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SUMMARY

Networks of the future will be characterized by a variety of computational devices that display a level
of dynamism not seen in traditional wired networks. Because of the dynamic nature of these networks,
resource discovery is one of the fundamental problems that must be solved. While resource discovery
systems are not a novel concept, securing these systems in an efficient and scalable way is challenging.
This paper describes the design and implementation of an architecture for access-controlled resource
discovery. This system achieves this goal by integrating access control with the Intentional Naming System
(INS), a resource discovery and service location system. The integration is scalable, efficient, and fits
well within a proxy-based security framework designed for dynamic networks. We provide performance
experiments that show how our solution outperforms existing schemes. The result is a system that
provides secure, access-controlled resource discovery that can scale to large numbers of resources and
users. Copyright c© 2004 John Wiley & Sons, Ltd.
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infrastructure

1. INTRODUCTION

Resource discovery is one of the fundamental challenges that must be faced in the context of pervasive
computing. While resource discovery is vital to enabling operation in pervasive networks, their
unpredictability and dynamism give rise to problems of security. As a resource provider, we want
to guarantee that foreign users that enter our environment will not be able to act maliciously. Similarly,
as a user in a foreign environment, we want to know what resources we are able to use and which ones
we can trust. Such access restrictions are easily handled in fixed networks as foreign users can simply
be denied admission to the network. But the fundamental notion behind pervasive computing gives
rise to the idea of resources and users of varying privileges interacting in the same environment [1].
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While several systems [2–4] propose resource discovery solutions for dynamic environments, they do
not consider how the integration of security protocols influences scalability and performance.

Resource discovery systems are typically implemented in the network layer, below security, allowing
networks to overlay any desired security protocol. An access control framework can be layered over a
resource discovery protocol, but these two protocols seem to have different goals. The problem is that
the best criteria-matching resource (e.g. ‘the nearest, least-loaded printer’) may not necessarily be a
resource to which a user has access.

The primary focus of this paper is to address the issue of resource discovery in a pervasive computing
environment. More specifically, this paper presents a system that integrates access control with resource
discovery in order to enable scalable and efficient operation. This paper describes a resource discovery
system that is scalable and efficient and is designed to elegantly integrate with a larger proxy-based
security system [5].

The proxy-based security system uses a distributed SPKI/SDSI protocol [6], which allows
for private, encrypted communication between heterogeneous lightweight devices in a pervasive
computing environment. In this architecture, each resource has an associated trusted software
proxy whose primary function is to execute commands on behalf of the resource it represents.
Proxies store certificates and other secure information for the resource they represent. Two security
protocols are utilized: a computationally inexpensive protocol for resource–proxy communication
and a sophisticated SPKI/SDSI access control framework layered over a key-exchange protocol for
resource authorization between proxies.

The architecture presented in this paper makes four key contributions.

• A scalable model for resource discovery based on the Intentional Naming System (INS) [7] that
integrates access-control information with service information.
• Integration of access-controlled resource discovery with a proxy-based security infrastructure to

provide secure and authentic communication in a pervasive computing environment.
• Implementation of resource lookup that makes access control decisions while finding the best

resource.
• Design of lightweight, efficient access control lists.

Section 2 gives the background for this research. We summarize the resource discovery problem in
terms of a simple scenario in Section 3. Section 4 details our system architecture and describes how
we have developed an access-controlled resource discovery system. We present the advantages and
performance evaluation of our system in Section 5. We conclude the paper in Section 6.

2. BACKGROUND

The resource discovery system presented here is designed to be an integral part of a larger proxy-based
security architecture [5]. Resources are defined to be any piece of hardware or software that is providing
a service to members of the network. A resource may be location-aware. In this architecture, each
resource has an associated trusted software proxy. A proxy is software that runs on a network-visible
computer and its primary function is to execute commands on behalf of the resource it represents.
Proxies store certificates and other information for the resource they represent and are trusted implicitly.
Proxies communicate with each other using a protocol based on SPKI/SDSI (proxy–proxy protocol).
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Figure 1. An overview of the basic components in the proxy-based security infrastructure. Proxies communicate
via the proxy–proxy protocol. Devices and resources communicate with proxies via the resource–proxy protocol.

A separate resource–proxy protocol is used for secure communication between resources and proxies.
Having two different protocols allows us to run a computationally-inexpensive security protocol on
impoverished resources and a sophisticated protocol for resource authorization on the more powerful
resources and proxies. Figure 1 shows an overview of this system and the protocols it uses. This system
is used as the foundation for the secure resource discovery system that we develop here.

3. THE PROBLEM RESTATED

The problem that the system in this paper solves is that of how to scale a system of resources that
are protected by access control. It is tremendously inefficient if users repeatedly attempt to contact
a resource that they are prohibited from using. One only has to consider an environment with a large
number of protected resources. If users have no knowledge of which resources they can access, it could
take an exhaustive computational effort to find an accessible resource. In order to gain scalability and
efficiency, the resource discovery system needs to know about access control privileges so that it can
return the best resource to which a user has access. By knowing the user’s authorizations (i.e. the
groups to which the user has membership) and the access control lists of the supported resources, a
resource discovery system can effectively meet this goal.

