
W h o  H o l d s  t :he  Keys? 

I 

NIST's Proposal 
he U.S. Government agency NIST has recently proposed a public 
key digital signature standard [3, 4]. Although the proposal is 
nominally only "for government use" such a proposal, if adopted, 
would likely have an effect on commercial cryptography as well. 

In this note I review and comment on NIST's proposal. (More 
correctly, it should be called the NIST/NSA proposal, since the cryptographic algorithm 
was designed by the U.S. National Security Agency.) 

Positive Aspects 
The following positive aspects o f  the proposal are 
worth noting: 

• The  U.S. government has finally recognized the util- 
ity of  public key cryptography. 
• The proposal is based on reasonably familiar 
number-theoretic concepts, and is a variant of  the E1- 
Gamal [1] and Schnorr [5] schemes. 
• Signatures are relatively short (only 320 bits). 
• When signing, computation of  r can be done before 
the message m is available, in a "precomputation" step. 

Problems with the Proposed DSS 
DSS is different from the de facto public key standard 
(RSA). Two-thirds of  the U.S. computer industry is al- 
ready using RSA. Current  RSA users include IBM, 
Microsoft, Digital, Apple, General Electric, Unisys, 
Novell, Motorola, Lotus, Sun, Northern Telecom, 
among others. These companies are using industry- 
developed interoperable s tandards-- the  public key 
cryptography standard (PKCS) [2]. 

Moreover, DSS is not compatible with existing inter- 
national standards. International standards organiza- 
tions such as ISO, CCITT,  and SWIFT, as well as other 
organizations (such as Internet) have accepted RSA as 
a standard. DSS is not compatible with ISO 9796, the 
most widely accepted international digital signature 

standard. Adopting DSS would create a double stan- 
dard, causing difficulties for U.S. industry that have to 
maintain both DSS (for domestic or U.S. government 
use) and RSA (for international use). 

DSS also has patent problems. Users of  the NIST 
proposal may be infringing one or more patents. Claus 
Schnorr claims that DSS infringes his U.S. patent 
#4,995,082, and Public Key Partners (PKP) asserts that 
DSS infringes U.S. patents #4,200,770 and 
#4,218,582. NIST does not give a firm opinion on this 
m~itter, and has not made licensing arrangements with 
either Schnorr or PKP. This leaves potential users of  
the NIST proposal vulnerable. 

To add to the patent confusion, NIST says it has 
filed for a patent on DSS; a move that has no obvious 
justification. NIST has not stated why it has filed for a 
patent. The  only motivation I can imagine is that NIST 
may wish to force users, via licensing requirements, to 
use key sizes shorter than they might naturally wish to 
use. (See my discussion of  weak cryptography.) 

DSS has engineering problems; it's buggy. The veri- 
fication process can blow up due to division by ze ro - -  
when s = 0 in the computation of  t in equation (1). 
NIST was apparently unaware o f  the problem, or how 
to fix i t - -no  mention of  this problem is made in the 
description of  DSS. 

A simple fix is available: merely recompute the sig- 
nature (starting with a new randomly chosen k value) 
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whenever  it is de te rmined  that s = 0 in the signing pro- 
cess. 

This correction is actually necessary for security rea- 
sons as well: a user who produces a signature with s = 0 
is inadvertently revealing his or  her  secret key x via the 
relat ionship in this case: x = -H(m)/r  (mod q). 

While this bug is easily fixed, its presence certainly 
makes one wonder  about  the "quality control" used in 
the deve lopment  of  the s tandard.  

In addit ion,  DSS is too slow, especially for verifica- 
tion. The  signing speed is comparable  to (but slightly 
slower than) RSA, while the verification speed is over 
I00 times slower than RSA. Here,  ,we assume RSA uses a 
small public exponent  such as 3, as is common practice. 

This slow verification time is likely to introduce un- 
acceptable per formance  delays in many applications. I 
note that almost all public key applications are based on 
the use of  certificates to authenticate public keys. 
Often, a chain of  several certificates must be verified to 
authenticate a single public key, before it is used. In  a 
typical application then, the ratio of  verifications per-  

DSS Speci f icat ions 
The following parameters are global, and 
can be shared by many users: 

• a 512-bit prime p, 

• a 160-bit prime q dividing evenly into 
p - l ,  

• an element g of Z;, whose multiplicative 
order is q, 

• a hash function H mapping messages 
into 160-bit values. 

The following parameters are per user'. 

• a secret key x, where 0 < x < q. 

• a publ ic  key y, where y = gX (mod p). 

So the secret x is the discrete logarithm of 
y, modulo p, with base g. 

To sign a message m, a user produces 
his or her signature as (r,s), by selecting a 
random value k from Z~, and then comput- 
ing 

r = (gk (mod p)) (mod q) 

s = k - l (H (m)  + xr) (mod q) 

To verify a purported signature (r,s) for 
the message m, one first computes 

t = s -1 (mo,d q) 

and then accepts the signature as valid if 
the following equation holds: 

r = (gH(m)tyr t  (mod p)) (mod q). 

formed to signatures pe r fo rmed  is fairly large. In 
other  applications, such as software virus detection, the 
ratio can be enormous.  The  claim by NIST that signing 
speed is more  impor tant  than verification speed jus t  
does not hold for most applications. 

NIST's  proposal  is incomplete in three respects: 

• it lacks any mechanism for privacy, 
• it does not include a hash function proposal ,  and 
• no mechanism for public key certificates has been 
proposed.  

First, NIST's  proposal  is only for a public key signa- 
ture system; there are no specifications for privacy (en- 
cryption) or  the exchange of  secret keys. Many applica- 
tions require  both privacy and authenticat ion (i.e., both 
encrypt ion and digital signatures). For  example,  any 
electronic mail system that aspires to replace paper  
mail should, at a minimum, aim to achieve what one 
can get with envelopes and hand-wri t ten signatures. It 
is easy to imagine many other  applications in which 
protection f rom eavesdroppers  may be considered 
important .  For  example,  home-banking is such an ap- 
plication. So is the transmission of  sensitive corpora te  
documents  (financial or  engineering) f rom one corpo- 
rate office to another .  

Therefore ,  DSS is, at best, half  a s t a n d a r d - - i t  does 
not provide the basic functionalities one expects of  a 
full public key system. While NIST  has made com- 
ments about in t roducing an encrypt ion capability at 
some point  in the future,  one can hardly expect  it to 
happen  soon (given NSA's involvement in this stan- 
dards  process). 

Second, a hash function H was not specified in the 
original proposal ,  a l though one is clearly necessary. (At 
the time of  my writing this article, a proposal  for hash 
function had jus t  been announced;  I have not  had time 
to review this proposal.)  

Thi rd ,  NIST  has not specified how one might  create 
public key certificates which are necessary in almost all 
applications of  public key cryptography.  In essence, 
public key c ryptography depends  on the use of  authen-  
ticated public  key certificates. A signature scheme that 
does not address  how certificates are to be created (as 
does the PKCS s tandard  [2]) is not usable. 

DSS has SecurJt'~/Problems 
The  bulk of  this analysis focuses on the issue of  the key 
size o f  the proposed  DSS. 

Shared global modul i  are risky. While the NIST pro-  
posal does not require  users to use a common modulus  
p, it encourages such a practice. This is a security weak- 
ness, since "breaking" that one modulus  can compro-  
mise the security of  all users simultaneously. The  cur- 
rent  state of  comput ing  discrete logari thms includes 
algori thms that break a modulus  p by doing a precom- 
putat ion that later permits  very easy computat ion of  
the discrete logari thm of  any y value modulo  p. There-  
fore, users who share a modulus  are put t ing all their  
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eggs in the same basket. The  NIST proposal  should 
warn users away from such a p rac t ice - -each  user 
should choose his or  her  own modulus p. 

There  is a risk of  " t rap-doors" in the primes. Arjen 
Lenstra and Stuart  Haber  (in their  letter to NIST) ob- 
served that for some primes the discrete logari thm 
problem is "easy" for the person who created the pr ime 
(thus, a " t rap-door  prime"). Moreover,  it may be diffi- 
cult for a user to recognize t rap-door  primes. The  
question as to how one might  be able to effectively cre- 
ate and exploit  such t rap-door  primes is an active area 
of  research; the dust  is still being created here, instead 
of  settling down. Thus,  conservative users of  the pro- 
posed DSS should assume that whoever creates the 
pr ime p can de termine  their  secret keys x from their  
public keys y. Again, NIST should have warned users 
not to use primes created by o the r s - - each  user should 
choose his or  her  own modulus.  

