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KEY UPDATE WITH COMPROMISE 
DETECTION 

FIELD OF THE INVENTION 

The present invention relates generally to the ?eld of cryp 
tography, and more particularly to techniques for updating 
keys in a cryptographic device and communicating those 
updates to other cryptographic devices. 

BACKGROUND OF THE INVENTION 

Cryptographic devices include, by Way of example, one 
time passcode (OTP) devices such as hardWare authentication 
tokens. Authentication tokens are typically implemented as 
small, hand-held devices that display a series of passcodes 
over time. A user equipped With such an authentication token 
reads the currently displayed passcode and enters it into a 
computer or other element of an authentication system as part 
of an authentication operation. This type of dynamic pass 
code arrangement offers a signi?cant security improvement 
over authentication based on a static passWord. 

Conventional authentication tokens include both time- syn 
chronous and event-synchronous tokens. 

In a typical time-synchronous token, the displayed pass 
codes are based on a secret value and the time of day. A 
veri?er With access to the secret value and a time of day clock 
can verify that a given presented passcode is valid. 
One particular example of a time-synchronous authentica 

tion token is the RSA SecurID® user authentication token, 
commercially available from RSA, The Security Division of 
EMC Corporation, of Bedford, Mass., U.S.A. 

Event-synchronous tokens generate passcodes in response 
to a designated event, such as a user pressing a button on the 
token. Each time the button is pressed, a neW passcode is 
generated based on a secret value and an event counter. A 
veri?er With access to the secret value and the current event 
count can verify that a given presented passcode is valid. 

Other knoWn types of authentication tokens include hybrid 
time-synchronous and event-synchronous tokens. 

Passcodes can be communicated directly from the authen 
tication token to a computer or other element of an authenti 
cation system, instead of being displayed to the user. For 
example, a Wired connection such as a universal serial bus 
(USB) interface may be used for this purpose. Wireless 
authentication tokens are also knoWn. In such tokens, the 
passcodes are Wirelessly communicated to a computer or 
other element of an authentication system. These Wired or 
Wireless arrangements, also referred to herein as connected 
tokens, save the user the trouble of reading the passcode from 
the display and manually entering it into the computer. 

Additional details of exemplary conventional authentica 
tion tokens can be found in, for example, US. Pat. No. 4,720, 
860, entitled “Method and Apparatus for Positively Identify 
ing an Individual,” US. Pat. No. 5,168,520, entitled “Method 
and Apparatus for Personal Identi?cation,” and US. Pat. No. 
5,361,062, entitled “Personal Security System,” all of Which 
are incorporated by reference herein. 
Many authentication systems are con?gured to require that 

a user enter a personal identi?cation number (PIN) or other 
static access code in addition to entering the passcode from 
the authentication token. This provides an additional security 
factor, based on something the user knoWs, thereby protecting 
against unauthorized use of an authentication token that is lost 
or stolen. Such an arrangement is generally referred to as 
tWo-factor authentication, in that authentication is based on 
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2 
something the user has (e.g., the authentication token) as Well 
as something the user knoWs (e.g., the PIN). 

Authentication tokens and other OTP devices are typically 
programmed With a random seed or other type of key that is 
also stored in a token record ?le. The record ?le is loaded into 
an authentication server, such that the server can create 
matching passcodes for the authentication token based on the 
key and the current time or current event count. When the user 
?rst activates the token, the server stores the user PIN in 
association With the key corresponding to that token. 
An adversary possessing a stolen record ?le is able to 

generate correct passcodes for each token key stored in that 
?le. In order to impersonate a particular user, the adversary 
Would generally have to “phish” or otherWise obtain access to 
the details of at least one user login session such that it learns 
the user PIN as Well as one passcode that can be matched to 
one of the token keys in the record ?le. 

Security issues such as these can be addressed through the 
use of unidirectional or broadcast key updates. In this manner, 
the key associated With a particular authentication token is 
periodically refreshed or otherWise updated. HoWever, con 
ventional key update techniques are de?cient in that the 
updates themselves can be compromised Without the token 
user or the associated authentication server being aWare of the 
compromise. 