3.1. A simple scenario

This issue is especially pertinent when dealing with networks where the state of the network is highly
dynamic. It is very plausible that users will not know exactly what resources are available, nor will
they know which resources they are authorized to use. As a simple example, consider an environment
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Figure 2. This figure illustrates the conflict experienced by a resource discovery system in
an access-controlled environment. How does Edward find the closest, accessible copy of

schedule.doc without needing to perform an exhaustive search?

which treats all devices in the network as resources in a peer-to-peer application. Figure 2 illustrates
the following scenario:

Edward, a manager at a large software firm, arrives in the morning at a conference with
his location-aware device. Upon arriving and coming online, Edward wants to download
his personalized conference schedule for the given day. At this conference, there are two
tracks: one for managers and one for software developers. Thus, the users in the system are
divided into two groups, KA managers and KB developers. All the users already at
the conference have a document, schedule.doc, in their repository, but the document
is track-specific. That is, the copy of schedule.doc that members of KA managers
have is different than the copy that members of KB developers have. When Edward
comes online, he wants to synchronize his copy of schedule.doc by getting the latest
version. The conference is spread out over several buildings and the users are spatially far
apart. Because the physical area of the conference is large, there is no central repository
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for the schedules. Instead, schedule distribution and synchronization happen peer-to-peer.
As a member of KA managers, Edward must get the document from another member of
his group. Members of KA managers do not have access to the schedules of members of
KB developers, and vice versa. Edward would also like to get the schedule from the
geographically closest user, in order to minimize his delay and make the synchronization
process as fast as possible.

3.2. Problems

This scenario creates a conflict of interests. Not only must Edward find the closest user, but he must
also find a user that is in his group (a resource to which he has access). A simple resource discovery
system could easily tell Edward the location and identity of the closest user. This problem has been
solved many times over [7–9]. But how does Edward know if the physically closest user is a member
of his group? And, if this user is not a member of his group, where exactly is the closest member of
Edward’s group? Mobility of the users only further complicates the issue. It would be time consuming
and inefficient for Edward to blindly search for the closest member of his group. The only way in
which a resource discovery system can identify the closest, accessible resource is to know ahead of
time Edward’s identity and authorizations.

3.3. A naı̈ve solution

Before presenting our solution, it is instructive to outline a naı̈ve solution. This solution will be used as
a baseline of comparison in terms of performance and will be important for the analysis of Section 5.
Resource discovery systems that do not incorporate the ideas presented in this paper will typically
operate by returning the address(es) of the best criteria-matching resource, without accounting for a
user’s access privileges. It will become clear that issues of scalability and efficiency are major obstacles
with such a system.

In attempting to discover the geographically closest user, Edward will query the resource discovery
system through his personal proxy. The proxy will tell the resource discovery system to ‘find me
the closest user’. Ideally, Edward would like to contact the closest, accessible user, but this resource
discovery system does not know anything about Edward’s identity or authorizations. In response to the
query, the resource discovery system will return a list of the geographically closest users to Edward’s
proxy. At this point, Edward’s proxy does not know which of the resources in the list are accessible to
him. The only reasonable way for the proxy to proceed is to sequentially iterate through the resources
in the list in the hope that they are accessible. The proxy must engage in some sort of authorization
check in order to determine if the user has access to the resource. As long as a contacted resource fails,
the proxy will have to repeat the process.

This approach can be inefficient and surely is not scalable. If a given user has access to every
resource in the network, then the efficiency of access control is not an issue. But, in most heterogeneous
environments, users are assumed to be diverse and access privileges will exhibit the same differences.
In Edward’s scenario, if he is not close to any users of his group, he would have to iterate through many
inaccessible resources before finally finding a match. Edward is faced with executing a process on the
order of O(n) if there are n other resources in the network. The results of Section 5 will illustrate this
point.
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4. SYSTEM ARCHITECTURE

A better approach would be to give the resource discovery system knowledge about the access control
lists that protect the resources. We require that the designed system be secure, efficient, scalable, and
robust. In order to meet our goals, the INS [7] was selected. The solution presented here uses several
modifications to intentional naming that enables access control decisions to be made while finding the
best resource. Before detailing our solution, we summarize INS as a standalone resource discovery
system.

4.1. Intentional naming overview

INS is a resource discovery and service location system intended for dynamic networks. INS is ideal
for dynamic networks because an application only needs to tell the service the resource characteristics
it is seeking. Since the availability of resources may be dynamic, these systems require a naming
service that is just as flexible. The Domain Naming Service (DNS) works well for static networks
since an application can be fairly confident in the names of resources. INS provides users with a
layer of abstraction so that applications do not need to know the availability or exact name of the
resource for which they are looking. A simple example of a user’s request in INS is to find the nearest,
least-loaded printer. DNS would require the user to know the exact name of the resource, such as
pulp.lcs.mit.edu.

INS uses a simple language based on expressions called name specifiers, which are composed
of an attribute and value. An attribute is simply a category by which a resource can be classified.
For example, a camera in the system can be described by its resolution, battery-life,
and/or available-memory. An INS name, or intentional name, is a hierarchy of these atomic
name specifiers. An example of an INS name is [service=camera [resolution=640x480]
[battery-life=87%] [available-memory=56mb]] to describe a camera with the
specified properties.