The  scheme is new and untested. The  preceding dis- 
cussion is based on the assumption that the cryp- 
tanalytic problem is the "discrete logari thm problem." 
In fact, the problem here is a relatively new variation of  
the classic discrete logari thm problem. The  reason is 
that g has only o rde r  q instead of  o rde r  p - 1. It is quite 
possible that this new p r o b l e m - - b r e a k i n g  DSS-- is  far 
easier than the general  discrete logari thm problem. 
Without  fur ther  research into this new variation, it is 
difficult to assess the true level of  (in)security provided 
by DSS. Cryptographic  proposals need to withstand 
many years of  careful scrutiny before they become 
plausible candidates for field use. This is especially 
when the proposal  is based on novel mathematical  
problems. 

There  is a security weakness if k is disclosed. Signing 
with DSS requires the generat ion and use of  r andom 
numbers (the k values). It is true, but not noted in 
NIST's  proposal,  that a user's secret key can be totally 
compromised if any one of  the k values used in creating 
a signature is ever compromised.  The  secure creation 
and utilization of  the k values is thus of  critical impor-  
tance to the security of  the entire scheme. Use of  pseu- 
do random number  generat ion schemes to generate 
k involves the risk that the pseudorandom number  
scheme could be broken. While the NIST proposal  
makes a few suggestions in this regard,  it does not re- 
quire any part icular  approach,  thus permit t ing totally 
insecure choices by the user. (And to make matters 
worse, the one approach NIST does suggest involves 
the data encryption s tandard (DES), which would be 
unusable in any application involving export.)  The  
NIST proposal  is thus fatally incomplete in specifying 
how to implement  the choice of  k; the poor  user is 
given enough rope  with which to hang h imse l f - -  
something a s tandard should not do. 

Key Size Too Short 
I believe that a national s tandard based on fixed 512- 
bit key size would serve our  country very poor ly - - such  

a proposal  unnecessarily risks catastrophic failure of  
the integrity of  our  financial, industrial,  and govern- 
mental information-processing systems. 

To begin with, I question the rationale for having a 
fixed key-size at all as part  o f  the proposal.  Clearly, one 
needs a minimum key size to prevent  users from choos- 
ing key sizes that are too short  to be secure. And one 
might  want a maximum key size in o rde r  to design effi- 
cient yet fully compatible implementations.  Yet there is 
no obvious reason why the min imum required key size 
and the maximum allowed key size should be the same. 

Indeed,  the NIST "one-size-fits all" proposal  is a 
very poor  match to the engineer ing and security needs 
of  most public key applications. Typically, there are 
many users, each of  whom has a public key used by 
others to verify the user's digital signatures. Such ap- 
plications are invariably based on the use of  certificates, 
so verifiers can assure themselves that they are verify- 
ing signatures with the appropr ia te  public key. A cer- 
tificate is a message associating a user's name with his 
or her  public key; this message is itself signed by a "cer- 
tifying authori ty" whose public key is widely known. A 
typical s ignature verification then normally consists of  
two verifications: one to verify the certifying authority 's  
s ignature on the user's certificate, and then another  to 
actually verify the user's signature. 

A certificate-based application thus incorporates two 
basic kinds of  signatures: ord inary  user signatures and 
signatures by a certifying authority.  The  latter kind 
form the backbone of  the integrity of  the entire appli- 
cation, since the ability to forge certificates would give 
an attacker essentially unlimited power to corrupt  the 
system. I consider  it essential in secure public key sys- 
tem design to have certifying authorities use the maxi- 
mum allowable key size. This size is typically much 
larger than what an ord inary  user might  select for his 
or  her  own public key size. As an example,  in a typical 
RSA-based application today, certifying authorities 
might use keys of  1,024 bits or more,  whereas ordinary  
users might  choose key sizes of  500 to 800 bits. 

In  a typical application, the t rade-off  between secu- 
rity and per formance  mandates  the use of  different  
key sizes in di f ferent  parts of  the system. Certifying 
authorities,  or  users with very valuable data, must  use 
very long keys to achieve the highest possible security 
level. Other  users, with reduced security requirements  
and/or  more  str ingent performance requirements,  will 
use shorter  keys. Trying to make one-size-fit-all results 
ei ther in unacceptably low security for all users (be- 
cause all certificates will be suspect) or  unacceptably 
poor  per formance  for some users. 

In  a public key system based on number  theory, 
there is no valid technical reason for requir ing a fixed 
key size. The  under lying number- theoret ic  algorithms 
can suppor t  arbi t rary key sizes. Users and certifying 
authorities should be able to choose key sizes according 
to their  requirements.  

I now turn to a discussion of  the part icular  key size 
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NIST has chosen: 512 bits. (By key size, here,  I refer  to 
the size of  the pr ime modulus p.) I argue here that if 
one is going to insist on having: a fixed key size, then 
512 bits is far too short. 

I note that NIST  provides no justification for its 
choice of  key size. 

To estimate the necessary key size, one must under-  
stand the computat ional  resources available to an 
imagined potential  attacker, and the computat ional  
difficulty o f  the under ly ing cryptanalytic problem. Let 
me address  each of  these issues in turn. 

How much computat ional  power can an imagined 
attacker br ing to bear  to break the system? This de- 
pends on the time per iod we are talking about  (since 
technology is rapidly evolving) and the financial re- 
sources of  the attacker (to purchase the necessary com- 
put ing power). 

It is necessary to know the expected lifetime of  the 
proposed  s tandard  in o rde r  to know for what level of  
security to aim. A scheme that is considered "secure" 
today may not be secure in the year 2000, and a scheme 
considered secure in the year 2000 may not be secure 
in the year 2010. Compute r  technology is evolving at 
an incredible pace, and is likely to continue to do so for 
the next few decades. The  security of  cryptographic  
schemes thus tends to e rode  steadily over time, and the 
design of  cryptographic  systems must envision and 
plan for such erosion. 

I suggest that a digital signature s tandard  should be 
designed with a min imum expected lifetime of  at least 
25 years. Tha t  is, one should design so that a system 
adopted  in the year  1992 should still be secure in the 
year 2017. It should not be possible for an attacker in 
2017 to forge a signature, using the computers  avail- 
able then. 

Where  does "25 years" come from? To consider  the 
only available precedent  of  the lifetime of  a NIST  cryp- 
tographic s tandard,  I note that the DES was adopted  in 
1976 and seems likely to be in widespread use by 1996. 
Af ter  a cryptographic  signature s tandard  has been ter- 
minated,  an addit ional  per iod of  time is required dur-  
ing which the validity of  signatures can still be assured. 
For example,  it is not  uncommon to require  that signed 
documents  be re ta ined and be considered legally bind- 
ing for seven years. A signature produced  in the year 
2010 should still be verifiable in the year 2017, with an 
unders tood  assurance that it was not jus t  recently 
forged. I consider  a 25-year expected lifetime a mini- 
mum reasonable requi rement  for a digital signature 
s tandard.  

What  kind of  computat ional  power will be available 
to an attacker in the year 2017? It is widely asserted 
that computat ional  power (per dollar  spent) is increas- 
ing at approximate ly  40% per  year. This means we 
have an approximate  doubling of  computer  power (per 
dollar) every two years, and an approximate  increase of  
a factor of  4,500 after  25 years. Let's round  this off  to 
5,000 for our  back-of-the-envelope calculations (corre- 

sponding to 25.3 years at 40% growth/year).  In  the 
year 2017, I expect computer  power will be about  
5,000 times cheaper  than it is now. 

How big an attack should one p repare  for? Let me 
suggest that a national digital signature s tandard  
should, at a minimum, be able to withstand an attack 
costing an attacker $25 million (in today's dollars). This 
amount  of  money is easily available to large corpora-  
tions, d rug  dealers, and small countries. The re  is no 
reason that our  national security, in terms of  the integ- 
rity of  our  electronic business, financial, and govern- 
mental  information-processing systems, should be vul- 
nerable to an attack costing only $25 million. Indeed,  it 
is easy to make an a rgument  for a much higher  thresh- 
old; it is not hard  to imagine scenarios in which the 
benefit  o f  a successful attack exceeds $25 million. How- 
ever, I'll continue our  back-of-the-envelope calculation 
with the $25 million figure. 

How much comput ing  power can one buy for $25 
million? Today,  a workstation with 100MIPS can prob- 
ably be purchased in quantity for about  $5,000. An at- 
tacker wouldn' t  need all of  the per ipherals  (screen, 
f loppy disk, mouse, nice cabinet), and could economize 
by sharing such equipment  as power supplies, and 
fans. He or  she is basically interested in having many 
processors, each with a reasonable amount  of  memory.  
Let me estimate that such a "s t r ipped-down" 100MIPS 
processor would have an amort ized cost today of  
$1,000. 

