain an encryption/decryption
device implementing this homomorphism. In sections 3 to 5, we
examine the mathematical requirements for such a solution, some
limitations on its applicability, and some potentially useful
privacy homomorphisms, respectively.

II. SOLUTION BY HARDWARE MODIFICATION

In figure 2, we present a sketch of how a computer system
might be modified to solve the problem of performing operations
on encrypted data securely. In addition to the standard register
set and ALU (A,B), a physically secure register set and ALU (C,D)
are added. All communication of data between main memory and the
physically secure register set passes through an encoder—decoder
CE) supplied with the user’s key, so that unencrypted data can
exist only within the physically secure register set. All sensi
tive data in main memory, in the data bank files, in the ordinary
register set, and on the communications channel will be encrypted.
During operation, a load/store instruction between main memory
and the secure register set will automatically cause the appro
priate decryption/encryption operations to be performed.

jData Bank Files

A
I/o —*IMain Memoryl Standard Register Set

Figure 2

An obvious problem is getting the encoder/decoder (E) loadedwith the user’s key K without compromising the security of the
user’s key. One possible approach is to keep the user’s key
encrypted under control of a system key S. The encrypted form of
K, Es(K), can be transmitted over the insecure channel to the
system, decrypted by the physically secure decoder (F), and
loaded into the encoder—decoder (E). The user knows K and Es(K);the latter is obtained during a visit to the time—shared services
manager, who is the only one who knows the system key S.

Besides the problems of key management, there are questions
of the speed degradation caused by invoking the encryption!
decryption with every load or store. However, it appears that
suitably secure encryption (e.g. DES) can be performed on a time
scale comparable to that of the instruction execution of many
machines (e.g. 10 m sec).

The most severe restriction on this solution, however, is one
that will turn out to be a restriction on any solution to the
problem (even privacy homomorphisms): it is not possible to
simultaneously preserve security and give the system the operation
of performing comparisons against known constants. That is, we
may not give the computer system a means of performing operations
sufficiently powerful to enable someone who knows only Es(K) todecrypt the data. The ability to perform comparisons against
constants would allow someone to perform a simple binary search
procedure to determine the decoded value of any datum. We
examine this restriction in more detail in section 4.

III. PRIVACY HOMOMORPHISMS

One might prefer a solution which did not require decryption
of the user’s data (except of course at the user’s terminal).
That is, the hardware configuration will be that of Figure 1, but
the encryption function used will permit the computer system to
operate on the data without decrypting it.

The unencoded data and the operations to be performed on it,
we assume to be drawn from some algebraic system. An algebraic
system consists of a set 5, some operations f1, f2, ... , some
predicates p1, p2, ..., and some distinguished constants

We denote this system by <S; f1, f2, ... ; p1, p2, ...

l’ 2’
>. For example, the system consisting of the integers

under the usual set of operations might be denoted
<Z; +, —, x, ; <; 0, 1>; where Z is the set of integers.

In addition to the algebraic system of the user (let’s call
it U), we shall need another algebraic system C to be used by
the computer system. Encoding and decoding shall then mean
mapping elements from U to C or vice versa, respectively. More
formally, if

U = <S; f1, •• k’ , p; l’ Sm>

then

C = <S’; f1,
‘ k’ , P’;

5’ ‘

and we must have a decoding function : S’ - S and its inverse,

the encoding function •l: S + 5’.

In operation, the user gives the computer system a description
of the algebraic system C; in practice this means that the system
has a subroutine to compute each of the operations f.’ and predi

cates p’, as well as representations of the distinguished

constants s.’. The users actual data base we denote as the

sequence d1, d2, ... , each d1 is an element of S. However, the

user encodes each datum before giving it to the system;
—l —lthe encoded data base 4 (d1), 4 (d2)

In order for the system to be able to operate on the (encoded)
data base without decrypting it, the decoding function must be
a homomorphism from C onto U. Formally, this means that

(Vi)(a,b,c,...) [f’.(a,b,...) c > f.((a),4(b),...)4(c)],

(Vi)(a,b,.. .) p’(a,b,. . .) E p(4(a), p(b),. .
and

(Vj)
= Si

carries each operation in C into the corresponding operation in
U. Suppose now that the user wants to know the value of

f1(d1, d2). He asks the system to computef1’(1(d1), •(d2)).