INS is composed of a network of Intentional Name Resolvers (INRs) that serve client requests
for resources and maintain information about the searchable metadata of each resource. Data are
represented in the form of a dynamic name-tree, which is a data structure used to store the
correspondence between name specifiers and the destination resource. The structure of a name-tree
strongly resembles the hierarchy of a name specifier. Name-trees consist of alternating levels of
attributes and values, with multiple values possible at each attribute. A particular name specifier is
resolved by traversing the tree, making sure to visit all the corresponding attribute–value pairs of the
target resource. Each leaf value in the name-tree has a pointer to a name-record, which holds the
physical location of the resource. Figure 3 illustrates an example name-tree.

4.2. Security integration with INS

The solution presented here uses several modifications to intentional naming that enable access control
decisions to be made while finding the best resource. While INS does allow for a security framework
to be layered over it, we have already seen how a system can benefit from integrating access control
decisions with resource discovery. INS is extended in the following three ways to provide access-
controlled resource discovery:

1. implementation of a real-time maintenance of the access control lists in the INS name resolvers;
2. introduction of a certificate-based authorization step during resolution of an INS request; and
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Figure 3. A graphical view of an example INS name-tree. The name-tree consists of alternating layers
of attribute-nodes, which contain attributes and value-nodes (possible values). Value-nodes contain

pointers to all the name records to which they correspond.

3. design of a lookup algorithm that prunes the possible name records by eliminating resources
based on a user’s identity and authorizations.

In the following sections, the key extensions of INS are presented. Finally, we will return to the
scenario that is discussed above to see how this new system integrates access-control information
and INS knowledge to efficiently return the best, accessible resource. Another key factor influencing
this design was its inclusion as a small piece of a larger security infrastructure. Therefore, some of
the components of this design were chosen to leverage the existing functionality of the proxy-based
security system [5].

4.2.1. Storage of ACLs in INS

Assuming that resources have the ability to inform INS of the access control lists that protect them,
how can these lists be properly stored in the INS knowledge base so that they can be referenced when
making resource decisions? INS uses a name-tree to store its knowledge about resources in the system.
Name-trees are dynamic, changing their structure based on how resources advertise and re-advertise
themselves to INS.
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An access control list is treated as an additional attribute that defines a resource. One can specify a
camera based on its resolution, say; similarly, an access control list is just another way to classify
the camera. In order to store ACLs as attribute–value pairs, a new type of attribute was introduced.
Previously, all attributes were treated as searchable, in that they were used as a dimension along which
a resource can be explicitly queried. But, when a user makes a request for a resource, the user cannot
specify the ACL attribute–value pair in the query. Nor do we want the ACLs being represented as
additional branches in the name-tree. So, in order to store ACLs, the concept of a hidden attribute was
defined. INS attributes are now defined as searchable or hidden, with the only hidden attribute being
that of the ACL. When advertising its service profile, a resource will advertise its ACL like any other
searchable attribute, but the name resolvers are responsible for denoting the ACL as a hidden attribute
and storing it on the name-record for the particular resource.

Storing ACLs as attribute–value pairs is advantageous because we do not change the manner in
which data are stored and we do not have to radically alter the way in which queries are handled
(Section 4.2.2). The structure of the name-tree remains the same, while the hidden attributes are stored
directly on the name-records for each resource.

4.2.2. Redesign of lookup algorithm and ACL propagation

Adjie-Winlop et al. [7] describe the LOOKUP-NAME algorithm that INS uses to retrieve name-records
for a given name-specifier. This algorithm operates by pruning attribute branches of the name-tree
that fail to match the given search criteria, ultimately arriving at a subset of all the name-records that
contains the possible matching resources. This algorithm works well with the way name-trees are
organized in INS. Since the name-trees consist of alternating levels of attributes and values, it is very
easy to prune branches of the tree while progressing through the target name-specifier. But, left alone,
this algorithm fails to work with hidden attributes such as ACLs.

Due to the transparency that is required, users will not explicitly construct queries with ACL name-
specifiers. One option for determining a user’s accessible resources would be as follows. First, the
LOOKUP-NAME algorithm would be run to completion, arriving at a list of criteria-matching resources.
At this point, INS would have a handle to the name-records for each of the matching resources.
We could proceed by iterating through these possible name-records and checking whether the user
making the request is on the ACL. While this approach will save us considerably over the approach of
contacting each of the resources for access decisions, it still is inefficient. A closer inspection of the
LOOKUP-NAME algorithm reveals additional ways in which this process can be optimized.

We designed a modified algorithm, LOOKUP-NAME-AC (illustrated in Figure 4), that eliminates
potential name-records while pruning S, the set of all possible name-records. The LOOKUP-NAME-AC
algorithm operates under some assumptions on the state of the INS name-tree. In order for the algorithm
to terminate successfully, the algorithm assumes that each value node in the name-tree contains an
intermediate ACL. This intermediate ACL is computed to be the logical OR (∨) of the intermediate
ACLs stored at all of the value nodes that are its children in the INS name-tree. Beginning at the value-
nodes that contain pointers to name-records, intermediate ACLs are computed. For these leaf nodes,
the intermediate ACL is simply the ACL of the name-record to which it points. After computing the
ACLs at these leaf nodes, the intermediate ACLs for the parent nodes are computed all the way up the
name-tree. OR’ing (∨) multiple access control lists happens at the ‘entry’ level. That is, the result of
the logical OR (∨) of two ACLs is a new ACL with every entry that exists in either of the two ACLs.
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1 LOOKUP-NAME-AC(T , n, k) {
2 S ← the set of all possible name-records
3 if !(T .acl contains k) � acl check
4 return
5 end
6 for each av-pair p :=(na,nv) in n

