
W h o H o l d s t :he Keys?

I

NIST's Proposal
he U.S. Government agency NIST has recently proposed a public
key digital signature standard [3, 4]. Although the proposal is
nominally only "for government use" such a proposal, if adopted,
would likely have an effect on commercial cryptography as well.

In this note I review and comment on NIST's proposal. (More
correctly, it should be called the NIST/NSA proposal, since the cryptographic algorithm
was designed by the U.S. National Security Agency.)

Positive Aspects
The following positive aspects o f the proposal are
worth noting:

• The U.S. government has finally recognized the util-
ity of public key cryptography.
• The proposal is based on reasonably familiar
number-theoretic concepts, and is a variant of the E1-
Gamal [1] and Schnorr [5] schemes.
• Signatures are relatively short (only 320 bits).
• When signing, computation of r can be done before
the message m is available, in a "precomputation" step.

Problems with the Proposed DSS
DSS is different from the de facto public key standard
(RSA). Two-thirds of the U.S. computer industry is al-
ready using RSA. Current RSA users include IBM,
Microsoft, Digital, Apple, General Electric, Unisys,
Novell, Motorola, Lotus, Sun, Northern Telecom,
among others. These companies are using industry-
developed interoperable s tandards-- the public key
cryptography standard (PKCS) [2].

Moreover, DSS is not compatible with existing inter-
national standards. International standards organiza-
tions such as ISO, CCITT, and SWIFT, as well as other
organizations (such as Internet) have accepted RSA as
a standard. DSS is not compatible with ISO 9796, the
most widely accepted international digital signature

standard. Adopting DSS would create a double stan-
dard, causing difficulties for U.S. industry that have to
maintain both DSS (for domestic or U.S. government
use) and RSA (for international use).

DSS also has patent problems. Users of the NIST
proposal may be infringing one or more patents. Claus
Schnorr claims that DSS infringes his U.S. patent
#4,995,082, and Public Key Partners (PKP) asserts that
DSS infringes U.S. patents #4,200,770 and
#4,218,582. NIST does not give a firm opinion on this
m~itter, and has not made licensing arrangements with
either Schnorr or PKP. This leaves potential users of
the NIST proposal vulnerable.

To add to the patent confusion, NIST says it has
filed for a patent on DSS; a move that has no obvious
justification. NIST has not stated why it has filed for a
patent. The only motivation I can imagine is that NIST
may wish to force users, via licensing requirements, to
use key sizes shorter than they might naturally wish to
use. (See my discussion of weak cryptography.)

DSS has engineering problems; it's buggy. The veri-
fication process can blow up due to division by ze ro - -
when s = 0 in the computation of t in equation (1).
NIST was apparently unaware o f the problem, or how
to fix i t - -no mention of this problem is made in the
description of DSS.

A simple fix is available: merely recompute the sig-
nature (starting with a new randomly chosen k value)

COMMUNICATIONS OF THE ACM/Ju]y 1992/Vol.35, No.7 41

W h o H O l d S t h e Keys?

whenever it is de te rmined that s = 0 in the signing pro-
cess.

This correction is actually necessary for security rea-
sons as well: a user who produces a signature with s = 0
is inadvertently revealing his or her secret key x via the
relat ionship in this case: x = -H(m)/r (mod q).

While this bug is easily fixed, its presence certainly
makes one wonder about the "quality control" used in
the deve lopment of the s tandard.

In addit ion, DSS is too slow, especially for verifica-
tion. The signing speed is comparable to (but slightly
slower than) RSA, while the verification speed is over
I00 times slower than RSA. Here, ,we assume RSA uses a
small public exponent such as 3, as is common practice.

This slow verification time is likely to introduce un-
acceptable per formance delays in many applications. I
note that almost all public key applications are based on
the use of certificates to authenticate public keys.
Often, a chain of several certificates must be verified to
authenticate a single public key, before it is used. In a
typical application then, the ratio of verifications per-

DSS Speci f icat ions
The following parameters are global, and
can be shared by many users:

• a 512-bit prime p,

• a 160-bit prime q dividing evenly into
p - l ,

• an element g of Z;, whose multiplicative
order is q,

• a hash function H mapping messages
into 160-bit values.

The following parameters are per user'.

• a secret key x, where 0 < x < q.

• a publ ic key y, where y = gX (mod p).

So the secret x is the discrete logarithm of
y, modulo p, with base g.

To sign a message m, a user produces
his or her signature as (r,s), by selecting a
random value k from Z~, and then comput-
ing

r = (gk (mod p)) (mod q)

s = k - l (H (m) + xr) (mod q)

To verify a purported signature (r,s) for
the message m, one first computes

t = s -1 (mo,d q)

and then accepts the signature as valid if
the following equation holds:

r = (gH(m)tyr t (mod p)) (mod q).

formed to signatures pe r fo rmed is fairly large. In
other applications, such as software virus detection, the
ratio can be enormous. The claim by NIST that signing
speed is more impor tant than verification speed jus t
does not hold for most applications.

NIST's proposal is incomplete in three respects:

• it lacks any mechanism for privacy,
• it does not include a hash function proposal , and
• no mechanism for public key certificates has been
proposed.

First, NIST's proposal is only for a public key signa-
ture system; there are no specifications for privacy (en-
cryption) or the exchange of secret keys. Many applica-
tions require both privacy and authenticat ion (i.e., both
encrypt ion and digital signatures). For example, any
electronic mail system that aspires to replace paper
mail should, at a minimum, aim to achieve what one
can get with envelopes and hand-wri t ten signatures. It
is easy to imagine many other applications in which
protection f rom eavesdroppers may be considered
important . For example, home-banking is such an ap-
plication. So is the transmission of sensitive corpora te
documents (financial or engineering) f rom one corpo-
rate office to another .

Therefore , DSS is, at best, half a s t a n d a r d - - i t does
not provide the basic functionalities one expects of a
full public key system. While NIST has made com-
ments about in t roducing an encrypt ion capability at
some point in the future, one can hardly expect it to
happen soon (given NSA's involvement in this stan-
dards process).

Second, a hash function H was not specified in the
original proposal , a l though one is clearly necessary. (At
the time of my writing this article, a proposal for hash
function had jus t been announced; I have not had time
to review this proposal.)

Thi rd , NIST has not specified how one might create
public key certificates which are necessary in almost all
applications of public key cryptography. In essence,
public key c ryptography depends on the use of authen-
ticated public key certificates. A signature scheme that
does not address how certificates are to be created (as
does the PKCS s tandard [2]) is not usable.

DSS has SecurJt'~/Problems
The bulk of this analysis focuses on the issue of the key
size o f the proposed DSS.

Shared global modul i are risky. While the NIST pro-
posal does not require users to use a common modulus
p, it encourages such a practice. This is a security weak-
ness, since "breaking" that one modulus can compro-
mise the security of all users simultaneously. The cur-
rent state of comput ing discrete logari thms includes
algori thms that break a modulus p by doing a precom-
putat ion that later permits very easy computat ion of
the discrete logari thm of any y value modulo p. There-
fore, users who share a modulus are put t ing all their

4 2 July 1992/Voi.35, No.7/COMMUNICATIONSOFTHEACM

W h o HOIClS t h e Keys?

eggs in the same basket. The NIST proposal should
warn users away from such a p rac t ice - -each user
should choose his or her own modulus p.

There is a risk of " t rap-doors" in the primes. Arjen
Lenstra and Stuart Haber (in their letter to NIST) ob-
served that for some primes the discrete logari thm
problem is "easy" for the person who created the pr ime
(thus, a " t rap-door prime"). Moreover, it may be diffi-
cult for a user to recognize t rap-door primes. The
question as to how one might be able to effectively cre-
ate and exploit such t rap-door primes is an active area
of research; the dust is still being created here, instead
of settling down. Thus, conservative users of the pro-
posed DSS should assume that whoever creates the
pr ime p can de termine their secret keys x from their
public keys y. Again, NIST should have warned users
not to use primes created by o the r s - - each user should
choose his or her own modulus.