A convenient  unit  of  computat ional  work is a MIPS- 
y e a r - - t h e  amount  o f  computat ion pe r fo rmed  by a 
1MIPS processor runn ing  for a year. A MIPS-year thus 
corresponds  to about  32 trillion basic operations.  I f  we 
assume that a 100MIPS processor lasts for about 10 
years, we obtain an amort ized cost estimate for today o f  
$1 per  MIPS-year of  computat ion.  (Here we are buying 
"computat ion by the yard"; our  yard is one MIPS-year,  
and it should cost about  $1 in quantity. I leave the de- 
tails of  buying computat ional  power in 2017 to your 
imagination; a simple cost-effective way might  be to 
spend considerably more  than $25 million to purchase 
hardware,  and then to resell the hardware  after  the 
computat ion is done.) 

This analysis is a bit naive, and the straight-line de- 
preciat ion over 10 years is ra ther  inappropr ia te  to use 
when the under ly ing  technology is changing so quickly. 
With the cost of  computat ion decreasing by a factor of  
1.4 every year, the value o f  the computat ional  power of  
some purchased hardware  should be ( 1 -  1/1.4)= 
29% in the first year  and the remaining 71% in the 
remaining years. Thus  the cost per  MIPS-year dur ing  
the first year would be about  0.29 $1000/100 = $2.90 
per  MIPS-year. I f  one calculates in a 10%-rate of  re- 
turn  on funds as well, the cost pe r  MIPS-year rises to 
$3.57 (details omitted). Taking these considerations 
into account, and  recognizing that there  are o ther  un- 
accounted-for  factors (ex., power supply, mainte- 
nance), we can estimate that the cost per  MIPS-year 
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today is about $4. 
We therefore  can estimate that an attacker with $25 

million to spend today could purchase about 6.25 mil- 
lion MIPS-years of  computation.  In the year 2017, the 
attacker will be able to purchase about 5,000 times as 
much, or  31.25 billion MIPS-years. I believe that a digi- 
tal s ignature s tandard adopted  today should, at a mini- 
mum, be able to withstand an attack of  31.25 billion 
MIPS-years. (This may sound like a lot o f  computat ion,  
but you can see from my arguments  that this is, in fact, 
a ra ther  conservative estimate of  the security require- 
ment  for such a standard.)  

How large a key size is needed to withstand an attack 
of  31.25 billion MIPS-years? This depends,  of  course, 
on the cryptanalytic problem to be solved. In the case 
of  the proposed  DSA, the basic cryptanalytic problem 
is assumed to be the classic discrete logari thm problem: 
comput ing x, given g, p and gX rood p. Using the best- 
known algorithms for this problem, the number  o f  
operat ions required is approximate ly  

L(p) = e lx/i~pl"lnp. 

The  state of  the art  in algorithms for the discrete loga- 
r i thm problem is still evolving, but this formula cer- 
tainly seems like a very conservative estimate o f  what 
will be possible in 2017, since it represents  what is pos- 
sible today. For  example,  with a 512-bit pr ime p (as in 
NIST's  proposal),  we see that only 

L(2512) = 6.7 X 1019 operat ions (2) 

= 2.1 million MIPS-years (3) 

of  computat ion are required to break a 512-bit prob- 
lem. Thus,  we see that the proposed DSA is over 14,000 
times weaker than a conservative analysis suggests is required. 

Another  way of  stating this result is that the DSA, as 
proposed, is breakable today within the resource bounds sug- 
gested as reasonable. (Indeed,  purchasing 2.1 million 
MIPS-years today should cost only $8.2 million, far less 
than the $25 million suggested as reasonable for an 
attacker to have available.) 

Setting L(p) equal to 31.25 billion MIPS-years, and 
solving for p, we find that the DSA should be using keys of 
at least 710 bits, minimum. 

As noted, this is a conservative estimate. It doesn' t  
plan for improvements  in the state of  the art  of  algo- 
ri thms for solving the discrete logari thm problem, 
which can have a dramatic  effect on the key size re- 
quired.  ( Indeed,  there  are already algorithms "waiting 
in the wings" that are theoretically faster than this analy- 
sis envisions, which may turn out  to be faster in practice 
as well.) The  estimate has no margin built in for faster- 
than-expected improvements  in h a r d w a r e - - s o m e  of  
my colleagues suggest that doubling every 18 months 
(a cost /performance improvement  rate of  59% per  
year) is more  realistic than doubling every two years; 
such a rate gives the adversary another  factor of  23 in 
capability over 25 years. The  analysis also does not plan 
for longer- than-expected adversaries. The  ability to 

harness for free "unused" processor cycles over large 
networks of  workstations could also dramatically in- 
crease the computat ional  ability of  an adversary,  
thereby al tering the equation fur ther  in his favor. 

The  previous discussion focuses on the choice ofp.  A 
similar discussion applies to the choice of  q. The  secu- 
rity of  the scheme certainly depends  on the choice of  q 
as well as the choice of  p. The re  is reason to wonder  
whether  a fixed 160-bit size for q is sufficiently secure 
in the face of  rapid  technological advance. Again, it 
would be best if  users could adjust the size of  q they 
select (within certain generous limits) to take into con- 
sideration such uncertainties. 

For  these reasons, and as a mat ter  of  sound conser- 
vative design, I believe that a substantial margin  of  
safety should be built into the s tandard.  Most impor-  
tant, certifying authorities should have generous key 
sizes allowed. I would strongly recommend that any digital 
signature standard based on the discrete logarithm problem 
should allow certifying authorities to use key sizes of 1,1 O0 bits 
or larger. Similarly, ordinary users should be allowed key sizes 
of at least 850 bits. Finally, users should be allowed 
greater  f reedom in the selection of  the size of  their q 
values. I feel that anything less is short-sighted and 
risky, possibly verging on the irresponsible. In crypto- 
graphic systems, responsible design is conservative de- 
sign; generous  allowance must  be made for unforeseen 
developments.  

The Selection Process is Flawed 
The  process by which the DSS proposal  was generated,  
and by which it is being evaluated, seems to be flawed. 

It is curious that NIST did not publish a Call for 
Proposals for a signature algorithm. I note that NIST 
did so when the DES was adopted.  (The DES arose 
from a proposal  from IBM.) DSS was created without 
any such public solicitation for proposals.  This is espe- 
cially curious given the much greater  cryptographic 
expert ise now available outside the government,  and 
the much larger  base of  public key applications already 
fielded. The  DSS algori thm was created by the NSA, 
and adopted  by NIST as its proposal ,  without any 
input  from U.S. industry. 

The  closed-door approach toward the development  
of  DSS, together  with NIST's  assertion regarding  pat- 
ents (see the pr ior  discussion) have created a confron- " 
rational, ra ther  than a cooperative, situation between 
NIST and the U.S. industry. 

The  very short  comment  per iod has not helped. The  
initial comment  per iod (three months) was extended by 
NIST to six months.  Even so, such a comment  per iod is 
not sufficient to pe r fo rm the mathematical  study re- 
quired to validate a new proposal.  I note that there are 
two major  worldwide technical conferences on cryp- 
tography each year (CRYPTO and EUROCRYPT);  the 
NIST comment  per iod doesn' t  include either confer- 
ence. For some reason NIST has not even provided the 
potential user community a chance to gather  and dis- 
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h Ir 

c u s s  the proposal  at its usual cryptographic  confer- 
ences, the natural  place for the technical merits of  such 
a proposal  to be debated.  

Fur thermore ,  NIST has actively h indered  the evalu- 
ation process by keeping secret all information about 
what criteria were employed in the design and selection 
of  DSS. A Freedom of  Informat ion  Act (FOIA) request 
by Compute r  Professionals for Social Responsibility 
(CPSR) for this information has been denied by NIST 
(this denial  may be illegal, and is being appealed).  

Speculation and DiSCUSSIOn 
Why is the NIST proposal  what it is? 