7 Ta ← the attribute-child of T such that Ta = na

8 if Ta == null

9 continue
10 end
11 if nv == ∗ � wild card matching
12 S′ ← ∅
13 for each Tv := value-child of Ta

14 if Tv .acl contains k � acl check
15 S′ ← S′ ∪ NAME-RECORDS(Tv)
16 end
17 end
18 S ← S ∩ S′
19 else � normal matching
20 Tv ← value-child of Ta such that Tv = nv

21 if IS-LEAF(Tv) ‖ IS-LEAF(p)
22 if Tv .acl contains k � acl check
23 S ← S ∩ NAME-RECORDS(Tv)
24 end
25 else
26 S ← S ∩ LOOKUP-NAME-AC(Tv, p, k)
27 end
28 end
29 return S ∪′ NAME-RECORDS(T )
30 }

Figure 4. This algorithm looks up the name-specifier n in the name-tree T for the user k and
returns all accessible matching resources.

For example, if acla = [e1, e2, e3] and aclb = [e1, e2, e4, e5], then

acla ∨ aclb = [e1, e2, e3, e4, e5] (1)

where the notation acl = [e1, . . . , en] indicates that e1, . . . , en are entries of the ACL. Figure 5
illustrates how ACLs are propagated up the INS name-tree from the leaf nodes.

The modified algorithm is similar to its predecessor, except now it eliminates candidate records based
on whether the user is included in intermediate ACLs. This new algorithm takes the user’s identity and
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Figure 5. This figure shows how ACLs are propagated from the leaf nodes up the INS tree to the root
of the data structure. At each intermediate value-node in the tree, an ACL is stored and is computed

by taking the logical OR (∨) of the ACLs at all of the child nodes.

authorization rules as arguments. For each name-specifier in the INS query, INS will prune branches
that do not match the search criteria and that do not contain the user in their intermediate ACLs through
a series of recursive calls. When the algorithm terminates, it returns only the relevant, accessible name-
records. By taking the OR of the ACLs, we enable access control decisions to be made while INS
is locating the proper name-record, eliminating the need to iterate through inaccessible resources and
branches of the tree. This simplifies the task of the lookup algorithm as well as potentially reducing
the amount of the name-tree that needs to be traversed. This algorithm terminates without the need to
backtrack and does not ever check a given ACL more than once. The additional cost of this algorithm,
though, is clearly in these checks that the algorithm must make for each name-specifier, but we argue
in Section 5 that this tradeoff is still advantageous.

4.2.3. Dynamic maintenance of name-trees

ACLs are resource properties that may change. Groups or keys may be added or removed, or the
operations allowed by a particular group/key may be changed. In dealing with name-tree maintenance,
there are three qualities that any design should achieve.
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• Freshness. Our primary goal is to keep the state information in the INS name-tree fresh. At any
point in time, we want to know with high probability that the access control and resource
information is up-to-date.
• Responsiveness. The maintenance procedure should be responsive to changes made to the access

control information. It is important that changes to ACLs are rapidly reflected in the INS
knowledge base.
• Authentication and privacy. Finally, maintenance updates should be authentic and private.

There are a whole suite of attacks that can be centered around unauthentic updates (replay,
DoS). Also, entities should not be able to maliciously learn sensitive information about resources.
For these reasons, the security of maintenance updates is very important.

Many of these issues have been considered when designing INS for service updates, so our focus is
specifically on how access control updates are handled. Responsiveness is achieved by using triggered
updates which are fired when an ACL changes state. Periodic updates are also used to enforce freshness.
The utility of these updates comes from the fact that ACLs typically have expiration times. Clearly, the
update period should be chosen such that it is less than the ACL expiration time (Tupdate < texpire)
but not so small that it unnecessarily floods the network with update packets. Upon receiving an
update request, INS actively modifies its name-tree to reflect the current state of access rights and
intermediate ACLs are recomputed. Handling the privacy and authenticity of these messages, as well
as the authenticity of messages in which a resource updates INS with its other service attributes, is a
subject of ongoing research.

4.2.4. User authorization rules

In order for this system to function, INS needs access to the user’s set of current authorizations.
The modified lookup algorithm depends on knowing the user’s identity and the groups of which he
is a member. Each proxy in the system stores a user’s signed SPKI/SDSI certificates. Clarke et al. [10]
describe an efficient algorithm for determining, from a set of SPKI/SDSI certificates, the access control
groups of which a particular user is a member and the operations that he is allowed to perform.
Complete and detailed descriptions of the procedures are found in [10], but this is well beyond the scope
of this paper. In essence, a (finite) transitive closure is taken over the certificates, and rules representing
the user’s authorizations are extracted. The rules are simple and not signed. However, each rule has a
representation as a signed user certificate, or a chain of signed user certificates. The closure algorithm
is run when there is a change in the user’s certificates, such as when he acquires a new certificate, or
when one of his certificates expires.