SUMMARY OF THE INVENTION 

Illustrative embodiments of the present invention provide 
key update techniques in Which multiple updates are directed 
from one cryptographic device to another cryptographic 
device in such a manner that the cryptographic device receiv 
ing updates purporting to be from the sending cryptographic 
device can determine Whether or not the updates have been 
compromised by an adversary. 
By Way of example, in one of these embodiments, a send 

ing cryptographic device sends a sequence of update mes 
sages to a receiving cryptographic device, Which authenti 
cates the received messages. There is concern that an 
adversary may have compromised the state of the sender or 
receiver in a manner that alloWs the adversary to insert mes 
sages into the stream that are accepted as authentic by the 
receiver. To enable detection of this type of compromise, the 
sender through the sequence of update messages Will evolve 
its key state randomly, While transmitting enough information 
to the receiver to alloW it to track these key updates. An 
adversary that compromises the sender or receiver state at a 
particular time, but does not have access to all of the updates 
since that time, risks being detected because later messages 
from the adversary Will appear to the receiver to be inconsis 
tently authenticated With respect to the updated key state 
possessed by the sender and receiver. 

Accordingly, in one aspect of the invention, a key is 
updated in a ?rst cryptographic device and an update message 
comprising information characterizing the updated key is 
sent from the ?rst cryptographic device to a second crypto 
graphic device. The update message as sent by the ?rst cryp 
tographic device is con?gured to permit the second crypto 
graphic device to detect compromise of the updated key by 
determining if an inconsistency is present in the correspond 
ing received update message based at least in part on that 
received update message and one or more previously-re 
ceived update messages. 
The information characterizing the updated key may com 

prise at least a portion of the updated key itself, or other 
information Which may be used by the second cryptographic 
device in determining the updated key. For example, the 



US 8,699,713 B1 
3 

update message may comprise a parity symbol of an error 
correcting code, an updated key appended to at least one 
previous key, or an updated key embedded in a digital signa 
ture. 

In one of the above-noted embodiments, the ?rst crypto 
graphic device comprises an authentication token and the 
second cryptographic device comprises an authentication 
server. In an arrangement of this type, the update message 
may be sent from the authentication token to the authentica 
tion server by embedding it in a passcode, digital signature or 
other cryptographic output of the authentication token. For 
example, the update message may be sent as one or more bits 
of the cryptographic output. 

The illustrative embodiments advantageously overcome 
the draWbacks of conventional techniques, by providing key 
update techniques that alloW an authentication server or other 
receiving party to determine if the updates have been com 
promised. Also, one or more of these embodiments alloW key 
updates to be performed very e?iciently, While maintaining a 
high level of security, particularly for devices such as authen 
tication tokens or RFID tags that have limited cryptographic 
functionality. 

These and other features and advantages of the present 
invention Will become more readily apparent from the accom 
panying draWings and the folloWing detailed description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a simpli?ed block diagram of an authentication 
system in an illustrative embodiment of the invention. 

FIG. 2 is a more detailed block diagram of an authentica 
tion system comprising multiple cryptographic devices in an 
illustrative embodiment of the invention. 

FIG. 3 illustrates portions of one of the cryptographic 
devices of the authentication system of FIG. 2. 

FIG. 4 illustrates an attack timeline in the authentication 
system of FIG. 1 or FIG. 2. 

FIG. 5 shoWs security aspects of an illustrative embodi 
ment of the invention. 

FIG. 6 shoWs a timeline de?ning a safe key in an illustrative 
embodiment of the invention. 

FIG. 7 is a How diagram of a key update process With 
compromise detection as implemented in the authentication 
system of FIG. 1 or FIG. 2. 

DETAILED DESCRIPTION 

The present invention Will be described herein With refer 
ence to exemplary cryptographic devices and associated 
authentication systems. It is to be appreciated, hoWever, that 
the invention is not restricted to use With the particular illus 
trative device and system con?gurations shoWn. 