It is my belief that the NIST proposal  represents  an 
a t tempt  to install weak cryptography as a national stan- 
dard ,  and  that NIST is doing so in o rde r  to please the 
NSA and federal  law enforcement  agencies. The  NSA 
may prefe r  that cryptographic  expert ise and capability 
outside its own walls remain at a min imum tolerable 
level, to maximize the effectiveness of  its foreign intel- 
ligence operat ions.  A U.S. s tandard,  even if weak and 
flawed, may be widely used overseas, making NSA's job  
easier. Federal  law enforcement  agencies may fear that 
good cryptography may rende r  ineffective its tradi- 
tional use of  cour t -ordered  wiretaps. While the DSS is 
nominally a proposal  for only a signature s tandard,  
there  are several public key encryption algori thms 
known that could make use of  dis tr ibuted DSS public 
keys. A strong signature algori thm invites extension to 
a s trong public key encryption algori thm; concern 
about  this possibility is probably the major  reason 
NIST selected a scheme based on "weak cryptography"  
as its proposal .  Should DSS be ex tended  later to a pub- 
lic key encryption s tandard,  weak cryptography will 
then be built into the national encryption s tandard,  as 
well as the national s ignature s tandard.  

The  U.S. has the largest information-based economy 
in the world; we thus have the most to lose by installing 
weak cryptography as a national s tandard.  The  risk is 
greatly magnif ied if the s tandard  is not only weak, but  
brittle because users are sharing the same modulus.  

Because of  rapid  technological change, a s tandard  
based on weak cryptography will have to be replaced or  
upgraded  all too soon. This is happe ing  today with the 
DES, which was arguably a "weak cryptography" stan- 
dard .  DES is clearly near  the end of  its lifetime. The  
cost of  replacing DES in all of  the applications that use 
DES will be very large. The  cost of  having to do so in a 
few years for a weak signature s tandard  will be enor-  
mous. 

Weak cryptography implements  the wrong social 
policy. It empowers  those with large amounts  of  com- 
put ing power, and only those, to break in. There  is an 
implicit assumption here that only the government  
could have enough comput ing power to break in, thus 
cour t -ordered  wiretaps would remain  effective, even if 
c ryptography is used. But in the face of  rapid  techno- 
logical change and a national budget  crisis, this as- 

sumption is dubious.  
Are  there technical alternatives that would satisfy all 

parties? Perhaps. It is certainly the case that  the formu-  
lation of  the problem to be solved has never been made 
explicit for the cryptographic  community  to work on. I 
suspect that a solution based on "escrowed secret keys" 
might  be workable, wherein each user  is legally re- 
quired to deposi t  his or her  secret key with a trusted 
third party, such as the user's bank. Cryptographic  
hardware  and software would only opera te  with public 
keys that were certified to having their  cor responding  
secret keys appropr ia te ly  escrowed. A federal  agency 
could then obtain the secret key, or  its use, with an 
appropr ia te  warrant.  Once their  secret keys were 
escrowed, mult inat ional  corporat ions could even oper-  
ate across borders  with a high degree  of  authenticat ion 
and privacy (except from cour t -ordered  wiretaps). 
Cryptographic  hardware  and software manufac tured  
in the U.S. would not opera te  abroad without public 
keys suitably certified as having their  secret counter-  
parts escrowed in the U.S. In  an extension of  this ap- 
proach, users can escrow their  secret keys with several 
t rusted third parties in a "secret-sharing" manner ,  so 
that no single third par ty can compromise  the user's 
key. While this approach  may have its own difficulties, 
it does illustrate that weak cryptography is not  the only 
technical approach  available. The re  may be much bet- 
ter techniques for achieving a compromise  between a 
number  of  conflicting national concerns. 

I believe that the NIST proposal  represents  an at- 
tempt  to achieve a compromise  of  these concerns with- 
out  public discussion or  debate.  Unfortunately,  the 
part icipants in the private discussion were mostly on 
one side of  the table. Perhaps a more public review of  
the issues that really motivated NIST's  proposal  will 
help to form a national consensus on how to proceed.  

Conclusions 
For the reasons stated here, I feel the proposed  DSS, 
with its f ixed (512-bit) key size, is not sufficiently secure 
to be acceptable as a national s ignature s tandard.  In- 
deed,  the only purpose  to be served by requir ing a 
fixed key size is the installation of  weak cryptography 
as a national  s tandard.  Instead, users should be free to 
choose their  own security level by selecting their  own 
module and key lengths, up  to some very generous  
max imum limit. 

Fur the rmore ,  the process by which DSS was selected 
is seriously flawed. To rectify matters,  I believe NIST 
should: 

• Withdraw DSS as a proposal ,  based on the over- 
whelming negative response DSS has received dur ing  
its "request for comments" period,  
• Initiate a f rank public discussion of  our  national 
cryptographic  objectives, followed by a reconsiderat ion 
of  what s tandards are needed  to achieve those objec- 
tives. As par t  of  NIST's  contr ibution to this discussion, 
NIST should respond  positively to CPSR's FOIA re- 
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quest for informat ion regard ing  how DSS was selected, 
• Lead explicit public discussion of  whether  weak 
cryptography should be a basis for a national crypto- 
graphic s tandard.  Users of  such a s tandard should 
know whether  it was chosen because it is breakable in 
practice, 
• Rescind its m e m o r a n d u m  of  unders tanding  with 
NSA, whereby NSA was essentially given effective con- 
trol of  the s tandards process th rough  NIST, 
• Restart the process of  selecting a national public key 
s tandard by soliciting proposals from industry and aca- 
demia for such a s tandard.  

It is past the time for national cryptographic  stan- 
dards  to be designed in secret backroom negotiations 
according to h idden agendas. NIST should assume a 
leadership role by abandoning  its current  proposal  and 
starting fresh. 

Ronald L. Rivest 
Laboratory for Computer Science 

Massachusetts Institute of Technology 
Cambridge, Mass. 

Ronald L. Rivest, along with Adi Shamir and Leonard Adleman, invented the RSA 
algorithm in 1978. 
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am responding to your request for comments on the proposed 

DSS. My detailed comments follow, but I can summarize by 

saying that I am deeply concerned by faults in the technical 

specifications of the proposed DSS and its development process. 

NIST has lost considerable credibility with the non- 
military cryptographic  research community and,  unless 
the revision process of  DSS is carr ied out  in a much 
more rapid  and open fashion, NIST is likely to become 
totally ineffective in the setting of  cryptographic  stan- 
dards.  Since that would be a grave loss to both NIST 
and the nation, I hope change is possible. 

I look forward to seeing your  response to these con- 
cerns. 

1. DSS does not include key exchange. Public key 
cryptography provides two advantages over conven- 
tional cryptography:  

Key exchange: the ability for users to communicate pri- 
vately without fear of  being overheard,  and without 
using couriers, registered mail, o r  similar means for 
p rea r r angemen t  of  a secret key 

Digital signatures: the ability to sign messages which are 
easily checked by anyone, yet which cannot be forged 
or  modified,  even by the in tended recipient. 

The  DSS addresses only the second of  these two 
needs. Until a key exchange s tandard is developed,  
users who follow the s tandard will be at a severe disad- 
vantage in terms of  the privacy of  their  communica- 
tions. It would have been a simple mat ter  for NIST to 

include a key exchange s tandard  with the DSS, ei ther 
by adopt ing  the RSA system [5] for both operat ions or 
by specifying the Diffie-Hellman key exchange system 
[1] as the s tandard to be used with the current  DSS. 
(The Diffie-Hellman system is the natural  key ex- 
change choice if the proposed  DSS is used for digital 
signatures. The  DSS is der ived from the Diffie-Hell- 
man system.) Because of  its early publication (1976), 
this system possesses a high degree  of  confidence re- 
garding its security level, as discussed under  #4.  

2. The  key size is too short.  The  proposed  DSS is re- 
stricted to a 512-bit modulus  or  key size. It is generally 
accepted in the cryptographic  research community that 
this is too short  for a system such as DSS, which is based 
on discrete logarithms and which requires a long life. 
To quote from a recent paper  written pr ior  to the an- 
nouncement  o f  DSS [3], "even 512-bit primes [key size] 
appear  to offer  only marginal  security." This is such a 
well-established viewpoint that fur ther  explanation 
seems unnecessary. While there should be lower limits 
on the key size to ensure a reasonable level of  security, 
there is no reason for an uppe r  limit. If, in spite of  this 
argument ,  NIST keeps an uppe r  limit, it should be in- 
creased to at least 1,024 bits. 