The scheme is new and untested. The preceding dis-
cussion is based on the assumption that the cryp-
tanalytic problem is the "discrete logari thm problem."
In fact, the problem here is a relatively new variation of
the classic discrete logari thm problem. The reason is
that g has only o rde r q instead of o rde r p - 1. It is quite
possible that this new p r o b l e m - - b r e a k i n g DSS-- is far
easier than the general discrete logari thm problem.
Without fur ther research into this new variation, it is
difficult to assess the true level of (in)security provided
by DSS. Cryptographic proposals need to withstand
many years of careful scrutiny before they become
plausible candidates for field use. This is especially
when the proposal is based on novel mathematical
problems.

There is a security weakness if k is disclosed. Signing
with DSS requires the generat ion and use of r andom
numbers (the k values). It is true, but not noted in
NIST's proposal, that a user's secret key can be totally
compromised if any one of the k values used in creating
a signature is ever compromised. The secure creation
and utilization of the k values is thus of critical impor-
tance to the security of the entire scheme. Use of pseu-
do random number generat ion schemes to generate
k involves the risk that the pseudorandom number
scheme could be broken. While the NIST proposal
makes a few suggestions in this regard, it does not re-
quire any part icular approach, thus permit t ing totally
insecure choices by the user. (And to make matters
worse, the one approach NIST does suggest involves
the data encryption s tandard (DES), which would be
unusable in any application involving export.) The
NIST proposal is thus fatally incomplete in specifying
how to implement the choice of k; the poor user is
given enough rope with which to hang h imse l f - -
something a s tandard should not do.

Key Size Too Short
I believe that a national s tandard based on fixed 512-
bit key size would serve our country very poor ly - - such

a proposal unnecessarily risks catastrophic failure of
the integrity of our financial, industrial, and govern-
mental information-processing systems.

To begin with, I question the rationale for having a
fixed key-size at all as part o f the proposal. Clearly, one
needs a minimum key size to prevent users from choos-
ing key sizes that are too short to be secure. And one
might want a maximum key size in o rde r to design effi-
cient yet fully compatible implementations. Yet there is
no obvious reason why the min imum required key size
and the maximum allowed key size should be the same.

Indeed, the NIST "one-size-fits all" proposal is a
very poor match to the engineer ing and security needs
of most public key applications. Typically, there are
many users, each of whom has a public key used by
others to verify the user's digital signatures. Such ap-
plications are invariably based on the use of certificates,
so verifiers can assure themselves that they are verify-
ing signatures with the appropr ia te public key. A cer-
tificate is a message associating a user's name with his
or her public key; this message is itself signed by a "cer-
tifying authori ty" whose public key is widely known. A
typical s ignature verification then normally consists of
two verifications: one to verify the certifying authority 's
s ignature on the user's certificate, and then another to
actually verify the user's signature.

A certificate-based application thus incorporates two
basic kinds of signatures: ord inary user signatures and
signatures by a certifying authority. The latter kind
form the backbone of the integrity of the entire appli-
cation, since the ability to forge certificates would give
an attacker essentially unlimited power to corrupt the
system. I consider it essential in secure public key sys-
tem design to have certifying authorities use the maxi-
mum allowable key size. This size is typically much
larger than what an ord inary user might select for his
or her own public key size. As an example, in a typical
RSA-based application today, certifying authorities
might use keys of 1,024 bits or more, whereas ordinary
users might choose key sizes of 500 to 800 bits.

In a typical application, the t rade-off between secu-
rity and per formance mandates the use of different
key sizes in di f ferent parts of the system. Certifying
authorities, or users with very valuable data, must use
very long keys to achieve the highest possible security
level. Other users, with reduced security requirements
and/or more str ingent performance requirements, will
use shorter keys. Trying to make one-size-fit-all results
ei ther in unacceptably low security for all users (be-
cause all certificates will be suspect) or unacceptably
poor per formance for some users.

In a public key system based on number theory,
there is no valid technical reason for requir ing a fixed
key size. The under lying number- theoret ic algorithms
can suppor t arbi t rary key sizes. Users and certifying
authorities should be able to choose key sizes according
to their requirements.

I now turn to a discussion of the part icular key size

COMMUNICATIONS OF THE ACM/July 1992/Vol.35, No.7 43

W h o H o l d s t h e Keys?

NIST has chosen: 512 bits. (By key size, here, I refer to
the size of the pr ime modulus p.) I argue here that if
one is going to insist on having: a fixed key size, then
512 bits is far too short.

I note that NIST provides no justification for its
choice of key size.

To estimate the necessary key size, one must under-
stand the computat ional resources available to an
imagined potential attacker, and the computat ional
difficulty o f the under ly ing cryptanalytic problem. Let
me address each of these issues in turn.

How much computat ional power can an imagined
attacker br ing to bear to break the system? This de-
pends on the time per iod we are talking about (since
technology is rapidly evolving) and the financial re-
sources of the attacker (to purchase the necessary com-
put ing power).

It is necessary to know the expected lifetime of the
proposed s tandard in o rde r to know for what level of
security to aim. A scheme that is considered "secure"
today may not be secure in the year 2000, and a scheme
considered secure in the year 2000 may not be secure
in the year 2010. Compute r technology is evolving at
an incredible pace, and is likely to continue to do so for
the next few decades. The security of cryptographic
schemes thus tends to e rode steadily over time, and the
design of cryptographic systems must envision and
plan for such erosion.

I suggest that a digital signature s tandard should be
designed with a min imum expected lifetime of at least
25 years. Tha t is, one should design so that a system
adopted in the year 1992 should still be secure in the
year 2017. It should not be possible for an attacker in
2017 to forge a signature, using the computers avail-
able then.

Where does "25 years" come from? To consider the
only available precedent of the lifetime of a NIST cryp-
tographic s tandard, I note that the DES was adopted in
1976 and seems likely to be in widespread use by 1996.
Af ter a cryptographic signature s tandard has been ter-
minated, an addit ional per iod of time is required dur-
ing which the validity of signatures can still be assured.
For example, it is not uncommon to require that signed
documents be re ta ined and be considered legally bind-
ing for seven years. A signature produced in the year
2010 should still be verifiable in the year 2017, with an
unders tood assurance that it was not jus t recently
forged. I consider a 25-year expected lifetime a mini-
mum reasonable requi rement for a digital signature
s tandard.

What kind of computat ional power will be available
to an attacker in the year 2017? It is widely asserted
that computat ional power (per dollar spent) is increas-
ing at approximate ly 40% per year. This means we
have an approximate doubling of computer power (per
dollar) every two years, and an approximate increase of
a factor of 4,500 after 25 years. Let's round this off to
5,000 for our back-of-the-envelope calculations (corre-

sponding to 25.3 years at 40% growth/year). In the
year 2017, I expect computer power will be about
5,000 times cheaper than it is now.

How big an attack should one p repare for? Let me
suggest that a national digital signature s tandard
should, at a minimum, be able to withstand an attack
costing an attacker $25 million (in today's dollars). This
amount of money is easily available to large corpora-
tions, d rug dealers, and small countries. The re is no
reason that our national security, in terms of the integ-
rity of our electronic business, financial, and govern-
mental information-processing systems, should be vul-
nerable to an attack costing only $25 million. Indeed, it
is easy to make an a rgument for a much higher thresh-
old; it is not hard to imagine scenarios in which the
benefit o f a successful attack exceeds $25 million. How-
ever, I'll continue our back-of-the-envelope calculation
with the $25 million figure.

How much comput ing power can one buy for $25
million? Today, a workstation with 100MIPS can prob-
ably be purchased in quantity for about $5,000. An at-
tacker wouldn' t need all of the per ipherals (screen,
f loppy disk, mouse, nice cabinet), and could economize
by sharing such equipment as power supplies, and
fans. He or she is basically interested in having many
processors, each with a reasonable amount of memory.
Let me estimate that such a "s t r ipped-down" 100MIPS
processor would have an amort ized cost today of
$1,000.