The proxy presents the user’s authorization rules to INS with the user’s query. INS uses the rules
to check if the user is on an (intermediate or leaf) ACL contained at a node in the INS tree (using the
LOOKUP-NAME-AC algorithm). An important point is that these ACL checks performed by INS can
be made fast and efficient. The ACL check is used to determine if a user is on an ACL, and it is not
necessary for INS to know the proof that the user would generate to show that he is on the ACL.

When INS has completed its searching and returned an address, the proxy will then use a secure
authentication and authorization protocol to contact the resource [5]. The modified INS system we
present now returns only resources to which the user has access, so the proxy should only have to
execute this security protocol once.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1099–1120



1110 S. RAMAN ET AL.

4.3. The scenario revisited

After presenting the components of the access-controlled resource discovery system, it is helpful to
revisit the scenario presented in Section 3.1 to see how this new system handles the same problem.

Again, Edward is looking to obtain a copy of his schedule, schedule.doc, from the closest user
in his group. Edward places a request for the document via his proxy. Edward does not explicitly
have to indicate to his proxy his group membership or the fact that he wants to retrieve the document
from another group member; this is handled automatically by his proxy. Edward’s proxy contacts
an INR with which it has previously registered. It then queries the INR for the best accessible
resource, translating the request specified by Edward to an INS-specific name-specifier. Edward’s
proxy also computes his authorization rules (they may be computed on the fly or pulled from the
proxy’s cache) and sends them along with the request to the INR. The INR, which has received
access control advertisements from all the registered resources in the network, takes the request and
the user’s authorizations and executes the LOOKUP-NAME-AC algorithm. After a single execution of
this algorithm, the INR returns the closest, accessible resource to Edward’s proxy. Edward’s proxy then
uses a secure protocol to contact the resource and uses a standard secure copy protocol to retrieve the
file from the resource. Because INS knew about Edward’s group membership, it returned a resource
that is accessible, meaning the time-consuming security protocol would only have to be executed once.

5. EVALUATION

A prototype system was implemented in Java using INS 2.0, a pure Java implementation of INS. In this
section, a formal evaluation of this system is presented. The overall goal is to quantify how our design
outperforms a resource discovery system that does not integrate access control with resource decisions.
These experiments were all conducted using off-the-shelf Intel Pentium II 266 MHz computers with a
512 KB cache and 128 MB RAM, running Windows NT Server 4.0. The software was built and run
using Sun’s Java Virtual Machine version 1.3.

5.1. Comparison of resource retrieval time

A measure of the time savings of our solution is necessary to evaluate its effectiveness. As a baseline,
this system will be compared with a basic scheme, where INS is used as the resource discovery
system, but does not have access to ACLs or the authorizations of the requester. This basic scheme
was described in detail in Section 3.3. For convention, we will assume that the user, U , is operating in
a network with n total resources.

To understand the performance gains of this new solution, we must analyze the time it takes
U to successfully access the most optimal resource and compare this time in both the basic and
access-controlled systems. This time is denoted as tBASIC for the basic scheme and as tAC for the
access-controlled system. Each of these time values can be generally expressed by the following
equation:

tx = tquery +
( n∑

k=1

bk · (tlatency + tacl-check)

)
+ tcrypto (2)
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tquery is the query time, the time it takes the resource discovery system to respond to U ’s request. tquery
also includes any time U ’s proxy uses to prepare the request. bk is a Boolean value, which is 1 if U

contacts resource k and 0 if U does not. tlatency is the round-trip network latency between two proxies.
This is essentially the time it takes U to retrieve a resource’s ACL over the network. tacl-check is the
ACL-check time, the time it takes for a simple ACL check to be performed. ACL checks were made
very fast with our adopted implementation (as will be shown later in this section). Finally, tcrypto is the
time it takes U to derive the full authorization proof and for this proof to be verified by a particular
resource’s proxy.

5.1.1. tBASIC

In the basic scheme, the time for U to successfully access the most optimal resource is given by the
following equation:

tBASIC = tqueryBASIC +
1

p
· (tlatency + tacl-check)+ tcrypto (3)

This derivation of tBASIC can be found in [11]. tqueryBASIC is the time it takes the LOOKUP-NAME
algorithm to execute and p is the probability U has access to a given resource.

5.1.2. tAC

Similarly, the time to retrieve a resource using our access-controlled solution is given by:

tAC = tqueryAC + tlatency + tcrypto

= tqueryBASIC +Dn · tacl-check + tlatency + tcrypto (4)

The key difference is that tAC is not dependent on the likelihood that U has access to a given resource.
Instead, the query time, tqueryAC, depends on Dn, which represents the number of ACL checks that will
have to be made while traversing the INS name-tree. It is a function of the number of resources in the
network (n), but is also affected by the complexity of the name-tree and name-specifiers. For more
details, see [11].

5.1.3. Name lookup performance, tqueryBASIC and tqueryAC

To quantify the difference between tqueryBASIC and tqueryAC, we constructed a large, random name-
tree and timed how long it took the tree to perform 1000 random lookups using each algorithm.
The name-tree and name-specifiers were chosen uniformly according to the parameters defined in [7]
(ra = 3, rv = 3, na = 2, and d = 3). n, the number of distinct, unique names in the tree, was varied
from 1 to 13 000 in increments of 100 to see how tqueryBASIC and tqueryAC vary with increasingly large
name-trees. The maximum heap size of the JVM was limited to 64 MB, thus limiting the range of the
experimentation.