The term “passcode” as used herein is intended to include 
authentication information such as OTPs, or more generally 
any other information that may be utilized for cryptographic 
authentication purposes. Although the illustrative embodi 
ments Will be described beloW primarily in the context of 
OTPs, it is to be appreciated that the invention is more broadly 
applicable to any other type of passcode. 

The term “cryptographic device” as used herein is intended 
to be construed broadly, so as encompass not only authenti 
cation tokens but also other types of devices that can provide 
or process key updates in the manner disclosed herein. Simi 
larly, the term “authentication server” should be understood 
to encompass any type of processing device or set of such 
devices that is operative to authenticate a passcode provided 
by an authentication token or other type of cryptographic 
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4 
device. It need not be a netWork-based server, and may be 
implemented as a portion of a device that performs other 
functions, as a combination of multiple servers or other 
devices, or in other forms. 
As Will be described, the present invention in one or more 

illustrative embodiments provides techniques for key update 
Which permit a cryptographic device receiving updates pur 
porting to be from a sending cryptographic device can deter 
mine Whether or not the updates have been compromised by 
an adversary. 

FIG. 1 shoWs a simpli?ed vieW of an authentication system 
100 in an illustrative embodiment of the invention. In the 
system 100, ?rst and second cryptographic devices are 
respectively denoted as sender 102 and receiver 104. These 
devices communicate over a channel 105. An adversary 106 
initiates security attacks in the system 100 at least in part by 
accessing channel 105. 

In the system 100, a seed or other type of key in the ?rst 
cryptographic device 102 may be updated periodically, for 
example. More generally, the key updates may be carried out 
in accordance With any pattern mutually understood by the 
sender and receiver, including non-periodic patterns. In con 
junction With a given one of these updates, the ?rst crypto 
graphic device 102 sends an update message comprising 
information characterizing the updated key to the second 
cryptographic device 104. 
As Will be described in greater detail beloW, the update 

message as sent by the ?rst cryptographic device 102 is con 
?gured to permit the second cryptographic device 104 to 
detect compromise of the updated key by determining if an 
inconsistency is present in the corresponding received update 
message based at least in part on that received update mes sage 
and one or more previously-received update messages. The 
second cryptographic device 104 can therefore process mul 
tiple update messages purporting to be from the ?rst crypto 
graphic device 102 in order to detect compromise of the 
updated key. 
A given one of the update messages may take on a variety 

of different forms, including, for example, a parity symbol of 
an error-correcting code, an updated key appended to at least 
one previous key, and an updated key embedded in a digital 
signature. Each of these examples may be vieWed as a type of 
information characterizing the updated key, and is described 
in greater detail elseWhere herein. Thus, the phrase “informa 
tion characterizing the updated key” as used herein may com 
prise at least a portion of the updated key itself, or other 
information Which may be used by a receiver in determining 
the updated key. 

In one or more of the illustrative embodiments, the sending 
cryptographic device 102 and the receiving cryptographic 
device 104 may comprise an authentication token and an 
authentication server, respectively. In an arrangement of this 
type, the update message may be sent to the authentication 
server embedded in a passcode or other cryptographic output 
of the authentication token. For example, the update message 
may comprise one or more bits of a passcode or other cryp 
tographic output sent from the authentication token to the 
authentication server. 

FIG. 2 shoWs an example of an authentication system 200 
corresponding generally to an implementation of system 100 
in Which sender 102 comprises an authentication token 202 
and receiver 104 comprises an authentication server 204. 
Information from the authentication token 202 is sent to the 
authentication server 204 via netWork 205 and a host device 
210 that illustratively comprises a computer. As indicated 
previously, the term “cryptographic device” as used herein is 
intended to be broadly construed so as to encompass, for 
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example, authentication token 202 alone or in combination 
With at least a portion of the computer 210. In other embodi 
ments, such as those involving use of software tokens, the 
cryptographic device corresponding to sender 102 may com 
prise only computer 210, or another type of processing 
device, such as a mobile telephone. 