A convenient unit of computat ional work is a MIPS-
y e a r - - t h e amount o f computat ion pe r fo rmed by a
1MIPS processor runn ing for a year. A MIPS-year thus
corresponds to about 32 trillion basic operations. I f we
assume that a 100MIPS processor lasts for about 10
years, we obtain an amort ized cost estimate for today o f
$1 per MIPS-year of computat ion. (Here we are buying
"computat ion by the yard"; our yard is one MIPS-year,
and it should cost about $1 in quantity. I leave the de-
tails of buying computat ional power in 2017 to your
imagination; a simple cost-effective way might be to
spend considerably more than $25 million to purchase
hardware, and then to resell the hardware after the
computat ion is done.)

This analysis is a bit naive, and the straight-line de-
preciat ion over 10 years is ra ther inappropr ia te to use
when the under ly ing technology is changing so quickly.
With the cost of computat ion decreasing by a factor of
1.4 every year, the value o f the computat ional power of
some purchased hardware should be (1 - 1/1.4)=
29% in the first year and the remaining 71% in the
remaining years. Thus the cost per MIPS-year dur ing
the first year would be about 0.29 $1000/100 = $2.90
per MIPS-year. I f one calculates in a 10%-rate of re-
turn on funds as well, the cost pe r MIPS-year rises to
$3.57 (details omitted). Taking these considerations
into account, and recognizing that there are o ther un-
accounted-for factors (ex., power supply, mainte-
nance), we can estimate that the cost per MIPS-year

4 4 July 1992/Vol.35, No.7/COMMUNICATION$ OF THE ACM

Who Holds t h e Keys?

today is about $4.
We therefore can estimate that an attacker with $25

million to spend today could purchase about 6.25 mil-
lion MIPS-years of computation. In the year 2017, the
attacker will be able to purchase about 5,000 times as
much, or 31.25 billion MIPS-years. I believe that a digi-
tal s ignature s tandard adopted today should, at a mini-
mum, be able to withstand an attack of 31.25 billion
MIPS-years. (This may sound like a lot o f computat ion,
but you can see from my arguments that this is, in fact,
a ra ther conservative estimate of the security require-
ment for such a standard.)

How large a key size is needed to withstand an attack
of 31.25 billion MIPS-years? This depends, of course,
on the cryptanalytic problem to be solved. In the case
of the proposed DSA, the basic cryptanalytic problem
is assumed to be the classic discrete logari thm problem:
comput ing x, given g, p and gX rood p. Using the best-
known algorithms for this problem, the number o f
operat ions required is approximate ly

L(p) = e lx/i~pl"lnp.

The state of the art in algorithms for the discrete loga-
r i thm problem is still evolving, but this formula cer-
tainly seems like a very conservative estimate o f what
will be possible in 2017, since it represents what is pos-
sible today. For example, with a 512-bit pr ime p (as in
NIST's proposal), we see that only

L(2512) = 6.7 X 1019 operat ions (2)

= 2.1 million MIPS-years (3)

of computat ion are required to break a 512-bit prob-
lem. Thus, we see that the proposed DSA is over 14,000
times weaker than a conservative analysis suggests is required.

Another way of stating this result is that the DSA, as
proposed, is breakable today within the resource bounds sug-
gested as reasonable. (Indeed, purchasing 2.1 million
MIPS-years today should cost only $8.2 million, far less
than the $25 million suggested as reasonable for an
attacker to have available.)

Setting L(p) equal to 31.25 billion MIPS-years, and
solving for p, we find that the DSA should be using keys of
at least 710 bits, minimum.

As noted, this is a conservative estimate. It doesn' t
plan for improvements in the state of the art of algo-
ri thms for solving the discrete logari thm problem,
which can have a dramatic effect on the key size re-
quired. (Indeed, there are already algorithms "waiting
in the wings" that are theoretically faster than this analy-
sis envisions, which may turn out to be faster in practice
as well.) The estimate has no margin built in for faster-
than-expected improvements in h a r d w a r e - - s o m e of
my colleagues suggest that doubling every 18 months
(a cost /performance improvement rate of 59% per
year) is more realistic than doubling every two years;
such a rate gives the adversary another factor of 23 in
capability over 25 years. The analysis also does not plan
for longer- than-expected adversaries. The ability to

harness for free "unused" processor cycles over large
networks of workstations could also dramatically in-
crease the computat ional ability of an adversary,
thereby al tering the equation fur ther in his favor.

The previous discussion focuses on the choice ofp. A
similar discussion applies to the choice of q. The secu-
rity of the scheme certainly depends on the choice of q
as well as the choice of p. The re is reason to wonder
whether a fixed 160-bit size for q is sufficiently secure
in the face of rapid technological advance. Again, it
would be best if users could adjust the size of q they
select (within certain generous limits) to take into con-
sideration such uncertainties.

For these reasons, and as a mat ter of sound conser-
vative design, I believe that a substantial margin of
safety should be built into the s tandard. Most impor-
tant, certifying authorities should have generous key
sizes allowed. I would strongly recommend that any digital
signature standard based on the discrete logarithm problem
should allow certifying authorities to use key sizes of 1,1 O0 bits
or larger. Similarly, ordinary users should be allowed key sizes
of at least 850 bits. Finally, users should be allowed
greater f reedom in the selection of the size of their q
values. I feel that anything less is short-sighted and
risky, possibly verging on the irresponsible. In crypto-
graphic systems, responsible design is conservative de-
sign; generous allowance must be made for unforeseen
developments.

The Selection Process is Flawed
The process by which the DSS proposal was generated,
and by which it is being evaluated, seems to be flawed.

It is curious that NIST did not publish a Call for
Proposals for a signature algorithm. I note that NIST
did so when the DES was adopted. (The DES arose
from a proposal from IBM.) DSS was created without
any such public solicitation for proposals. This is espe-
cially curious given the much greater cryptographic
expert ise now available outside the government, and
the much larger base of public key applications already
fielded. The DSS algori thm was created by the NSA,
and adopted by NIST as its proposal , without any
input from U.S. industry.

The closed-door approach toward the development
of DSS, together with NIST's assertion regarding pat-
ents (see the pr ior discussion) have created a confron- "
rational, ra ther than a cooperative, situation between
NIST and the U.S. industry.

The very short comment per iod has not helped. The
initial comment per iod (three months) was extended by
NIST to six months. Even so, such a comment per iod is
not sufficient to pe r fo rm the mathematical study re-
quired to validate a new proposal. I note that there are
two major worldwide technical conferences on cryp-
tography each year (CRYPTO and EUROCRYPT); the
NIST comment per iod doesn' t include either confer-
ence. For some reason NIST has not even provided the
potential user community a chance to gather and dis-

COMMUNICATIONS OF THE ACM/July 1992/Vol.35, No.7 4 5

W h o H o l d s t h e K e y s ?

h Ir

c u s s the proposal at its usual cryptographic confer-
ences, the natural place for the technical merits of such
a proposal to be debated.

Fur thermore , NIST has actively h indered the evalu-
ation process by keeping secret all information about
what criteria were employed in the design and selection
of DSS. A Freedom of Informat ion Act (FOIA) request
by Compute r Professionals for Social Responsibility
(CPSR) for this information has been denied by NIST
(this denial may be illegal, and is being appealed).

Speculation and DiSCUSSIOn
Why is the NIST proposal what it is?

It is my belief that the NIST proposal represents an
a t tempt to install weak cryptography as a national stan-
dard , and that NIST is doing so in o rde r to please the
NSA and federal law enforcement agencies. The NSA
may prefe r that cryptographic expert ise and capability
outside its own walls remain at a min imum tolerable
level, to maximize the effectiveness of its foreign intel-
ligence operat ions. A U.S. s tandard, even if weak and
flawed, may be widely used overseas, making NSA's job
easier. Federal law enforcement agencies may fear that
good cryptography may rende r ineffective its tradi-
tional use of cour t -ordered wiretaps. While the DSS is
nominally a proposal for only a signature s tandard,
there are several public key encryption algori thms
known that could make use of dis tr ibuted DSS public
keys. A strong signature algori thm invites extension to
a s trong public key encryption algori thm; concern
about this possibility is probably the major reason
NIST selected a scheme based on "weak cryptography"
as its proposal . Should DSS be ex tended later to a pub-
lic key encryption s tandard, weak cryptography will
then be built into the national encryption s tandard, as
well as the national s ignature s tandard.