Figure 6 shows the results of this experiment. Using the basic LOOKUP-NAME algorithm, the
performance went from a maximum of around 700 name lookups/s to a minimum of 200 lookups/s.
From Figure 6, it is evident that as the number of names in the name-tree increases, the lookup rate
decreases. As a result, the amount of time required for a single lookup increases. But, the drop-off is not
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Figure 6. A comparison of the lookup rates for the two algorithms as the number of names in the name-
tree varies. The lookup rate (lookups/s) is plotted against the number of names in the name-tree. For the
standard case, the lookup rate progressively gets smaller, starting from a maximum of around 700 lookups/s
to 200 lookups/s. In the access-controlled case, each name in the name-tree is protected by an ACL with 10
unique keys. As the number of names increases, the lookup rate progressively gets smaller, starting from a

maximum of around 325 lookups/s to 240 lookups/s.

as drastic as one would think and clearly is not linear. For a moderately large system with approximately
2000 resources (or names), the average lookup time is around 1.8 ms. For small systems consisting of
hundreds of resources, the lookup time is around 1.4 ms. These times are small and the difference in
lookup times between the small and large systems is minimal.

The experiment was repeated in the access-controlled case. Each resource was initialized with
ACLs containing 10 unique entries and the intermediate ACLs were computed. Figure 6 presents
the performance results of the LOOKUP-NAME-AC algorithm as the number of names in the tree
varied from 1 to 3500. As is evident from this figure, the lookup rate is significantly reduced from
the rate without the ACL checks. The experiment was terminated at a maximum of 3500 names
due to memory constraints of the JVM. With approximately 100 name-records in the tree, a rate of
325 lookups/s was achieved. In the non-access-controlled case, this rate was much higher at around
700 lookups/s. At approximately 3500 name-records, the rate of the LOOKUP-NAME-AC algorithm
was at 240 lookups/s, indicating only a drop of about 90 lookups/s. Conversely, the rate in the basic
case dropped to 450 lookups/s with 3500 names, indicating a drop of 250 lookups/s.

Table I details the average lookup times for the two algorithms for varying sizes of the name-tree.
The difference between the lookup times is on the order of a few milliseconds and can be attributed
directly to the intermediate ACL checks that are made. In the following section, it will be shown
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Table I. The average lookup time experienced by the two
algorithms for varying sizes of the name-tree.

Average lookup time (ms)
Names in
name-tree LOOKUP-NAME-AC LOOKUP-NAME

100 3.24 1.45
200 3.23 1.47
500 3.35 1.48

1000 3.52 1.61
1500 3.66 1.76
2000 3.80 1.88
2500 3.94 2.04
3500 4.23 2.31

that tacl-check, the time for a simple ACL check, is approximately 0.07 ms. Based on the name-trees we
used during the experimentation, we can calculate approximately 15 intermediate ACL checks. This
roughly accounts for a 15× 0.07 ≈ 1.05 ms difference between the lookup times. The data in Table I
seem to support this back-of-the-envelope calculation.

5.1.4. ACL performance, tacl-check

One of the fundamental differences between a basic solution and ours is the use of ACL checks during
the name-lookup process. In order to determine the cost of an ACL check, random large ACLs were
constructed with the number of distinct entries in the ACL ranging from 1 to 14 000 and the number
of ACL checks that could be executed in the span of a second was measured. Figure 7 illustrates the
results of this experiment. As expected, as the number of entries in the ACL grows, the ACL check
rate decreases logarithmically. ACLs in our system are represented by red-black trees (binary trees),
keyed by the users’ public keys, that guarantee a log(n) time cost for adding new indices and looking
up values. As the number of entries in the ACL goes from 1 to 1000, the check rate decreases by
500 check/s. A similar rate decrease can be seen as the number of entries is varied from 1000 to
10 000.

Figure 7 shows five stratified regions of lookup rates that correspond to the number of decisions that
must be made in order to find a key in the ACL. Depending on where a key is located in the range
of possible keys, the number of decisions to find it in the tree can vary. For an ACL of 1000 entries,
the time it takes to perform an ACL check can be one of the following values: 0.083 ms, 0.074 ms,
0.067 ms, or 0.061 ms (according to the four different regions in the graph). These values are an order
of magnitude smaller than the time taken by the LOOKUP-NAME algorithm to find a name. Therefore,
the idea of making several ACL checks during the name retrieval process adds a minimal time cost and
seems very reasonable.
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Figure 7. The ACL check rate (in ACL checks/s) is plotted against the number of entries in the ACL.
It is evident that the rate decreases with an increasing number of entries, but only slightly. Also of

note are the four regions of concentration of points.

5.1.5. Round-trip network latency, tlatency

tlatency is the round-trip network latency between proxies in the network. It is a fundamental component
of the resource retrieval time in the basic solution (tBASIC), which requires a client proxy to explicitly
contact potential target proxies in order to determine access privileges. To estimate this parameter,
simulations were run in ns [12].