The authentication token 202 is con?gured to generate 
OTPs or other passcodes in accordance With the techniques 
disclosed herein. Such passcodes may be presented to a user 
via a display of the token, such that the user can manually 
enter a given passcodes into a user interface of the host device 
210. Alternatively, a given passcode may be communicated 
directly from the authentication token 202 via a Wired or 
Wireless connection betWeen the token and the host device 
210. By Way of example, the authentication token may be 
con?gured to communicate With the host device 210 via a 
Wired connection such as a USB interface, or via a Wireless 
connection such as a Bluetooth or IEEE 802.11 connection. 

The authentication token 202 may be, for example, a time 
synchronous authentication token, an event-synchronous 
authentication token, a challenge-response token, a hash 
chain token, or a hybrid token that incorporates multiple such 
capabilities, such as a hybrid time-synchronous and event 
synchronous token. A given authentication token may be a 
connected token or a disconnected token, or one capable of 
operating in both connected and disconnected modes. The 
disclosed techniques can be adapted in a straightforward 
manner for use With other types of authentication devices, or 
more generally cryptographic devices. 

Use of one or more of these alternative authentication 

tokens may require that the update message provide addi 
tional information indicating a current epoch, such as the 
current event counter in an event-synchronous authentication 
token. 

The host device 210 may comprise a desktop or portable 
personal computer, mobile telephone, personal digital assis 
tant (PDA), Wireless email device, Workstation, kiosk, televi 
sion set-top box, game console, or any other information 
processing device that provides an interface betWeen authen 
tication token 202 and authentication server 204. 
As shoWn in the ?gure, the host device 210 generally 

comprises a processor 212, a memory 214, and one or more 
netWork interfaces 216 Which alloW the device to communi 
cate With the authentication server 204 over the netWork 205. 

It should also be noted that a given authentication device 
need not take the form of a stand-alone hardWare token. For 
example, such a device may be incorporated into another 
processing device, such as a computer, mobile telephone, etc. 
In one such implementation, the host device and the authen 
tication token may be combined into a single processing 
device that communicates With the authentication server. 

The netWork 205 may comprise, for example, a global 
computer netWork such as the Internet, a Wide area netWork 
(WAN), a local area netWork (LAN), a satellite netWork, a 
telephone or cable netWork, a cellular netWork, a Wireless 
netWork such as WiFi or WiMAX, or various portions or 
combinations of these and other types of netWorks. 

In the system 200, the authentication server 204 is con?g 
ured as a back-end authentication server, in that it communi 
cates With host device 210 over a netWork, but other types of 
authentication servers may be used. 
A Wide variety of conventional authentication processes 

may be implemented using an authentication token 202 and 
authentication server 204 arranged as shoWn in FIG. 2. 
Examples of such processes are disclosed inA. J. MeneZes et 
al., Handbook of Applied Cryptography, CRC Press, 1997, 
Which is incorporated by reference herein. 
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6 
Such processes, being Well knoWn to those skilled in the 

art, Will not be described in further detail herein. The present 
invention does not require the use of any particular type of 
authentication process to authenticate the token 202 to the 
server 204. 

It is to be appreciated that a given embodiment of the 
system 200 may include multiple instances of authentication 
token 202, authentication server 204 and host device 210, and 
possibly other system components, although only single 
instances of such components are shoWn in the simpli?ed 
system diagram of FIG. 2 for clarity of illustration. Also, as 
indicated previously, other embodiments may combine cer 
tain system elements, such as the authentication token and the 
host device. It is also possible to eliminate, modify or replace 
other system elements. For example, authentication token 
202 may communicate directly With authentication server 
204, rather than via other elements such as host device 210 
and netWork 205. 

Referring noW to FIG. 3, portions of a given cryptographic 
device of the system 200 are shoWn. The cryptographic device 
is illustratively shoWn in FIG. 3 as representing authentica 
tion token 202, but similar elements may also be present in the 
authentication server 204. These devices may also include 
other types of elements commonly found in conventional 
implementations of such devices. 