The U.S. has the largest information-based economy
in the world; we thus have the most to lose by installing
weak cryptography as a national s tandard. The risk is
greatly magnif ied if the s tandard is not only weak, but
brittle because users are sharing the same modulus.

Because of rapid technological change, a s tandard
based on weak cryptography will have to be replaced or
upgraded all too soon. This is happe ing today with the
DES, which was arguably a "weak cryptography" stan-
dard . DES is clearly near the end of its lifetime. The
cost of replacing DES in all of the applications that use
DES will be very large. The cost of having to do so in a
few years for a weak signature s tandard will be enor-
mous.

Weak cryptography implements the wrong social
policy. It empowers those with large amounts of com-
put ing power, and only those, to break in. There is an
implicit assumption here that only the government
could have enough comput ing power to break in, thus
cour t -ordered wiretaps would remain effective, even if
c ryptography is used. But in the face of rapid techno-
logical change and a national budget crisis, this as-

sumption is dubious.
Are there technical alternatives that would satisfy all

parties? Perhaps. It is certainly the case that the formu-
lation of the problem to be solved has never been made
explicit for the cryptographic community to work on. I
suspect that a solution based on "escrowed secret keys"
might be workable, wherein each user is legally re-
quired to deposi t his or her secret key with a trusted
third party, such as the user's bank. Cryptographic
hardware and software would only opera te with public
keys that were certified to having their cor responding
secret keys appropr ia te ly escrowed. A federal agency
could then obtain the secret key, or its use, with an
appropr ia te warrant. Once their secret keys were
escrowed, mult inat ional corporat ions could even oper-
ate across borders with a high degree of authenticat ion
and privacy (except from cour t -ordered wiretaps).
Cryptographic hardware and software manufac tured
in the U.S. would not opera te abroad without public
keys suitably certified as having their secret counter-
parts escrowed in the U.S. In an extension of this ap-
proach, users can escrow their secret keys with several
t rusted third parties in a "secret-sharing" manner , so
that no single third par ty can compromise the user's
key. While this approach may have its own difficulties,
it does illustrate that weak cryptography is not the only
technical approach available. The re may be much bet-
ter techniques for achieving a compromise between a
number of conflicting national concerns.

I believe that the NIST proposal represents an at-
tempt to achieve a compromise of these concerns with-
out public discussion or debate. Unfortunately, the
part icipants in the private discussion were mostly on
one side of the table. Perhaps a more public review of
the issues that really motivated NIST's proposal will
help to form a national consensus on how to proceed.

Conclusions
For the reasons stated here, I feel the proposed DSS,
with its f ixed (512-bit) key size, is not sufficiently secure
to be acceptable as a national s ignature s tandard. In-
deed, the only purpose to be served by requir ing a
fixed key size is the installation of weak cryptography
as a national s tandard. Instead, users should be free to
choose their own security level by selecting their own
module and key lengths, up to some very generous
max imum limit.

Fur the rmore , the process by which DSS was selected
is seriously flawed. To rectify matters, I believe NIST
should:

• Withdraw DSS as a proposal , based on the over-
whelming negative response DSS has received dur ing
its "request for comments" period,
• Initiate a f rank public discussion of our national
cryptographic objectives, followed by a reconsiderat ion
of what s tandards are needed to achieve those objec-
tives. As par t of NIST's contr ibution to this discussion,
NIST should respond positively to CPSR's FOIA re-

46 July 1992/Vol.35, No.7/COMMUNICATIONS OF THE A C M

W h o H O l d S t h e K e y s ?

quest for informat ion regard ing how DSS was selected,
• Lead explicit public discussion of whether weak
cryptography should be a basis for a national crypto-
graphic s tandard. Users of such a s tandard should
know whether it was chosen because it is breakable in
practice,
• Rescind its m e m o r a n d u m of unders tanding with
NSA, whereby NSA was essentially given effective con-
trol of the s tandards process th rough NIST,
• Restart the process of selecting a national public key
s tandard by soliciting proposals from industry and aca-
demia for such a s tandard.

It is past the time for national cryptographic stan-
dards to be designed in secret backroom negotiations
according to h idden agendas. NIST should assume a
leadership role by abandoning its current proposal and
starting fresh.

Ronald L. Rivest
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Mass.

Ronald L. Rivest, along with Adi Shamir and Leonard Adleman, invented the RSA
algorithm in 1978.

References
1. EIGamal, T. A public key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Trans. Inf. The-
ory 31 (1985), 469-472.

2. Kaliski, B.S. Jr. An overview of the PKCS standards. Tech.
Rep., RSA Data Security, Inc., June 1991.

3. National Institute for Standards and Technology. Digital
signature standard (DSS). Federal Register 56 (Aug. 30
1991), 169.

4. National Institute for Standards and Technology. A pro-
posed federal information processing standard for digital
signature standard (DSS). Tech. Rep. FIPS PUB XX, Na-
tional Institute for Standards and Technology, Aug. 1991.
DRAFT.

5. Schnorr, C.P. Efficient identification and signatures for
smart cards. In G. Brassard, Ed., Proceedings CRYPTO 89,
Springer, 1990. Lecture Notes in Computer Science No.
435. pp. 239-252.

e ~ o ~ e e e o e e e e e e e o o e e e e o e e e

am responding to your request for comments on the proposed

DSS. My detailed comments follow, but I can summarize by

saying that I am deeply concerned by faults in the technical

specifications of the proposed DSS and its development process.

NIST has lost considerable credibility with the non-
military cryptographic research community and, unless
the revision process of DSS is carr ied out in a much
more rapid and open fashion, NIST is likely to become
totally ineffective in the setting of cryptographic stan-
dards. Since that would be a grave loss to both NIST
and the nation, I hope change is possible.

I look forward to seeing your response to these con-
cerns.

1. DSS does not include key exchange. Public key
cryptography provides two advantages over conven-
tional cryptography:

Key exchange: the ability for users to communicate pri-
vately without fear of being overheard, and without
using couriers, registered mail, o r similar means for
p rea r r angemen t of a secret key

Digital signatures: the ability to sign messages which are
easily checked by anyone, yet which cannot be forged
or modified, even by the in tended recipient.

The DSS addresses only the second of these two
needs. Until a key exchange s tandard is developed,
users who follow the s tandard will be at a severe disad-
vantage in terms of the privacy of their communica-
tions. It would have been a simple mat ter for NIST to

include a key exchange s tandard with the DSS, ei ther
by adopt ing the RSA system [5] for both operat ions or
by specifying the Diffie-Hellman key exchange system
[1] as the s tandard to be used with the current DSS.
(The Diffie-Hellman system is the natural key ex-
change choice if the proposed DSS is used for digital
signatures. The DSS is der ived from the Diffie-Hell-
man system.) Because of its early publication (1976),
this system possesses a high degree of confidence re-
garding its security level, as discussed under #4.

2. The key size is too short. The proposed DSS is re-
stricted to a 512-bit modulus or key size. It is generally
accepted in the cryptographic research community that
this is too short for a system such as DSS, which is based
on discrete logarithms and which requires a long life.
To quote from a recent paper written pr ior to the an-
nouncement o f DSS [3], "even 512-bit primes [key size]
appear to offer only marginal security." This is such a
well-established viewpoint that fur ther explanation
seems unnecessary. While there should be lower limits
on the key size to ensure a reasonable level of security,
there is no reason for an uppe r limit. If, in spite of this
argument , NIST keeps an uppe r limit, it should be in-
creased to at least 1,024 bits.

The proposed DSS also limits the "subkey" size to
160 bits, a value that is again too shor t) It is possible to

COMMUNICATIONS OF THE &CM/July 1992/Vol.35, No.7 4 7

W h O H O l d S t h e Keys?