A precise measure of tlatency is somewhat subjective, as the exact value of the round-trip time between
two proxies depends on the network infrastructure, the number of hops between proxies, the current
traffic conditions, the link bandwidth, and any additional network characteristics. For simulation
purposes, we adopt a network structure where proxy–proxy communication will take at most two hops.
Two routers are linked together, with each router containing seven end proxies, each sending packets
according to the following traffic flows. A third router is connected to INS and the other two routers.
Therefore, in order to communicate with another proxy, a proxy must only send packets through two
hops. The links between proxies and routers each have a bandwidth of 133 Mbps and a propagation
delay of 5 ms. The router–router links have a bandwidth of 100 Mbps. There are three main traffic flows
in this network, namely Proxy–Proxy traffic, Proxy–INS service updates, and Proxy–INS requests.
A single proxy–proxy flow was started between two proxies and the round-trip time (CRTT) for each
packet was measured over a span of 30 s. Figure 8 shows the results of this experiment.
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Figure 8. The results of the proxy–proxy latency simulation are shown here. The RTT of packets sent between
proxies is constant throughout the packet flow. The mean RTT between two network proxies is 48.37 ms.

As is evident from this figure, the RTT stays almost constant throughout the duration of the traffic
flow. Initially, there is some variance as TCP uses a slow-start mechanism to find the optimal window
size. But, after equilibrium is reached, the mean RTT of proxy–proxy communication is 48.37 ms.
It is worth noting that in a network with many resources, this number is a best-case scenario. The link
bandwidths used were large, the propagation delays were small, and the two-hop assumption will break
down as the number of resources increases. Despite using favorable conditions, we see that tlatency is
three full orders of magnitude larger than tacl-check. As will be shown in Section 5.1.6, this result plays
a key role in determining the efficiency of our access-controlled resource discovery system.

5.1.6. tAC versus tBASIC

In this section, we analyze the difference in retrieval times between the two solutions. Subtracting
Equation (4) from (3), we get

�t(n) = tBASIC(n)− tAC(n)

= 1

p
(tlatency + tacl-check)− (Dn · tacl-check + tlatency) (5)

From Equation (5), we can see that whether the access-controlled scheme outperforms the basic scheme
depends on whether 1

p
·(tlatency+tacl-check) is greater than (Dn·tacl-check+tlatency). If it is, we can conclude

it is more efficient for INS to perform the ACL checks as it descends down its name tree, rather than
leaving this up to the user’s proxy. In order to make this comparison, we consider our scenario (in
Section 3.1) with 1000 total users divided equally among the two groups (KA managers and KB

developers). Therefore, the probability that Edward has access to any given resource is p = 0.5.
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If we also assume the structure of the name-tree is as described previously, Dn = 15. From our
experiments in Section 5.1.4, we will assume an ACL check with 1000 entries per ACL takes 0.083 ms.
Finally, the latency between proxies will be assumed to be 48.37 ms (as calculated in Section 5.1.5).
Using these parameters, the difference in lookup time is

�t(n) = 1

0.5
(48.37+ 0.083)− (15 · 0.083+ 48.37)

= 47.291 ms (6)

Even with the parameters chosen to favor the basic solution, the access-controlled solution wins by
a large margin. It is likely that this is a conservative estimate. With 1000 resources in the network,
tlatency will likely be greater than 48.4 ms as the propagation delays of the links will increase and the
number of hops between proxies will increase. Furthermore, if p becomes smaller, the basic solution
is subject to more trips across the network, making our savings greater. The main difference in the
resource retrieval times for each solution can be attributed directly to the fact that ACL checks are
extremely fast. Our solution is not subject to the network latency and the three orders of magnitude
saved in performing an ACL check give our solution a clear advantage. The query time saved in the
basic solution is minimal compared with the time that the ACL checks save.

5.2. Performance of ACL propagation

The LOOKUP-NAME-AC algorithm requires that intermediate value nodes in the name-tree have
computed the logical OR of all the ACLs in its subtree. In order to do this, the propagateAcls
method is called periodically (for freshness) and any time a triggered update is initiated by a user’s
proxy.

The propagateAcls method is invoked every time an update to an ACL occurs. For analysis
purposes, the time between ACL updates is denoted εtriggered. Immediately after an ACL update occurs,
the propagateAcls method must be called. Since the method is synchronized, the name routers
cannot service any incoming requests during this time, backlogging requests in a queue. This creates
somewhat of a ‘time-slotted’ service model (as shown in Figure 9), where the requests can only be
serviced between the end of the execution of propagateAcls and the time the next update arrives‡.
Essentially, the INR can serve requests for some time, update itself, serve requests, and so on. Clearly,
the goal here is to minimize the maintenance time with respect to the available service time so that the
service slots are much bigger compared to the maintenance slots.