The  proposed  DSS also limits the "subkey" size to 
160 bits, a value that is again too shor t )  It is possible to 
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Rather than claim an advantage for DSS or RSA in a particular environment, I 

believe the best standard is one which is usable in the greatest number of environs. 
° , , , , . . . o . . . . . , . . o . . o , . . . . * * . . ° . ° . . . , . . . . . ° o . . ,  o . . o . o .  

recover a user's secret key x from his or her public key y 
in 28o operations by using 28o words o f  memory [4]. 
(Any other breakdown can be used as long as the time 
memory product  is 216°--for example 2 l°° operations 
and 26o words of  memory.) While such a computation 
is currently infeasible, its possibility is closer than seems 
comfortable, considering probable advances in tech- 
nology and improvements in algorithms. The  particu- 
lar cryptajaalytic problem involved in breaking the DSS 
has not been well studied (see #4), making such im- 
provements highly probable. As with the 512-bit mod- 
ulus, the subkey length should not have an upper  
bound. Or, if NIST insists on keeping an upper  bound, 
it needs to be at least double, and preferably, quadru- 
ple the current 160-bit value. 

3. NIST does  not provide adequate warning on the 
danger of  us ing DSS as a c o m m o n  modulus  system. 
While common modulus systems have an advantage in 
speed of  key generation, they allow a successful attack 
on one user's secret key to be extended to all users of  
the common modulus. Using a common modulus is 
analogous to having all personnel within an organiza- 
tion use combination locks with 10-digit combinations, 
but with the first nine digits being common to all users. 
This simplifies setting the combination of  a lock, but 
allows an opponent  to amortize the cost of  an attack on 
one lock over the large number  of  locks that are then 
easily picked. 

While DSS need not be used in common modulus 
mode and there are some applications where that 
mode is desirable, clear warnings are needed about 
reduced security in common modulus mode. The  pro- 
posed DSS says the modulus "can be common to a 
group of  users" without any mention of  the attendant 
danger. 

Use of  a common modulus would be of  less concern 
if the key and subkey sizes of  DSS were increased as 
suggested earlier. 

4. DSS is based on a system which has had l imited 
time for appraisal. Cryptography is still more an art 
than a science. For most systems, including all digital 
signature systems, proofs of  security are currently im- 
possible. Instead, we rely on concerted attacks by 
"friendly opponents" intent on fame, rather than 
thievery, if they are successful in breaking the system. 
We become more confident of  the security of  a system 
as it is subjected to widespread public scrutiny for long 
periods of  time. 

The  DSS is based on Schnorr's variant [6] of  the El- 
Gamal signature scheme [2]. Thus, there has been little 

time to gain confidence in Schnorr's variation. EI- 
Gamal's system, while older, is still only half the age of  
its primary competition as a digital signature standard, 
the RSA system [5]. 

Unless Schnorr's scheme possesses some major ad- 
vantage compared to RSA, it is strange that Schnorr's 
scheme was selected as the standard. I am aware of  no 
such major advantage of  Schnorr over RSA. The  only 
advantage I see is that Schnorr's signatures are some- 
what shorter (320 bits versus 512 bits for a comparable 
security RSA using today's best-known algorithms). On 
the other hand, in addition to possessing a higher con- 
fidence level regarding its security, RSA has a major 
advantage over Schnorr: Using RSA would automati- 
cally have provided for public key exchange, a critical 
part of  the public key standard that NIST has not yet 
developed (see # 1). 

5. N I S T  igno red  the  danger  o f  p r o b a b l e  improve- 
ments  in c ryp tana ly t ic  algorithms.Cryptanalyzing the 
DSS is a special case o f  computing a discrete logarithm. 
The  history of  this problem, as well as the closely re- 
lated problem of  factoring, shows a slow but steady 
improvement. It was only about 15 years ago that th~ 
subexponential nature of  the problem was realized. 
Prior to that time, estimates of  the effort required to 
break DSS with a 128-bit key would have been beyond 
the realm of  reasonability, while today, even a 256-bit 
key would be insecure. 

Improvements  over the last 15 years in finding dis- 
crete logarithms have effectively cut key sizes by a fac- 
tor of  four. Should that happen again over the next 15 
years, the DSS would be totally insecure. For similar 
reasons, I have always advocated at least a factor of  
two, and preferably a factor of  four, as a safety margin. 
The  proposed DSS imprudently has little or no safety 
margin. 

The danger  is increased because of  recent advances. 
Until two years ago, all subexponential algorithms for 
discrete logarithms and for factoring took time of  the 
form exp[k ln(n) 1/2 (lnln(n)) 1/2] with k = 1 as the best 
value. Recently, number  field sieves have been pro- 
posed that solve both problems in time exp[k lnl/~(n) 
(lnln(n)) 2/3] with k approximately equal to 2. While the 
higher value of  k makes the new algorithm no better 
for 512-bit keys (1E20 operations versus 7E19 opera- 
tions for the earlier algorithms), it is probable that the 
value of  k will be reduced as attention becomes focused 
on number  field sieves. 

Over the last 15 years, algorithms requiring 
exp[k X/In(n)Inln(n)] operations have been improved 
from k = 2 to k = 1. It would be prudent  to assume 
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similar advances in number  field sieves, in which case 
breaking DSS would become trivial, requiring only 
1.0El0 operations, a computation that can be done on 
a personal computer• 

6. NIST has misstated patent l icensing requirements. 
Raymond G. Kammer, Deputy Director o f  NIST, has 
stated that "the digital signature standard is expected 
to be available on a royalty-free basis in the public in- 
terest worldwide. 2 Yet at least two privately owned U.S. 
patents cover the DSS (#4,200,770 and #4,218,582). 

I understand that Schnorr is claiming that his patent 
(#4,995,082) is also needed to practice the DSS. I f  
Schnorr's claim holds, then the DSS has a patent disad- 
vantage compared to either RSA or EIGamal/Diffie- 
Hellman since the U.S. government has the right to use 
the latter systems on a royalty-free basis, but I doubt  
that it has rights to Schnorr's work. (Clarification from 
NIST would be appreciated.) 

7. NIST has confused the issue of  speed comparisons. 
In his previously referenced statement, Kammer also 
stated that 

• . . the digital signature technique [DSS] provides 
for a less computationally intense signing function 
than verification function. This matches up well 
with anticipated federal uses o f  the standard. The  
signing function is expected to be performed in a 
relatively computationally modest environment 
such as with smart cards. The  verification process, 
however, is expected to be implemented in a com- 
putationally rich environment such as on main- 
frame systems or  super-minicomputers. 
Under  the environment specified by Kammer, the 

DSS would have an advantage over RSA, the primary 
competing technique. As a universal standard, how- 
ever, the DSS will often be used in complementary en- 
vironments where signing is done in a computationally 
intense environment and verification in a computa- 
tionally modest environment. A good example is the 
use of  digital signatures generated by a bank and 
checked by a customer on his or  her home computer.  
This environment would favor "small exponent" RSA 
systems which allow verification to be performed with 
approximately 1% of  the total signing effort o f  DSS 
(including precomputation). 

Rather than claim an advantage for DSS or  RSA in a 
particular environment, I believe the best standard is 
the one which is usable in the greatest number  o f  envi- 
ronments envisioned for its use. That  approach leads 
to the most widely applicable standard. On that basis, 
EIGamal or Schnorr's signature scheme is approxi- 
mately equal to RSA. Hence, none of  the competing 
systems should be deemed to have a speed advantage 
over the others. 

8. The adoption process appears to have been con- 
ducted in secret. Although listed last, this is the most 

important  change since a more open adoption process 
would have avoided most of  the DSS shortcomings 
listed here. 

I am not aware o f  any attempts on NIST's  part to 
involve researchers in academia and industry• (If  there 
were such attempts, I hope NIST will make these a 
matter o f  public record.) Rather, NIST appears to have 
worked in secret with only NSA providing advice. This 
is dangerous because much of  NSA's legally mandated 
mission involves foreign espionage which would be 
hampered by secure public encryption. As with any 
organization or  individual, NSA is likely to put greater 
emphasis on its concerns than would a neutral third 
party. 

There  is an unavoidable trade-off in that providing a 
high level o f  communications security to American 
business and citizens also makes this protection avail- 
able to our  foreign adversaries. NIST's  actions give 
strong indications of  favoring protection o f  NSA's espi- 
onage mission at the expense o f  American business and 
individual privacy. While an impartial working group 
might conclude that such a policy was in the nation's 
best interests, relying solely on NSA for advice is un- 
likely to produce an optimal trade-off  for the nation as 
a whole• 

Martin E. Hellman 
Professor of Electrical Engineering 

Stanford University 
Stanford, CA 94305 

Martin E. HeUman, along with Whitfield Diffie and Ralph Merkle invented 
public key eoptography in 1976. 

References 
I. Diffie W•, and Heliman, M•E. New directions in cryptogra- 

phy. IEEE Trans. Inf. Theory 17"-22 (1976), 472-492. 