Since 4 is a homomorphism,

(f1’(4(d1),1(d2))) = f1(d1, d2)

so that the system arrives at the encrypted form of the answer
without having to decrypt the intermediate results. In general,
an arbitrary computer program using the operations of U to compute
some function of the user’s data base can be transformed into
another computer program suitable for operation on the encoded
data merely by changing all f. ‘s to f’. ‘s, all p. ‘s to p’. ‘s,

liU?IULU J.. ntvesi er at.

and all s• ‘s to s’. ‘s.
1 1

The requirements on the choice of the algebraic system C and
the functions •, are:

(1) 4 and 4, the decoding and encoding functions, should
be easy to conpute.

(2) The operations f’. and predicates p.’ in C should be
efficiently computable.

—l(3) An encoded version of a datum d., 4) (d.), should not
require much more space to represent than a representation of d..

(4) Knowledge of 41(d.) for many data d. should not be
sufficient to reveal 4. (Ciphertext only only attack).

(5) Knowledge of d. and Ø(d.) for several values of d.
should not reveal 4. (Chosen plaintext attack).

(6) The operations and predicates in C should not be
sufficient to yield an efficient computation of 4. (This relatesprimarily to the use of comparisons).

IV. SOME SIMPLE OBSERVATIONS

Some inherent restrictions limit the utility of privacy homomorphisms as we have described. The most severe is probably the
following.

Fact. If the operations available in C allow the computer systemto determine the encoded version of arbitrary constants, and a
predicate “<“ for a total order is available, then there is no
secure privacy homomorphism from C to U.

This follows from a simple “binary search” strategy. For
example, for the system of natural numbers

U = <N; +; <; 0, 1>
and

C = <W; +‘; <‘; 0’, 1’>

for some set W, the malicious systems programmer on the computer
system can decode •(d.) by computing 01(1) = 1’ 01(2) =

1’ +‘l’ 4-1(4) =0_l(2)+0_l(2), and so on until he finds a k
such that •1(2k) > ‘Ø(d,). Continuing, similar strategy
enables him to compute d. exactly.

%?II LUIL4 ZJL4IIJ UIH4 £ I I I’LdI.J £1 VIIIVIIIVIJ.lIIIJII4J IFS

Other facts about the ability of one system to simulate
another are not quite so easy to see, but can be found. For
example, we have the following.

Fact. If C is over the natural numbers and has the operations of
addition, multiplication, and a binary equality predicate and a
unary predicate “equal” to zero, then it has the capability to
test for equality to an arbitrary constant.

The proof follows from x=k <=> (x + 0) r.. (x2 = x+ . .+x)

k times

Lynch [1] gives an excellent study of the relationships
between one algebraic system and another which simulates +.

V. SOME SAMPLE PRIVACY HOMOMORPHISMS

We give here four sample privacy homomorphisms. These are
intended primarily as examples to support the hypothesis that
useful privacy homomorphisms may exist for many applications.
Some of them are rather weak cryptographically; a “chosen plain—
text attack” may break them. We list them anyway to illustrate
the kinds of privacy homomorphisms that may exist.

Example 1. Suppose U = <Z1; +p_l p—l>’ the system of

integers modulo p—l with the operations of addition and subtrac

tion, where p is a prime number. We may choose C = <Z;x,+>,

the integers modulo n where n = pq, the product of p and a large
prime q. Let g be a generator modulo p. Then we choose

-l - x
• (x) = g (modulo n)

and the decoding function is the inverse “mod(p) logarithm, base
g” function. by the laws of exponents, • is a homomorphism. If
n is difficult to factor (both p and q are large) and the prime p
is such that logarithms modulo p can be efficiently computed
(see [2]), then the computer system can be given both g and n
without fear of compromising the security of the data.

Example 2. Suppose U = <Z; x;E
>,
the integers modulo p

with multiplication and test for equality. Again, letting npq,
where q is a large prime and supposing that n is difficult to
factor, we may take

—l e
• (x) = x (mod n).

Konald L. Kivest et at.

Since (Xe)(Ye) = (XY)e this is a homomorphism. This is, in fact,
the encoding function used by Rivest, Shamir, and Adleman in
their method of implementing public—key cryptosystems [3]. The
security of this system should be very good, even if the computer
system is given both e and n.

Example 3. U = <Z; +n x>, where n is again the product
of two large primes p and q such that n is difficult to factor.
We choose to represent each element of Zn by a pair of numbers:

4(x) = (x mod p, x mod q).

The computer system forms the sum, difference, or product of two
encodings by performing the operations componentwise, modulo n.
Without knowing p and q, the system is not able to decode any
numbers. Since there are several possible encodings of a given
number, test for equality is not possible.