In this embodiment, the authentication token 202 com 
prises a processor 300 coupled to a memory 302. Accord 
ingly, at least a portion of a key update process as disclosed 
herein may be implemented in the form of softWare that is 
executed on a cryptographic device comprising a processor 
coupled to a memory. Processor 300 is also coupled to inter 
face circuitry 304. The interface circuitry 304 may comprise, 
for example, circuitry for interfacing the authentication token 
202 to the host device 210 via a Wired or Wireless connection 
in the case of a connected token, or circuitry for generating a 
visual or audible presentation of a given generated passWord 
in the case of a disconnected token. Thus, the interface cir 
cuitry may include, for example, Wired or Wireless interface 
circuitry such as USB, Bluetooth or 802.1 1 circuitry, or one or 
more speakers, displays and associated drivers, in any com 
bination. 
The various elements 300, 302 and 304 of FIG. 3 may be 

implemented in Whole or in part as a conventional micropro 
cessor, microcontroller, digital signal processor, application 
speci?c integrated circuit (ASIC) or other type of circuitry, as 
Well as portions or combinations of such circuitry elements. 
As indicated previously, portions of a key update process in 
accordance With a given illustrative embodiment of the inven 
tion can be implemented at least in part in the form of one or 
more softWare programs that are stored at least in part in the 
memory 302 and executed by processor 300. Memory 302 
may also be used for storing information used to perform 
passcode generation or other operations associated With 
authentication in the authentication system 200. 

Techniques for key update With compromise detection in 
system 100 Will noW be described in greater detail, With 
reference to FIGS. 4 through 7. 

In the embodiments to be described, the sending crypto 
graphic device 102 updates one or more of its keys, and sends 
corresponding update messages to the receiving crypto 
graphic device 104. The term “update” in this context is 
intended to be broadly construed, and may involve, for 
example, replacing a current value With a neW value com 
puted as a deterministic function of the current value and 
some fresh random input. 
The keys in these embodiments may also be referred to as 

“drift keys” to re?ect the fact that such keys evolve randomly 
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over time in a manner unpredictable to an adversary. The drift 
keys are used by the sending party generally denoted as 
sender 102 in FIG. 1 to authenticate itself to the receiving 
party generally denoted as receiver 104 in FIG. 1. It is 
assumed Without limitation that the adversary 106 can com 
promise either the sending party or the receiving party or 
both, and may also eavesdrop or block messages on the chan 
nel 105. HoWever, it is further assumed that the state of the 
sender or receiver is unaffected, particularly With respect to 
information about the key. 
As one example, assumed that sender 102 authenticates to 

receiver 104 on a daily basis. On day d, the sender uses key 
pair Kd:(ad,bd). At the beginning of every even-numbered day 
d, the sender replaces aa,_l With a neW, random value ad, but 
leaves b d_ 1 unchanged, i.e., lets b dIb d_ 1. When the sender 
communicates With the receiver, it uses b dto authenticate and 
encrypt its neW key a d. On odd-numbered days, the sender 
instead refreshes bd_ 1. The receiver alWays knoWs at least one 
of the sender’s keys, so the sender can successfully authenti 
cate itself to the receiver. 
Assume that the adversary 106 secretly steals the sender’s 

key pair Kd:(ad,bd) on day d. Note that the adversary might 
steal the keys from the sender or from the receiver. After tWo 
days, the sender’s key updates Will render the adversary’s 
stolen keys obsolete. Knowing neither component of Kd+2: 
(ad+2,bd+2), the adversary Won’t be able to impersonate the 
sender. 

In the example above, the sender faithfully communicates 
every day With the receiver, ensuring that the receiver has 
fresh knoWledge of the sender’s current key Kd. In practical 
settings, hoWever, synchronization betWeen the sender and 
the receiver may be sporadic. The term “synchronization” in 
this context is intended to be broadly construed, and may 
therefore encompass partial synchronization of sender and 
receiver, rather than complete synchronization of sender and 
receiver. 