Rather than claim an advantage for DSS or RSA in a particular environment, I

believe the best standard is one which is usable in the greatest number of environs.
° , , , , . . . o , . . o . . o , * * . . ° . ° . . . , ° o . . , o . . o . o .

recover a user's secret key x from his or her public key y
in 28o operations by using 28o words o f memory [4].
(Any other breakdown can be used as long as the time
memory product is 216°--for example 2 l°° operations
and 26o words of memory.) While such a computation
is currently infeasible, its possibility is closer than seems
comfortable, considering probable advances in tech-
nology and improvements in algorithms. The particu-
lar cryptajaalytic problem involved in breaking the DSS
has not been well studied (see #4), making such im-
provements highly probable. As with the 512-bit mod-
ulus, the subkey length should not have an upper
bound. Or, if NIST insists on keeping an upper bound,
it needs to be at least double, and preferably, quadru-
ple the current 160-bit value.

3. NIST does not provide adequate warning on the
danger of us ing DSS as a c o m m o n modulus system.
While common modulus systems have an advantage in
speed of key generation, they allow a successful attack
on one user's secret key to be extended to all users of
the common modulus. Using a common modulus is
analogous to having all personnel within an organiza-
tion use combination locks with 10-digit combinations,
but with the first nine digits being common to all users.
This simplifies setting the combination of a lock, but
allows an opponent to amortize the cost of an attack on
one lock over the large number of locks that are then
easily picked.

While DSS need not be used in common modulus
mode and there are some applications where that
mode is desirable, clear warnings are needed about
reduced security in common modulus mode. The pro-
posed DSS says the modulus "can be common to a
group of users" without any mention of the attendant
danger.

Use of a common modulus would be of less concern
if the key and subkey sizes of DSS were increased as
suggested earlier.

4. DSS is based on a system which has had l imited
time for appraisal. Cryptography is still more an art
than a science. For most systems, including all digital
signature systems, proofs of security are currently im-
possible. Instead, we rely on concerted attacks by
"friendly opponents" intent on fame, rather than
thievery, if they are successful in breaking the system.
We become more confident of the security of a system
as it is subjected to widespread public scrutiny for long
periods of time.

The DSS is based on Schnorr's variant [6] of the El-
Gamal signature scheme [2]. Thus, there has been little

time to gain confidence in Schnorr's variation. EI-
Gamal's system, while older, is still only half the age of
its primary competition as a digital signature standard,
the RSA system [5].

Unless Schnorr's scheme possesses some major ad-
vantage compared to RSA, it is strange that Schnorr's
scheme was selected as the standard. I am aware of no
such major advantage of Schnorr over RSA. The only
advantage I see is that Schnorr's signatures are some-
what shorter (320 bits versus 512 bits for a comparable
security RSA using today's best-known algorithms). On
the other hand, in addition to possessing a higher con-
fidence level regarding its security, RSA has a major
advantage over Schnorr: Using RSA would automati-
cally have provided for public key exchange, a critical
part of the public key standard that NIST has not yet
developed (see # 1).

5. N I S T igno red the danger o f p r o b a b l e improve-
ments in c ryp tana ly t ic algorithms.Cryptanalyzing the
DSS is a special case o f computing a discrete logarithm.
The history of this problem, as well as the closely re-
lated problem of factoring, shows a slow but steady
improvement. It was only about 15 years ago that th~
subexponential nature of the problem was realized.
Prior to that time, estimates of the effort required to
break DSS with a 128-bit key would have been beyond
the realm of reasonability, while today, even a 256-bit
key would be insecure.

Improvements over the last 15 years in finding dis-
crete logarithms have effectively cut key sizes by a fac-
tor of four. Should that happen again over the next 15
years, the DSS would be totally insecure. For similar
reasons, I have always advocated at least a factor of
two, and preferably a factor of four, as a safety margin.
The proposed DSS imprudently has little or no safety
margin.

The danger is increased because of recent advances.
Until two years ago, all subexponential algorithms for
discrete logarithms and for factoring took time of the
form exp[k ln(n) 1/2 (lnln(n)) 1/2] with k = 1 as the best
value. Recently, number field sieves have been pro-
posed that solve both problems in time exp[k lnl/~(n)
(lnln(n)) 2/3] with k approximately equal to 2. While the
higher value of k makes the new algorithm no better
for 512-bit keys (1E20 operations versus 7E19 opera-
tions for the earlier algorithms), it is probable that the
value of k will be reduced as attention becomes focused
on number field sieves.

Over the last 15 years, algorithms requiring
exp[k X/In(n)Inln(n)] operations have been improved
from k = 2 to k = 1. It would be prudent to assume

4 8 J u l y 1992/Vol.35, No.7/COMMUNIC, ATION$ OF THE ACM

W h O HOldS t h e KeyS?

similar advances in number field sieves, in which case
breaking DSS would become trivial, requiring only
1.0El0 operations, a computation that can be done on
a personal computer•

6. NIST has misstated patent l icensing requirements.
Raymond G. Kammer, Deputy Director o f NIST, has
stated that "the digital signature standard is expected
to be available on a royalty-free basis in the public in-
terest worldwide. 2 Yet at least two privately owned U.S.
patents cover the DSS (#4,200,770 and #4,218,582).

I understand that Schnorr is claiming that his patent
(#4,995,082) is also needed to practice the DSS. I f
Schnorr's claim holds, then the DSS has a patent disad-
vantage compared to either RSA or EIGamal/Diffie-
Hellman since the U.S. government has the right to use
the latter systems on a royalty-free basis, but I doubt
that it has rights to Schnorr's work. (Clarification from
NIST would be appreciated.)

7. NIST has confused the issue of speed comparisons.
In his previously referenced statement, Kammer also
stated that

• . . the digital signature technique [DSS] provides
for a less computationally intense signing function
than verification function. This matches up well
with anticipated federal uses o f the standard. The
signing function is expected to be performed in a
relatively computationally modest environment
such as with smart cards. The verification process,
however, is expected to be implemented in a com-
putationally rich environment such as on main-
frame systems or super-minicomputers.
Under the environment specified by Kammer, the

DSS would have an advantage over RSA, the primary
competing technique. As a universal standard, how-
ever, the DSS will often be used in complementary en-
vironments where signing is done in a computationally
intense environment and verification in a computa-
tionally modest environment. A good example is the
use of digital signatures generated by a bank and
checked by a customer on his or her home computer.
This environment would favor "small exponent" RSA
systems which allow verification to be performed with
approximately 1% of the total signing effort o f DSS
(including precomputation).

Rather than claim an advantage for DSS or RSA in a
particular environment, I believe the best standard is
the one which is usable in the greatest number o f envi-
ronments envisioned for its use. That approach leads
to the most widely applicable standard. On that basis,
EIGamal or Schnorr's signature scheme is approxi-
mately equal to RSA. Hence, none of the competing
systems should be deemed to have a speed advantage
over the others.

8. The adoption process appears to have been con-
ducted in secret. Although listed last, this is the most

important change since a more open adoption process
would have avoided most of the DSS shortcomings
listed here.

I am not aware o f any attempts on NIST's part to
involve researchers in academia and industry• (If there
were such attempts, I hope NIST will make these a
matter o f public record.) Rather, NIST appears to have
worked in secret with only NSA providing advice. This
is dangerous because much of NSA's legally mandated
mission involves foreign espionage which would be
hampered by secure public encryption. As with any
organization or individual, NSA is likely to put greater
emphasis on its concerns than would a neutral third
party.

There is an unavoidable trade-off in that providing a
high level o f communications security to American
business and citizens also makes this protection avail-
able to our foreign adversaries. NIST's actions give
strong indications of favoring protection o f NSA's espi-
onage mission at the expense o f American business and
individual privacy. While an impartial working group
might conclude that such a policy was in the nation's
best interests, relying solely on NSA for advice is un-
likely to produce an optimal trade-off for the nation as
a whole•

Martin E. Hellman
Professor of Electrical Engineering

Stanford University
Stanford, CA 94305

Martin E. HeUman, along with Whitfield Diffie and Ralph Merkle invented
public key eoptography in 1976.