2. EIGamal, T. A public-key cryptosystem and a signature 
scheme based on discrete logarithms. IEEE Trans. Inf. The- 
ory 17"-31 (1985), 469-472. 

3. LaMacchia, B.A., and Odlyzko, A.M. Computation of dis- 
crete logarithms in prime fields. Design, Codes, and Cryptog- 
raphy, vol. 1, 1991, pp. 47-62. 

4. Pohlig, S.C., and Hellman, M.E. An improved algorithm 
for computing logarithms over GF(p) and its cryptographic 
significance. IEEE Trans. Inf. Theory IT-24 (1978), 106- 
110. 

5. Rivest, R.L., Shamir, A., Adleman, L. A method for obtain- 
ing digital signatures and public-key cryptosystems. Cora- 
faun. ACM 21 (1978), 120-126. 

6. Schnorr, C.P. Efficient identification and signatures for 
smart cards. Advances in cryptolog): Proceedings of Crypto '89, 
G. Brassard Ed., Lecture Notes in Computer Science 435, 
Springer-Verlag, N.Y., pp. 239-251. 

~1 am indebted to Leonard Adleman of USC for pointing this out. 

~June 27, 1991 statement before the Subcommittee on Technology and 
Competitiveness of the Committee on Science, Space and Technology 
of the House of Representatives 

OOMMUNIOATIONS OF THE ACM/JuIy 1992/Voi.35, No.7 4 9  



W h o  Holds t h e  Keys? 

n response to the proposed DSS, we would like to offer a few 

constructive comments regarding the NIST approach to signature 

design based on our own experience of developing cryptographic 

algorithms and computer-based security systems. 

We would like to begin by conveying a message 
of  support  and appreciation for the work NIST has 
undertaken to develop a much needed public key DSS, 
and say that the proposed algorithm appears most suit- 
able for its alleged purpose. 

In recognition and appreciation of  the mission of  
NIST and its advisory board, the National Security 
Agency, we are sensitive to the motivations and inter- 
ests that govern the design and implementation of  any 
government-approved publicly available cryptographic 
scheme. Therefore,  we have included as part of  our  
response, a mathematical treatise which I believe aptly 
demonstrates our  understanding of  the proposed DSS 
strengths and, indeed, limitations. Also, any comment  
of  the value or  security offered by the DSS should, we 
feel, be guided by the overall system design, which 
would include message encryption, authentication, 
digital signature and a hashing function suitable to the 
overall intended security-level objectives. For this rea- 
son one might conclude the proposed DSS algorithm, 
when suitably coupled to an encryption scheme and 
compatible hashing function, could provide an entirely 
suitable methodology. 

In view of  the controversy over the widely used RSA 
system in regard to ownership, speed and compatibility 
with NIST objectives, we would like to bring to your 
attention a high-speed public key system already im- 
plemented in GF(2) 593 in combination with full DES 
functionality. Indeed, our  signature scheme is very 
close to the proposed NIST standard, but different in 
the underlying algebraic method used. Compatible se- 
curity is provided with this implementation. We would 
also bring to your attention that our  use of  a strong 
hashing function using discrete exponentiation as one 
component  of  the one-way function, also provides 
many user features and benefits. 

Given that there may be some intellectual property 
issues surrounding the use of  the concept of  subgroup 
of  order  q, this issue could be avoided by broadening 
the scope of  the NIST proposal to other algebraic sys- 
tems, which might suggest that NIST revievJ our  cur- 
rent system and elliptic curve implementation which 
will be available shortly. In the spirit of  this preceding 
point, our  modification of  E1Gamal is a significant al- 
teration of  the E1Gamal system and perhaps could dif- 
fuse patent claims based on Diffie-Hellman. Our  im- 
plementation of  E1Gamal changes the security of  the 
system from discrete logs to finding the solution of  an 
exponential equation of  the form xf(x) =/3. Our  modifi- 
cation, in terms of  security, relies on a more difficult 

problem than the discrete log problem; and more im- 
portant, since it is not patented, is freely available. It is 
also more efficient than the current NIST proposal, 
saving one computation for finding an inverse and re- 
quiring only two modular  multiplications. 

As stated previously, we offer these comments in the 
hope there might be some flexibility in NIST's  philoso- 
phy of  how it might best implement a public key DSS. 
Moreover, we would request that some grace period be 
granted to companies who have made significant in- 
vestment to bring public key systems to market, on the 
assumption of  course, that NIST is comfortable with 
the algorithmic implementation. It would be our  hope 
that NIST create a grandfather  clause in its DSS pro- 
posal with alternate criteria for digital signature to 
qualified companies for some period of  time, say two 
years, after which the DSS standard as specified would 
be fully implemented. Indeed, it would be comforting 
to see NIST choose a suitable algorithmic arrangement  
completely free o f  any intellectual property issues, for 
the benefit of  all users now and in the future. 

The Algorithm 
M6bius Encryption Technologies has studied the 
(NIST DSS) document  carefully and our  overall im- 
pression is that the standard proposed is well thought  
out and is very practical. In order  to discuss the digital 
signature algorithm, we will briefly describe it. 

Let p and q be prime numbers so that q[p - 1 and p is 
approximately 512 bits and q is approximately 160 bits. 
Let/3 be a generating element for the cyclic subgroup 
of  order  q in GF*(p). For a an integer, 0 -< a -< q - 1,/3a 
will be the public key and a the private key. Messages 
will be integers m where 0 --- m -< p - 1. 

It is assumed that a good hash function h(m) is avail- 
able. 

To create a signature: 
• We first compute the hash h(m) o f  m in order  to sign 
message m. 
• Generate a random integer k and compute r =/3k. 
• Solve the congruence for s: 

h(m) =- - a r  + ks (modq) 

The signature is the pair (s, r (mod q)). 

In order  to check signatures: 
• Compute u = /3h(m). 
• Compute v = ( / 3 a ) r ( m o d  q). 
• Compute w = UT) s-n(m°dq). 

The  signature verifies if w(mod q) = r(mod q). 
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C o m m e n t s  

• The  signature is at most 320 bits in length. With the 
s tandard E1Gamal scheme the full value of  r (and not 
r(mod q)) would be required.  This par t  of  the new pro- 
posal is very clever and appealing.  The  signature could 
be shortened fur ther  if we replace r(mod q) with the 
hash of  r (provided the hash of  r is less than 160 bits). 

• The  security of  the scheme relies on the difficulty of  
comput ing discrete logarithms in a cyclic group of  
o rde r  q. Since this group is represented  as the cyclic 
subgroup of  o rde r  q contained in the multiplicative 
subgroup of  the finite field of  o rde r  p where p is about 
512 bits long, then the security level is that required to 
compute  logari thms in a field whose o rde r  is about  512 
bits long. 

• Working modulo  a 512-bit modulus  requires all ex- 
ponentiat ions to be done with 512-bit numbers.  This 
will affect the per formance  of  the system and make 
hardware  more complex. 

• The  signing procedure  requires the computat ion of  
k - l (mod  q) and the signature verification requires the 
computat ion of  s - l (mod  q). These are not particularly 
costly since they are modulo  a 160-bit modulus,  but the 
time requirement  is nevertheless nonnegligible.  

• The  proposed  scheme could be adapted  to any cyclic 
group of  o rder  q and not jus t  those embedded  in the 
integers modulo  p (provided of  course that the group 
yields a suitable level of  security). This will be consid- 
e red  later in greater  detail. 

Suggestions and Rationale 
We also wanted to point  out  and emphasize the neces- 
sity of  a good hash function for the proposed  signature 
scheme. This is vital to the security and acceptance of  
the system. (The importance of  a hash function is 
clearly stated in the NIST document.)  
• Signature creation can be made more  efficient by 
solving the modular  equation 

h(m) ~ - a s  + kh(r)(mod q). 

Since a is the fixed private key of  the signer, a-X can 
be computed  once and for all signatures. This elimi- 
nates the need to compute  k-  1 each time a message is to 
be signed. The  signature is still the pair  (s, h(r)). Signa- 
ture verification requires h-](r)(mod q). The  security of  
the system now relies partially on the difficulty of  solv- 
ing equations of  the form x h~X)(mod q). This problem 
appears  to be as difficult as the discrete logari thm 
problem itself. 
• As mentioned,  the hash function h can also be ap- 
plied to r to reduce the signature's size. 

Broadening the Scope 
There  are several reasons why NIST might consider 
broadening  the scope of  the proposed  signature stan- 
dard.  