This ‘slotted’ model can potentially lead to problems, because users will not stop sending requests
when the INR is under maintenance. A queue will build up as the name-tree is under maintenance and
the requests in the queue along with all other requests must be processed before the next update arrives,
or the system will experience congestion and collapse. If we model the queue as an M/M/1 queue [13]
with Poisson arrivals and exponential service times, a formulation can be made as to when operation
of the system will be successful (i.e. no collapse). The arrival rate of INS requests is λ. The service rate

‡In reality, there are other maintenance updates that the INRs handle, such as changes to service profiles (e.g. growth in the
number of documents in a particular printer’s queue, or a particular speaker going offline, etc.). But for the simplicity of this
analysis, these updates are ignored here. The argument presented can be easily extended to account for these updates as well.
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Figure 9. The propagateAcls method must be called after an ACL update has been sent to the INR. Since
the method is synchronized, new requests cannot be serviced while the method is being executed. Servicing of

requests can only occur between the execution of propagateAcls and the next update.

is µ (the average service time is 1/µ). In this system, 1/µ equals tqueryAC. The time for the execution
of propagateAcls is tpropogate. The collapse condition will occur if all the requests are not serviced
before the next ACL update arrives. While the INR is under maintenance, we expect NQ, the queue
size, to grow to λtpropagate (by Little’s Theorem [13]). Similarly, while the INR is in the service slot, the
number of incoming requests will be λ(εtriggered − tpropagate). The time to service these requests must
be less than the duration of the service slot in order for queue buildup to be avoided. That is

εtriggered � tpropogate · µ

µ− λ
(7)

Is it a reasonable assumption that this condition holds? We have seen that tpropogate is on the order of
a few seconds and 1/µ is on the order of a few milliseconds. According to Equation (7), it can be seen
that as long as the INR is not receiving requests at the same frequency (every few milliseconds), then
the system will be fine. Even if λ is on the order of a request/ms, the frequency of ACL changes will be
in minutes, not milliseconds. The condition in Equation (7) will easily hold and the system operation
will be smooth.

5.3. Tradeoffs

The premise our solution makes is that basic solutions scale poorly and are based on inefficiencies
that limit the performance of the system. Specifically, finding a resource requires explicit contact
to check access privileges. From the experiments, we have verified this by showing our solution
significantly reduces the resource retrieval time. At the same time, it makes a large system with
many resources manageable and efficient. A similarly sized system may be inoperable under the basic
resource discovery approach.

While saving time, our solution does add greater requirements for storage to INS. This is primarily
driven by the need to store ACLs (both resource-level and intermediate) in the name-tree, a constraint
not made necessary by the basic solution. We analyze the additional space required by our solution and
compare it with that of the basic solution.
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Figure 10. There are three plots shown here. The first plot shows the memory used by standard name-trees without
ACLs. The second plot shows the same name-trees with ACLs on the records. The final plot shows the name trees
with the ACLs after the propagateAcls method has been called (the name-trees contain intermediate ACLs).

As the number of name-records increases, the memory used increases linearly.

Ultimately, the goal is to evaluate how much more memory the access-controlled solution requires
than the basic solution. Again, using randomly constructed name trees (with the same dimensions as
described in prior experiments), the number of name-records in the tree was varied from 0 to 2500
and the physical size of these trees was measured. As a base case, the name-trees were created without
access control lists. These are the name-trees used by the basic solution. As a second experiment,
the name-trees were then created with each name-record containing an ACL with 10 unique entries.
The size of these trees was measured. The final experiment involved measuring the size of the name-
trees after the propagateAcls method was called. The propagateAcls method forces the
computation of the intermediate ACLs, so the memory used increases. Figure 10 shows the results
of these experiments.

From this figure, we can clearly see that the name-trees required by the access-controlled solution
use much more memory than the basic name-trees. A name-tree of 2000 name records that does not
store ACLs uses approximately 9.4 MB of storage, whereas a name-tree that stores ACLs and has
executed its propagation takes up 38.1 MB. In fact, from the figure, ACL-propagated name-trees use
3.75 times more space, on average, than basic name-trees:

size(TAC(n)) = 3.75 · size(TBASIC(n))

= 3.75× [(0.0185 · n)+ 0.40]MB (8)

For relatively small name-trees, this difference is not substantial. But, as the number of name-records
grows fairly large, the difference in the name-tree sizes is significant. The computational resources
required to store the name-trees become large as the system scales. As the number of name-records

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1099–1120



ACCESS-CONTROLLED RESOURCE DISCOVERY 1119

grows, the sizes of the intermediate ACLs also grow accordingly. Note, this is the worst case scenario.
Even though each ACL has 10 different entries, it is very possible that entries can be repeated across
resources, thereby somewhat limiting the size of the trees. Despite this fact, integrating access-control
into INS requires additional memory in the name routers.

Nevertheless, storage is cheap and can be solved simply by adding more memory to each INR.
However, saving time is not as simple as installing additional components to each router. As such, the
storage-time tradeoff is one that is worth making.

6. CONCLUSION

This paper has experimentally verified the merits of our resource discovery system that integrates
access control by comparing it with alternative systems. The resource retrieval time is greatly reduced
using this architecture, while security is not compromised. This allows our system to scale to levels
that traditional resource discovery systems wishing to implement access control would be unable
to efficiently reach. While the implementation and execution of this system does require additional
memory in each intentional name router, sacrificing storage for time and efficiency is a worthwhile
tradeoff.

Together with the proxy-based security model, this architecture meets all the goals of a secure
system. It features efficient and scalable access-control for all resources while integrating with a
powerful resource discovery system. We believe that this architecture is a flexible and generalized
security infrastructure ready to support the pervasive computing trends that will surely dominate the
future.
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