References
I. Diffie W•, and Heliman, M•E. New directions in cryptogra-

phy. IEEE Trans. Inf. Theory 17"-22 (1976), 472-492.

2. EIGamal, T. A public-key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Trans. Inf. The-
ory 17"-31 (1985), 469-472.

3. LaMacchia, B.A., and Odlyzko, A.M. Computation of dis-
crete logarithms in prime fields. Design, Codes, and Cryptog-
raphy, vol. 1, 1991, pp. 47-62.

4. Pohlig, S.C., and Hellman, M.E. An improved algorithm
for computing logarithms over GF(p) and its cryptographic
significance. IEEE Trans. Inf. Theory IT-24 (1978), 106-
110.

5. Rivest, R.L., Shamir, A., Adleman, L. A method for obtain-
ing digital signatures and public-key cryptosystems. Cora-
faun. ACM 21 (1978), 120-126.

6. Schnorr, C.P. Efficient identification and signatures for
smart cards. Advances in cryptolog): Proceedings of Crypto '89,
G. Brassard Ed., Lecture Notes in Computer Science 435,
Springer-Verlag, N.Y., pp. 239-251.

~1 am indebted to Leonard Adleman of USC for pointing this out.

~June 27, 1991 statement before the Subcommittee on Technology and
Competitiveness of the Committee on Science, Space and Technology
of the House of Representatives

OOMMUNIOATIONS OF THE ACM/JuIy 1992/Voi.35, No.7 4 9

W h o Holds t h e Keys?

n response to the proposed DSS, we would like to offer a few

constructive comments regarding the NIST approach to signature

design based on our own experience of developing cryptographic

algorithms and computer-based security systems.

We would like to begin by conveying a message
of support and appreciation for the work NIST has
undertaken to develop a much needed public key DSS,
and say that the proposed algorithm appears most suit-
able for its alleged purpose.

In recognition and appreciation of the mission of
NIST and its advisory board, the National Security
Agency, we are sensitive to the motivations and inter-
ests that govern the design and implementation of any
government-approved publicly available cryptographic
scheme. Therefore, we have included as part of our
response, a mathematical treatise which I believe aptly
demonstrates our understanding of the proposed DSS
strengths and, indeed, limitations. Also, any comment
of the value or security offered by the DSS should, we
feel, be guided by the overall system design, which
would include message encryption, authentication,
digital signature and a hashing function suitable to the
overall intended security-level objectives. For this rea-
son one might conclude the proposed DSS algorithm,
when suitably coupled to an encryption scheme and
compatible hashing function, could provide an entirely
suitable methodology.

In view of the controversy over the widely used RSA
system in regard to ownership, speed and compatibility
with NIST objectives, we would like to bring to your
attention a high-speed public key system already im-
plemented in GF(2) 593 in combination with full DES
functionality. Indeed, our signature scheme is very
close to the proposed NIST standard, but different in
the underlying algebraic method used. Compatible se-
curity is provided with this implementation. We would
also bring to your attention that our use of a strong
hashing function using discrete exponentiation as one
component of the one-way function, also provides
many user features and benefits.

Given that there may be some intellectual property
issues surrounding the use of the concept of subgroup
of order q, this issue could be avoided by broadening
the scope of the NIST proposal to other algebraic sys-
tems, which might suggest that NIST revievJ our cur-
rent system and elliptic curve implementation which
will be available shortly. In the spirit of this preceding
point, our modification of E1Gamal is a significant al-
teration of the E1Gamal system and perhaps could dif-
fuse patent claims based on Diffie-Hellman. Our im-
plementation of E1Gamal changes the security of the
system from discrete logs to finding the solution of an
exponential equation of the form xf(x) =/3. Our modifi-
cation, in terms of security, relies on a more difficult

problem than the discrete log problem; and more im-
portant, since it is not patented, is freely available. It is
also more efficient than the current NIST proposal,
saving one computation for finding an inverse and re-
quiring only two modular multiplications.

As stated previously, we offer these comments in the
hope there might be some flexibility in NIST's philoso-
phy of how it might best implement a public key DSS.
Moreover, we would request that some grace period be
granted to companies who have made significant in-
vestment to bring public key systems to market, on the
assumption of course, that NIST is comfortable with
the algorithmic implementation. It would be our hope
that NIST create a grandfather clause in its DSS pro-
posal with alternate criteria for digital signature to
qualified companies for some period of time, say two
years, after which the DSS standard as specified would
be fully implemented. Indeed, it would be comforting
to see NIST choose a suitable algorithmic arrangement
completely free o f any intellectual property issues, for
the benefit of all users now and in the future.

The Algorithm
M6bius Encryption Technologies has studied the
(NIST DSS) document carefully and our overall im-
pression is that the standard proposed is well thought
out and is very practical. In order to discuss the digital
signature algorithm, we will briefly describe it.

Let p and q be prime numbers so that q[p - 1 and p is
approximately 512 bits and q is approximately 160 bits.
Let/3 be a generating element for the cyclic subgroup
of order q in GF*(p). For a an integer, 0 -< a -< q - 1,/3a
will be the public key and a the private key. Messages
will be integers m where 0 --- m -< p - 1.

It is assumed that a good hash function h(m) is avail-
able.

To create a signature:
• We first compute the hash h(m) o f m in order to sign
message m.
• Generate a random integer k and compute r =/3k.
• Solve the congruence for s:

h(m) =- - a r + ks (modq)

The signature is the pair (s, r (mod q)).

In order to check signatures:
• Compute u = /3h(m).
• Compute v = (/ 3 a) r (m o d q).
• Compute w = UT) s-n(m°dq).

The signature verifies if w(mod q) = r(mod q).

~ O July 1992/Vol.35, No.7/COMMUNICATIONS OF THE A C M

W h o H o l d s t h e Keys?

C o m m e n t s

• The signature is at most 320 bits in length. With the
s tandard E1Gamal scheme the full value of r (and not
r(mod q)) would be required. This par t of the new pro-
posal is very clever and appealing. The signature could
be shortened fur ther if we replace r(mod q) with the
hash of r (provided the hash of r is less than 160 bits).

• The security of the scheme relies on the difficulty of
comput ing discrete logarithms in a cyclic group of
o rde r q. Since this group is represented as the cyclic
subgroup of o rde r q contained in the multiplicative
subgroup of the finite field of o rde r p where p is about
512 bits long, then the security level is that required to
compute logari thms in a field whose o rde r is about 512
bits long.

• Working modulo a 512-bit modulus requires all ex-
ponentiat ions to be done with 512-bit numbers. This
will affect the per formance of the system and make
hardware more complex.

• The signing procedure requires the computat ion of
k - l (mod q) and the signature verification requires the
computat ion of s - l (mod q). These are not particularly
costly since they are modulo a 160-bit modulus, but the
time requirement is nevertheless nonnegligible.

• The proposed scheme could be adapted to any cyclic
group of o rder q and not jus t those embedded in the
integers modulo p (provided of course that the group
yields a suitable level of security). This will be consid-
e red later in greater detail.

Suggestions and Rationale
We also wanted to point out and emphasize the neces-
sity of a good hash function for the proposed signature
scheme. This is vital to the security and acceptance of
the system. (The importance of a hash function is
clearly stated in the NIST document.)
• Signature creation can be made more efficient by
solving the modular equation

h(m) ~ - a s + kh(r)(mod q).

Since a is the fixed private key of the signer, a-X can
be computed once and for all signatures. This elimi-
nates the need to compute k- 1 each time a message is to
be signed. The signature is still the pair (s, h(r)). Signa-
ture verification requires h-](r)(mod q). The security of
the system now relies partially on the difficulty of solv-
ing equations of the form x h~X)(mod q). This problem
appears to be as difficult as the discrete logari thm
problem itself.
• As mentioned, the hash function h can also be ap-
plied to r to reduce the signature's size.

Broadening the Scope
There are several reasons why NIST might consider
broadening the scope of the proposed signature stan-
dard.