• the under ly ing algebraic system (GF(p)) is relatively 
slow. 
• there  are o ther  algebraic systems which might be 
more  efficient for various reasons. 
• GF(p) is more  difficult to implement  in hardware  
than o ther  systems. 
• since the intention of  the proposed  scheme is to do 
signing in a group whose o rde r  is 160 bits it seems rea- 
sonable and more  efficient to also find an algebraic sys- 
tem (in this case a cyclic group whose o rde r  is about 
160 bits) and all computat ions can be pe r fo rmed  within 
the system. For example,  the proposed  scheme needs 
to do computat ions in a 512-bit system to obtain ade- 
quate security even though signing is in a much smaller 
group.  

For clarity we describe a modification of  the NIST 
scheme as appl ied to only a cyclic group of  o rde r  q. 

An Algorithm 
Pick a cyclic group with q elements (q can be 150 to 160 
bits) in which computat ion can be carried out effi- 
ciently and yet the discrete logari thm problem is diffi- 
cult (eg., an elliptic curve system over a finite field 
would do). Let a be a r andom integer, a a genera tor  for 
the group Cq and compute  the public key aa. Let h be a 
hash function from the message space to the integers 
from 1 t o q -  1. 

To create a signature: 
• We first compute  the hash h(m) of  m in o rde r  to sign 
message m. 
• Generate  a r andom integer k and compute  r = a k. 
• Solve the congruence for s: 

h ( m ) = - - a r  + ks (modq)  

The  signature is the pair  (s, r). 

To check signatures: 
• Compute  u = ol h(ra). 

• Compute  v = (a~) r. 
• Compute  w = uv s-~. 

The  signature verifies if w = r (or w = h(r) if  we hash r). 

Comments 
• as ment ioned earlier,  one inverse computat ion can 
be el iminated by solving 
h(m) =- - a s  + kr(mod q) for s. 
• the signer can compute  h- l ( r ) (mod q) and send the 
signature (s, h-l(r)) .  This saves the verifier from having 
to compute  an inverse. 

The Mbbius Digital Signature System 
The  M6bius digital signature system, al though differ- 
ent, is closely related to the NIST proposal.  

The  public key scheme used in the Trade  Secrets 
product  is based on the finite field GF(2593). (The alge- 
braic system can be extended to GF(2 ~186) for addi- 
tional security if desired.) The  representat ion of  the 
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field is by a normal  basis and the ari thmetic processor is 
contained on a single VLSI device (Calmos par t  num- 
ber  CA34C 168). The  chip was designed by researchers 
at the University o f  Waterloo, and layed out  by Calmos 
Semiconductor  Inc. of  Kanata, Ontario.  When 
GF(2 ~93) is used the under lying algebraic system is the 
cyclic g roup  of  o rde r  2593 - 1 and if a quadrat ic  exten- 
sion (ie., GF(21 is6) were to be used, the system would be 
the cyclic g roup  of  o rde r  2593 + 1. 

Messages in our  system are binary 593-tuples. Let 
f(x) be the hash value of  the 593-tuple x obtained from 
the hash f u n c t i o n f  to be described next. Note that  if a 
593-tuple appears  in a modula r  expression we will re- 
place it by the integer  it would represent  if it were 
t reated as an integer in its binary representat ion.  For  a 
user A with private key a and public key ct ~ to sign the 
593-tuple m, A does the following: 
• A generates a r andom integer k and computes  r = a k. 
(Note that  k is a binary vector of  length 593 and that 
the exponent ia t ion is done  by the chip.) 
• A solves the congruence 

f(m) =-- as + kf(r)(mod q) 

for s where q = 2593 - 1. Notice that 

s ~- [f(m) - kf(r)]a-l(mod q) 

and so s is easily computed  once a - l  is known. 
• The  signature is the pair  (s, r). We note that s is a 
binary 593-tuple whereas r is at most a 593-tuple. 

Let K be a 256-bi tbinary string, and let S be a 593-bit 
binary string (which is to be viewed as a field e lement  in 
its coordinate  form with respect to the normal  basis N 
employed in the opera t ion  o f  the CA34C168 micro- 
processor used in M6bius products ,  hencefor th  re- 
fe r red  to as the microprocessor).  I f K  is placed in the R 
register and  S is placed in the A and B registers of  the 
microprocessor,  then under  the operat ion EXP2, K is 
expanded  to a 593-bit exponent  K ' =  g(K) and the 
value S ga¢) is computed  by the device. The  impor tant  
facts about  this from the point  of  view of  the hash func- 
tion is that g(K) is nonl inear  and the device does not 
admit  g(K) = 0, which ensures that Sg~K) is sensitive to S 
(see box for a detai led descript ion of  g as given in the 
design specification o f  the microprocessor).  

Another  primitive employed in the algori thm is best 
described in the accompanying diagram. In this primi- 
tive, a 256-bit binary string is placed in the register  la- 
beled exponent register which is best thought  o f  as a shift 
. ° ° ° . o . , , . ° ° ° ° ° ° ° ° ° °  . . . .  . . ° ° ° ° * * . ° . ° ° . o . o ° ° ° ° ° . . . .  

The instruction set for the Preload IVinto R register 
CA34C168 microprocessor is: load into input register 

Initialize R register 
LOADD 
CP22AB 
CPA2R+ 

EXP2 
TEST CBF, END IF = 1 

CPA2R+ 
REPEAT TO LOAD 

move Mr to R 
add Mi to R 

form C~ = M~ (K~ 
check for end of message 

calculate next Kj 

register with feedback through the 1-bit adder .  A sec- 
ond 593-bit string is placed in the register  labeled prod- 
uct register, and the 256-bit string (denoted by T + 28), 
is calculated by adding  bitwise, using real integer arith- 
metic, the contents of  the exponent  register and the 
product  register,  with the resultant  bit being fed back 
to the h igh-order  bit of  the exponent  register,  which 
rotates twice and then shifts another  81 positions dur-  
ing the opera t ion  (the final carry is ignored).  Alterna-  
tively, given the 256-bit string T = (T255, T254 . . . . .  To) 
and the 593-bit string S = ($592, $591 . . . . .  So), then 
T + 28 is def ined by the following algori thm. 

carry = 0 
for q from 0 to 592 

X = Sq + TQ + carry 
if X = 3 then 

carry = 1 
else carry = 0 

endif 
T256+q = X (mod 2) 

endf or 
set T + 
end 

The  
(82 ,  S I ,  

T + 2 S  

2 8 = (T848 ,  T847  . . . . .  T593 )  

effect o f  this is if S is the concatenated string 
So) where So and SI are  of  length 81 bits, then 
is the integer sum 

T = S 2  + Sl + So + e+  f - g  

where e , f  and g are the carry bits after  256, 512 and 
593 steps of  the algori thm. 

The  hashing algori thm proceeds as follows. Let M be 
the message t to be hashed, presented  as a binary 
string. Then  M is parsed as the concatenated string 

m ' ' ' = M I M 2 .  • • M m  

where each of  the M~, i = 1, 2 . . . . .  m is the length 592. 
We note that the last block of  the message is "padded  
out" with "01010101 . . ." to give a length divisible by 
592. Each M" is expanded  to a block Mi of  length 593 
by adjoining to M" a new "least significant" bit which is 
the 0, 1 complement  of  the existing "least significant" 
bit o f  M;. 

Let IV denote  a randomly  chosen but  known 256-bit 
string or  Initialization Vector (such a string is built  into 
the microprocessor).  For  the first block of  the message, 
form K~ = IV + 2Mb and C1 = M~ (K'). 

Subsequent message blocks are  processed as: 

K i  = K i - 1  + 2Ci - 1 + 2 m i  
C i = M g(Ki) ~__ Mg(Ki-l+2Ci-l+2Mi) 

• " ' - i  

The  hash value is Cm. This technique takes advan- 
tage of  the difficulty of  deriving solutions for equations 
of  the type xf(x) = b over finite fields. 

John C. Anderson 
MObius Encryption Technologies 

Mississauga, Ontario L5R3L7 
Canada 

J o h n  C. Anderson is President and C.E.O. of M6bius Encryption Technolo- 
gies, Ontario, Canada. 