Example 4. Suppose U = <Z; +, —, x>, the system of integers
under the usual operations of addition, subtraction, and multi
plication. The user chooses an integer n and represents all of
his data in radix—n notation. The computer system can operate on
these values without knowing n (and thus without knowing the
unencoded data) by allowing individual coordinate positions to
exceed n. For example, if n = 17, we have

,_l(23) = (1,4)

—l(44)
= (2,10)

.1(1012) = ,_l(23.44) = (2,18,40).

Again, test for equality are not possible since a given number
might have several representations. The computer system can also
find an encoding of any given constant by just using that constant
in the units position.

By combining two systems of the above sort, one can implement
the rational numbers using “fractions”. This system is not
really secure against a “chosen plaintext attack”, although it
has many good properties otherwise.

Example 5. Suppose we again have U = <Z; +, —, x>, the system
of integers under the operations of addition, subtraction, and
multiplication. Let k be chosen so thai all intermediate results
used in any calculation are less than 2 , and let a0, a1, ...

akl be k randomly chosen integers. The encoding of the integer

x, where x
= Xkl •.. x1x0 in binary notation (each x. is 0 or 1)

tin LJUSU DUflC3 UflU rrlvUty r1o1nu1norpfllrn. 11/

is the k—tuple (f(a0), f(a1), ... ,
f(a)) where

k—i
f(Z) = x.Z1

i=O

The encoded representations can be operated upon componentwise.
Decoding means interpolating a polynomial through the given
values and then evaluating that polynomial at the point Z2.
This privacy homomorphism is not very space efficient. The
security of the system, even against a chosen plaintext attack,
looks like it involves solving high—order nonlinear equations
for the a. ‘s, but there are possibly cryptanalytic shortcuts.

VI. CONCLUSIONS

Privacy homomorphisms provide a novel way of ensuring the
privacy of data which must be operated on. They are of
inherently limited applicability, since comparisons may not in
general be included in the set of operations to be used. In
addition, it remains to be seen whether it is possible to have
a privacy homomorphism with a large set of operations which is
highly secure. The results presented here give a basis for some
optimism about finding useful privacy homomorphisms; the examples
given here are suggestive if not very practical. The open
questions are

Does this approach have enough utility to make it
worthwhile in practice?

For what algebraic systems U does a useful privacy
homomorphism exist?

REFERENCES

[1] Lynch, N. and E. Blum, “Efficient Reducibility Between
Programming Systems”, Proc. 9th Annual ACM Symposium on
Theory of Computing, (Boulder, May 1977), pp. 228—238.

[2] Pohlig, S. and N. Heilman, “An Improved Algorithm for
Computing Logarithms Over GF(p) and Its Cryptographic
Significance” (to appear IEEE Trans. Info. Theory).

[3] Rivest, R., A. Shamir, and L. Adleman, “A Method For
Obtaining Digital Signatures and Public—Key Crypto Systems”,
Massachusetts Institute of Technology, Laboratory for
Computer Science, Technical Memo, TM—82, April 1977. (to
appear in CACM).

RonaldL. Rivest et al.

DISCUSSION

Rabin: I would like to mention an additional consideration
concerning safety. One of the most attractive proposals here was
really doing the arithmetic modulo. Iben n is the product of p
and q and when you do the component—wise modular arithmetic, you
don’t do it modulo p and q separately, you do it in modulo n
arithmetic. That looks pretty good because we don’t know how to
factor numbers. However, a possibility for cracking any of these
systems, is that the adversary has a special knowledge. Sometimes
the adversary has under his control, part of the input data. He
is the depositor in a bank which is manipulating his bank account.
So, he actually knows the values of A, B, C and so on which are
being encoded. Now, one would have to consider the possibility
of looking at the encoding, one might be able to find the factor—
ization of n in this particular case.

Rivest: It’s quite plausible that one might be able to break
it, then.

Rabin: Yes, and there are similar considerations of challen
ging the system by feeding it known information and following its
course within the encrypted version, feeding it encrypted inf or—
mation and following its course must be taken into account when
we’re evaluating its safety.

Gaines: Maybe I misunderstood, but I thought that p and q
would be chosen outside the system. Separately for each
individual. So that no one would have the opportunity to do
what you said.

•fl *.4tL4 ASL4ILfl.) L4fl4 £ I I’LIt.J tIIIIJIIIJI1JIIIJIIIU

Rabin: May I add a remark? If you then propose to have
different p and q for each customer, which is quite difficult and
impractical, sometimes a non—innocent by—stander has knowledge of
how much money you deposited. The other problem again exists.
You must assume at least spotty partial information about the
data which is going to be protected.

Rivest: All the systems I’ve presented, I think, are
susceptible to variations of that kind of attack. I do not
consider any of them very satisfactory for precisely those kinds
of reasons.