• the under ly ing algebraic system (GF(p)) is relatively
slow.
• there are o ther algebraic systems which might be
more efficient for various reasons.
• GF(p) is more difficult to implement in hardware
than o ther systems.
• since the intention of the proposed scheme is to do
signing in a group whose o rde r is 160 bits it seems rea-
sonable and more efficient to also find an algebraic sys-
tem (in this case a cyclic group whose o rde r is about
160 bits) and all computat ions can be pe r fo rmed within
the system. For example, the proposed scheme needs
to do computat ions in a 512-bit system to obtain ade-
quate security even though signing is in a much smaller
group.

For clarity we describe a modification of the NIST
scheme as appl ied to only a cyclic group of o rde r q.

An Algorithm
Pick a cyclic group with q elements (q can be 150 to 160
bits) in which computat ion can be carried out effi-
ciently and yet the discrete logari thm problem is diffi-
cult (eg., an elliptic curve system over a finite field
would do). Let a be a r andom integer, a a genera tor for
the group Cq and compute the public key aa. Let h be a
hash function from the message space to the integers
from 1 t o q - 1.

To create a signature:
• We first compute the hash h(m) of m in o rde r to sign
message m.
• Generate a r andom integer k and compute r = a k.
• Solve the congruence for s:

h (m) = - - a r + ks (modq)

The signature is the pair (s, r).

To check signatures:
• Compute u = ol h(ra).

• Compute v = (a~) r.
• Compute w = uv s-~.

The signature verifies if w = r (or w = h(r) if we hash r).

Comments
• as ment ioned earlier, one inverse computat ion can
be el iminated by solving
h(m) =- - a s + kr(mod q) for s.
• the signer can compute h- l (r) (mod q) and send the
signature (s, h-l(r)) . This saves the verifier from having
to compute an inverse.

The Mbbius Digital Signature System
The M6bius digital signature system, al though differ-
ent, is closely related to the NIST proposal.

The public key scheme used in the Trade Secrets
product is based on the finite field GF(2593). (The alge-
braic system can be extended to GF(2 ~186) for addi-
tional security if desired.) The representat ion of the

mill
COMMUNICATIONS OF THE ACM/July 1992/Vo1.35, No.7 ~ |

W h o H o l d s Che Keys?

field is by a normal basis and the ari thmetic processor is
contained on a single VLSI device (Calmos par t num-
ber CA34C 168). The chip was designed by researchers
at the University o f Waterloo, and layed out by Calmos
Semiconductor Inc. of Kanata, Ontario. When
GF(2 ~93) is used the under lying algebraic system is the
cyclic g roup of o rde r 2593 - 1 and if a quadrat ic exten-
sion (ie., GF(21 is6) were to be used, the system would be
the cyclic g roup of o rde r 2593 + 1.

Messages in our system are binary 593-tuples. Let
f(x) be the hash value of the 593-tuple x obtained from
the hash f u n c t i o n f to be described next. Note that if a
593-tuple appears in a modula r expression we will re-
place it by the integer it would represent if it were
t reated as an integer in its binary representat ion. For a
user A with private key a and public key ct ~ to sign the
593-tuple m, A does the following:
• A generates a r andom integer k and computes r = a k.
(Note that k is a binary vector of length 593 and that
the exponent ia t ion is done by the chip.)
• A solves the congruence

f(m) =-- as + kf(r)(mod q)

for s where q = 2593 - 1. Notice that

s ~- [f(m) - kf(r)]a-l(mod q)

and so s is easily computed once a - l is known.
• The signature is the pair (s, r). We note that s is a
binary 593-tuple whereas r is at most a 593-tuple.

Let K be a 256-bi tbinary string, and let S be a 593-bit
binary string (which is to be viewed as a field e lement in
its coordinate form with respect to the normal basis N
employed in the opera t ion o f the CA34C168 micro-
processor used in M6bius products , hencefor th re-
fe r red to as the microprocessor). I f K is placed in the R
register and S is placed in the A and B registers of the
microprocessor, then under the operat ion EXP2, K is
expanded to a 593-bit exponent K ' = g(K) and the
value S ga¢) is computed by the device. The impor tant
facts about this from the point of view of the hash func-
tion is that g(K) is nonl inear and the device does not
admit g(K) = 0, which ensures that Sg~K) is sensitive to S
(see box for a detai led descript ion of g as given in the
design specification o f the microprocessor).

Another primitive employed in the algori thm is best
described in the accompanying diagram. In this primi-
tive, a 256-bit binary string is placed in the register la-
beled exponent register which is best thought o f as a shift
. ° ° ° . o . , , . ° ° ° ° ° ° ° ° ° ° ° ° ° ° * * . ° . ° ° . o . o ° ° ° ° °

The instruction set for the Preload IVinto R register
CA34C168 microprocessor is: load into input register

Initialize R register
LOADD
CP22AB
CPA2R+

EXP2
TEST CBF, END IF = 1

CPA2R+
REPEAT TO LOAD

move Mr to R
add Mi to R

form C~ = M~ (K~
check for end of message

calculate next Kj

register with feedback through the 1-bit adder . A sec-
ond 593-bit string is placed in the register labeled prod-
uct register, and the 256-bit string (denoted by T + 28),
is calculated by adding bitwise, using real integer arith-
metic, the contents of the exponent register and the
product register, with the resultant bit being fed back
to the h igh-order bit of the exponent register, which
rotates twice and then shifts another 81 positions dur-
ing the opera t ion (the final carry is ignored). Alterna-
tively, given the 256-bit string T = (T255, T254 To)
and the 593-bit string S = ($592, $591 So), then
T + 28 is def ined by the following algori thm.

carry = 0
for q from 0 to 592

X = Sq + TQ + carry
if X = 3 then

carry = 1
else carry = 0

endif
T256+q = X (mod 2)

endf or
set T +
end

The
(82 , S I ,

T + 2 S

2 8 = (T848 , T847 T593)

effect o f this is if S is the concatenated string
So) where So and SI are of length 81 bits, then
is the integer sum

T = S 2 + Sl + So + e+ f - g

where e , f and g are the carry bits after 256, 512 and
593 steps of the algori thm.

The hashing algori thm proceeds as follows. Let M be
the message t to be hashed, presented as a binary
string. Then M is parsed as the concatenated string

m ' ' ' = M I M 2 . • • M m

where each of the M~, i = 1, 2 m is the length 592.
We note that the last block of the message is "padded
out" with "01010101 . . ." to give a length divisible by
592. Each M" is expanded to a block Mi of length 593
by adjoining to M" a new "least significant" bit which is
the 0, 1 complement of the existing "least significant"
bit o f M;.

Let IV denote a randomly chosen but known 256-bit
string or Initialization Vector (such a string is built into
the microprocessor). For the first block of the message,
form K~ = IV + 2Mb and C1 = M~ (K').

Subsequent message blocks are processed as:

K i = K i - 1 + 2Ci - 1 + 2 m i
C i = M g(Ki) ~__ Mg(Ki-l+2Ci-l+2Mi)

• " ' - i

The hash value is Cm. This technique takes advan-
tage of the difficulty of deriving solutions for equations
of the type xf(x) = b over finite fields.

John C. Anderson
MObius Encryption Technologies

Mississauga, Ontario L5R3L7
Canada

J o h n C. Anderson is President and C.E.O. of M6bius Encryption Technolo-
gies, Ontario, Canada.