~ July 1992/Vol.35, No.7/COMMUNICATIONS OF THE ACM 



Wllo HoIcls t h e  Keys?  

n May 7, 1992, NIST director John W. Lyons and James Burrows, 
director of NIST's Computer Systems Laboratory appeared 
before the Judiciary Committee of the House of Representatives 
to discuss information security. After summarizing the various 

. . . . . . . . . . . . . . . . . .  types and uses of cryptography, Lyons turned to the current 
status of the DSS and addressed some of the comments and criticisms the agency 
has received. The following remarks have been gleaned from his prepared statement. 

e eee  I l ee  ee l l  I i . e  eee  eeeeeeeoe  eeeee  eeee  e l e l e e e  eee  ee  

T 
he proposed Digital Signature Standard, or 
DSS, was designed only to compute and verify 
digital signatures. It is different from, but com- 
plementary to, the DES, which is optimized for 
fast encryption of information. Furthermore, 
the DES is a cryptographic technique that uses 

one key to both encrypt and decrypt data. Therefore, 
two people seeking to communicate securely must have 
the same key. This was acceptable until a need for elec- 
tronic funds transfer, electronic commerce and elec- 
tronic key exchange indicated the desirability of a 
technique for which only one person had the key in order 
to create a message, so that anyone could verify its source 
and integrity but that no one else (including the intended 
recipient) could modify or create a message and claim 
it came from that person. Since a person's signature 
retains its characteristic and has been used for centuries 
to denote legal notification of document integrity and 
approval, the term "digital signature" was selected to 
denote legal notification of the integrity and approval 
of a message created on a digital computer. 

A digital signature system is based on the fairly new 
field of public key cryptography. This system uses a 
computer  program that implements a logical or 
mathematical method of combining a representation, 
or hash code, of a digital message with the private 
signature generation key of the originator of the 
message. A paired, but distinct, public signature 
verification key can be distributed to everyone because 
the private key cannot (if the technique is "secure") be 
computed from the public key. Therefore, one key is 
used to sign a message and a different key is used to 
verify it. While DES is called a one-key system, the DSS 
uses a two-key system. 

In selecting the digital signature algorithm (DSA) for 
the proposed DSS, the following factors, among others, 
were considered: the level of security provided, the 
applicability of patents, the ease of export from the U.S. 
and the efficiency in a number of government and com- 
mercial applications and the impact on national security 
and law enforcement. A number  of techniques were 
reviewed and deemed adequate to provide appropriate 
protection for federal systems. Among these, we placed 
primary emphasis on selecting technology that best 
assures appropriate security for federal information and 

did not require payment of royalties by U.S. private or 
commercial interests. 

I would like to summarize the positive and negative 
comments we have received in response to our solicita- 
tion of comments. 

Examples of a few of the positive comments include: 
• The DSA will be especially useful to the financial 
services industry. 
• There will be minimal cost impact if the proposed 
standard is implemented. 
• Generating keys for the DSA is very fast. 
• The DSA is the only signature algorithm that has been 
publicly proposed by any government. 
• The algorithm should be adopted as a FIPS. 

Many federal agencies and private organizations 
stated that a DSS was needed. Many believed the 
government's goal of having a standard that was free of 
patent impediments was good. However, the proposed 
DSS came under criticism, just as the DES had exactly 
15 years earlier. The negative comments reflect some of 
the diverse interests in this area. Our  responses follow 
each of the summarized comments. 
• The DSA selection process was not public. 
In response, NIST acted within its normal standards 
development procedure and the provisions of the Com- 
puter Security Act of 1987, drawing on the expertise of 
the National Security Agency, in proposing the DSS. In 
the normal standards development process, NIST iden- 
tifies the need for a standard, produces technical 
specifications of a standard using inputs from different 
sources, and then solicits government and public com- 
ment on the proposal. After the comment period, the 
comments are analyzed, appropriate changes are made 
and a revised standard issued (or further comment is 
solicited if the revisions are substantial). This public 
process is being followed. 
• The DSA cannot be used for key distribution and encryption. 
In response, the DSA was designed to be a digital 
signature algorithm. It is not for key distribution or 
encryption. The DES is a much more efficient method 
of data encryption than available public key techniques 
in current implementations. A technique is needed for 
key distribution that is optimized to meet all federal 
cryptographic criteria. 
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• The DSA does not provide adequate security. 
In response, what we are proposing provides excellent 
security. It provides orders of magni tude greater pro- 
tection than is needed in the foreseeable future. N I S T  
proposed a 512-bit modulus for efficiency reasons. Based 
on comments  received and subsequent government 
analysis, N I S T  is proposing a number  of  modulus 
lengths between 512 bits and 1,024 bits. To counter the 
" t rapdoor"  allegations made against the DSS, N I S T  
intends to include in a revised proposal a prime genera- 
tion process which, together with the variable-length 
modulus,  will mitigate many arguments  about the 
security provided by the DSS. The DSS has undergone 
the same analysis procedures used for classified 
algorithms that are used for classified purposes and 
deemed appropriate for its intended uses. 

• The DSA is less efficient than the leading alternative. 
In response, the DSA was designed to satisfy many  
diverse and often conflicting criteria. It was difficult to 
meet, and impossible to optimize all of the criteria 
simultaneously. N I S T  was aware that the DSA is more 
efficient in computing signatures than in verifying them. 
We also were aware that it is very fast in generating the 
needed keys. Generat ing keys and signing must  be effi- 
cient in some applications where limited comput ing 
capability may exist. For example, many users in the 
future will carry a smart card, similar in size to a credit 
card, but embodying a tiny computer  that will generate 
personal signature keys and be able to "sign" electronic 
transactions for the owner. Prototype smart cards are 
in design now which sign in a second and verify in three 
seconds. We are aware of current DSS hardware 
implementations that sign and verify in milliseconds. 
The ability of the DSS to achieve greater efficiency 
through precomputation of some variables and through 
optimization techniques that are being developed will 
make the DSS highly desirable in many applications. 
• The DSA may infringe other patents. 
In  response, a major  criterion for the invention and 
selection of the DSS by the government was to avoid 
patented technology that could result in payment  of 
royalties for government, commercial  and private use. 
A patent has been applied for the DSA by the govern- 
ment  with the intent of issuing licenses for this patent 
on a nonexclusive, royalty-free basis. Two patent holders 
claimed that the DSS infringes their patents. The infr- 
ingement claims are still being reviewed. 
• The DSA is not compatible with formal and de facto 
standards. 
In  response, the DSA is a new invention designed to 
meet a number  of federal government criteria. It is pro- 
posed as a federal government  s tandard  for all 
unclassified applications, including Warner  Amend-  
ment  information. It is being proposed as a candidate 
American National Standard by a voluntary industry 
standards group. While not compatible with the leading 
de facto standard public key algorithm, the basic 
mathematical  operations (exponentiat ion of large 

integers in a finite field) are identical and a large amount  
(60-80%) of  the code needed to implement the two 
techniques is identical. The International Organization 
for Standardization is developing two generic digital 
signature standards, one which utilizes a hashing 
algorithm and one which does not. The  DSA utilizes a 
hashing technique for efficiency purposes and can be 
proposed as a candidate algorithm for that generic 
standard. 

Future  Plans 
N I S T  is working to resolve the negative comments  and 
investigating a national infrastructure that will support 
digital signature applications in a cost-effective manner. 
Such an infrastructure is popularly called a Signature 
Certification Authority. We perceive a great need for 
such an infrastructure. Electronic filing of corporate and 
personal tax returns could be made more efficient and 
more secure if such a structure is available. Federal 
payments  to contractors, vendors and social security 
recipients could be optimized if the integrity and 
authenticity of electronic payments  could be assured. 
N I S T  is talking with federal organizations responsible 
for such large-scale applications, and we intend to hold 
a workshop with potential users to understand their 
requirements.  

Specifically, we plan the following activities in 
adopting a DSS as a Federal Informat ion Processing 
Standard (FIPS): 
• Complete analysis and summary of public comments; 
• Analyze and attempt to resolve patent issues; 
* Initiate study of  a signature certification authori ty 
infrastructure; 
• Propose technical enhancements  to DSA; 
• Issue second solicitation comments  on revised DSA 
(if needed); 
• Hold  a workship on uses of  the DSA; 
• Investigate the economic stakes and interest involving 
the DSS; 
• Coordinate  and harmonize  the revised DSS with 
ANSI  and ISO standards activites; 
• C o n d u c t  f inal  c o o r d i n a t i o n  o f  DSS  wi th in  
government; 
• Recommend  D O C  approval of DSS; 
• Publish revised DSS after D O C  approval. 

Cryptography  has the potential of being a major  
enabling technology in electronic commerce. Cryptog- 
raphy is required to protect electronic information in 
modern,  distributed computer  and communicat ions  
systems. There is no other way of assuring integrity and 
confidentiality of information in national or inter- 
national information communications.  Cryptographic  
technology is needed which assures cost-effective 
government  and commercia l  security and which 
preserves legitimate national security and law enforce- 
ment interests. [ ]  
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