~ July 1992/Vol.35, No.7/COMMUNICATIONS OF THE ACM

Wllo HoIcls t h e Keys?

n May 7, 1992, NIST director John W. Lyons and James Burrows,
director of NIST's Computer Systems Laboratory appeared
before the Judiciary Committee of the House of Representatives
to discuss information security. After summarizing the various

. types and uses of cryptography, Lyons turned to the current
status of the DSS and addressed some of the comments and criticisms the agency
has received. The following remarks have been gleaned from his prepared statement.

e eee I l ee ee l l I i . e eee eeeeeeeoe eeeee eeee e l e l e e e eee ee

T
he proposed Digital Signature Standard, or
DSS, was designed only to compute and verify
digital signatures. It is different from, but com-
plementary to, the DES, which is optimized for
fast encryption of information. Furthermore,
the DES is a cryptographic technique that uses

one key to both encrypt and decrypt data. Therefore,
two people seeking to communicate securely must have
the same key. This was acceptable until a need for elec-
tronic funds transfer, electronic commerce and elec-
tronic key exchange indicated the desirability of a
technique for which only one person had the key in order
to create a message, so that anyone could verify its source
and integrity but that no one else (including the intended
recipient) could modify or create a message and claim
it came from that person. Since a person's signature
retains its characteristic and has been used for centuries
to denote legal notification of document integrity and
approval, the term "digital signature" was selected to
denote legal notification of the integrity and approval
of a message created on a digital computer.

A digital signature system is based on the fairly new
field of public key cryptography. This system uses a
computer program that implements a logical or
mathematical method of combining a representation,
or hash code, of a digital message with the private
signature generation key of the originator of the
message. A paired, but distinct, public signature
verification key can be distributed to everyone because
the private key cannot (if the technique is "secure") be
computed from the public key. Therefore, one key is
used to sign a message and a different key is used to
verify it. While DES is called a one-key system, the DSS
uses a two-key system.

In selecting the digital signature algorithm (DSA) for
the proposed DSS, the following factors, among others,
were considered: the level of security provided, the
applicability of patents, the ease of export from the U.S.
and the efficiency in a number of government and com-
mercial applications and the impact on national security
and law enforcement. A number of techniques were
reviewed and deemed adequate to provide appropriate
protection for federal systems. Among these, we placed
primary emphasis on selecting technology that best
assures appropriate security for federal information and

did not require payment of royalties by U.S. private or
commercial interests.

I would like to summarize the positive and negative
comments we have received in response to our solicita-
tion of comments.

Examples of a few of the positive comments include:
• The DSA will be especially useful to the financial
services industry.
• There will be minimal cost impact if the proposed
standard is implemented.
• Generating keys for the DSA is very fast.
• The DSA is the only signature algorithm that has been
publicly proposed by any government.
• The algorithm should be adopted as a FIPS.

Many federal agencies and private organizations
stated that a DSS was needed. Many believed the
government's goal of having a standard that was free of
patent impediments was good. However, the proposed
DSS came under criticism, just as the DES had exactly
15 years earlier. The negative comments reflect some of
the diverse interests in this area. Our responses follow
each of the summarized comments.
• The DSA selection process was not public.
In response, NIST acted within its normal standards
development procedure and the provisions of the Com-
puter Security Act of 1987, drawing on the expertise of
the National Security Agency, in proposing the DSS. In
the normal standards development process, NIST iden-
tifies the need for a standard, produces technical
specifications of a standard using inputs from different
sources, and then solicits government and public com-
ment on the proposal. After the comment period, the
comments are analyzed, appropriate changes are made
and a revised standard issued (or further comment is
solicited if the revisions are substantial). This public
process is being followed.
• The DSA cannot be used for key distribution and encryption.
In response, the DSA was designed to be a digital
signature algorithm. It is not for key distribution or
encryption. The DES is a much more efficient method
of data encryption than available public key techniques
in current implementations. A technique is needed for
key distribution that is optimized to meet all federal
cryptographic criteria.

COMMUNICATIONS OF THIE/UDM/Ju]y 1992/Voi.35, No.7 S ~

W h o HOIClS t h e K e y s ?

• The DSA does not provide adequate security.
In response, what we are proposing provides excellent
security. It provides orders of magni tude greater pro-
tection than is needed in the foreseeable future. N I S T
proposed a 512-bit modulus for efficiency reasons. Based
on comments received and subsequent government
analysis, N I S T is proposing a number of modulus
lengths between 512 bits and 1,024 bits. To counter the
" t rapdoor" allegations made against the DSS, N I S T
intends to include in a revised proposal a prime genera-
tion process which, together with the variable-length
modulus, will mitigate many arguments about the
security provided by the DSS. The DSS has undergone
the same analysis procedures used for classified
algorithms that are used for classified purposes and
deemed appropriate for its intended uses.

• The DSA is less efficient than the leading alternative.
In response, the DSA was designed to satisfy many
diverse and often conflicting criteria. It was difficult to
meet, and impossible to optimize all of the criteria
simultaneously. N I S T was aware that the DSA is more
efficient in computing signatures than in verifying them.
We also were aware that it is very fast in generating the
needed keys. Generat ing keys and signing must be effi-
cient in some applications where limited comput ing
capability may exist. For example, many users in the
future will carry a smart card, similar in size to a credit
card, but embodying a tiny computer that will generate
personal signature keys and be able to "sign" electronic
transactions for the owner. Prototype smart cards are
in design now which sign in a second and verify in three
seconds. We are aware of current DSS hardware
implementations that sign and verify in milliseconds.
The ability of the DSS to achieve greater efficiency
through precomputation of some variables and through
optimization techniques that are being developed will
make the DSS highly desirable in many applications.
• The DSA may infringe other patents.
In response, a major criterion for the invention and
selection of the DSS by the government was to avoid
patented technology that could result in payment of
royalties for government, commercial and private use.
A patent has been applied for the DSA by the govern-
ment with the intent of issuing licenses for this patent
on a nonexclusive, royalty-free basis. Two patent holders
claimed that the DSS infringes their patents. The infr-
ingement claims are still being reviewed.
• The DSA is not compatible with formal and de facto
standards.
In response, the DSA is a new invention designed to
meet a number of federal government criteria. It is pro-
posed as a federal government s tandard for all
unclassified applications, including Warner Amend-
ment information. It is being proposed as a candidate
American National Standard by a voluntary industry
standards group. While not compatible with the leading
de facto standard public key algorithm, the basic
mathematical operations (exponentiat ion of large

integers in a finite field) are identical and a large amount
(60-80%) of the code needed to implement the two
techniques is identical. The International Organization
for Standardization is developing two generic digital
signature standards, one which utilizes a hashing
algorithm and one which does not. The DSA utilizes a
hashing technique for efficiency purposes and can be
proposed as a candidate algorithm for that generic
standard.

Future Plans
N I S T is working to resolve the negative comments and
investigating a national infrastructure that will support
digital signature applications in a cost-effective manner.
Such an infrastructure is popularly called a Signature
Certification Authority. We perceive a great need for
such an infrastructure. Electronic filing of corporate and
personal tax returns could be made more efficient and
more secure if such a structure is available. Federal
payments to contractors, vendors and social security
recipients could be optimized if the integrity and
authenticity of electronic payments could be assured.
N I S T is talking with federal organizations responsible
for such large-scale applications, and we intend to hold
a workshop with potential users to understand their
requirements.

Specifically, we plan the following activities in
adopting a DSS as a Federal Informat ion Processing
Standard (FIPS):
• Complete analysis and summary of public comments;
• Analyze and attempt to resolve patent issues;
* Initiate study of a signature certification authori ty
infrastructure;
• Propose technical enhancements to DSA;
• Issue second solicitation comments on revised DSA
(if needed);
• Hold a workship on uses of the DSA;
• Investigate the economic stakes and interest involving
the DSS;
• Coordinate and harmonize the revised DSS with
ANSI and ISO standards activites;
• C o n d u c t f inal c o o r d i n a t i o n o f DSS wi th in
government;
• Recommend D O C approval of DSS;
• Publish revised DSS after D O C approval.

Cryptography has the potential of being a major
enabling technology in electronic commerce. Cryptog-
raphy is required to protect electronic information in
modern, distributed computer and communicat ions
systems. There is no other way of assuring integrity and
confidentiality of information in national or inter-
national information communications. Cryptographic
technology is needed which assures cost-effective
government and commercia l security and which
preserves legitimate national security and law enforce-
ment interests. []

ACM0002-0782/92/0700-032

S4 July 1992/Vo1.35, No.7/COMMUNICATIONS OF THE ACM