For instance, suppose that the sender logs into a server 
operated by the receiver using a time-synchronous authenti 
cation token (e.g., a SecurID® token) With daily key updates. 
If the sender doesn’t log in on a given day and the receiver 
misses an update, the receiver’s knoWledge Will become 
obsolete. For instance, if the receiver misses the sender’s 
update to ad on day d, then on day d+l, the receiver Won’t be 
able to decrypt the sender’s update to b d+ 1. At that point, the 
receiver Will be left With an entirely obsolete key pair. 

Exacerbating this problem is the fact that in the present 
embodiment it is assumed that the sender transmits but 
doesn’t receive messages. So the sender doesn’t knoW Which 
of its key updates the receiver has received and therefore 
doesn’t knoW for Which of its keys, if any, the receiver’s 
knoWledge has become obsolete. 
An important challenge, then, is to ensure that the sender’ s 

updates enable the receiver to remain at least loosely synchro 
nized even When the receiver receives only a fraction of the 
updates. In one or more of the embodiments described beloW, 
We use erasure codes or other types of error-correcting codes 
for this purpose, effectively treating key updates that don’t 
reach the receiver as erasures in the sender’s ongoing trans 
missions to the receiver. 

While We assume that the adversary’s compromise of the 
sender is transient, We also consider the possibility that the 
adversary subsequently intercepts, i.e., sees and prevents the 
receiver from receiving, some number e of the sender’s key 
updates to the receiver. For example, if the sender is using a 
hardWare authentication token, the adversary might phish 
some of the sender’s passcodes. This is, of course, a stronger 
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8 
attack than eavesdropping, and may serve to model the effect 
of eavesdropping by the adversary. 
As noted above, the sending cryptographic device 102 may 

comprise authentication token 202. The SecurID® token, for 
example, displays a changing passcode, typically six digits, 
Which the user types into a computer or other host device in 
order to authenticate a session to a server. The token does not 

accept input, and the passcodes are its only form of output. 
Consequently, in a drift key process of the type disclosed 
herein, these passcodes may be used as a channel through 
Which key updates can be propagated. At the same time, 
embedding key updates in passcodes Weakens the passcodes 
themselves, in that every bit of key update data means one less 
bit of passcode. It is important, therefore, that key updates in 
such embodiments be compact. Embodiments Will be 
described in Which the key updates consume no more than a 
feW bits per passcode, and possiblyjust a single bit per pass 
code. 

Additionally, passcodes only reach the server When a user 
authenticates. For tokens With passcodes updated at a rate of 
one per minute, then, very feW of the passcodes reach the 
server. Put another Way, the vast majority of update messages 
in such an embodiment may be considered lost. 
We model an exemplary drifting-key update process DK in 

terms of a sender S that transmits to, but doesn’t receive 
messages from a receiver R, Where S and R correspond to 
sender 102 and receiver 104, respectively, in the authentica 
tion system 100 of FIG. 1. It Will be further assumed that these 
sending and receiving parties are implemented as authentica 
tion token 202 and authentication server 204, respectively. 
We model time as discrete timesteps, e.g., minutes. The cur 
rent timestep is denoted by t. 

Variables include: 
Kti The set of m keys of the sender S at time t. We let Kt[i] 

denote the ith such key, and K denote the space from Which 
individual keys are draWn, i.e., Kt[i]€K. Note that keys may be 
short, and in some cases may even be single bits. For conve 
nience, We refer to Kt itself as a key, even though it is a 
composite of multiple keys. The term “key” as used herein is 
therefore intended to be broadly construed, and may com 
prise, for example, at least a portion of a seed or other secret 
value, or sets of such secret values, suitable for use in imple 
menting cryptographic authentication processes. 

At: The knoWledge held by the receiver R of Kt at time t; We 
let kt[i]eL denote the ith component, Where L is the key space 
for R. The receiver R might, for instance, set Ali] to its most 
recent knoWledge of Kt[i], in Which case LIK, i.e., the key 
space for the receiver is the same as the key space for the 
sender. We optionally let Nt denote additional receiver state, 
e.g., information about the receiver’s history of successfully 
received updates. We omit Nt as appropriate for clarity. 

pt: The key-update message generated by the sender in the 
current timestep. 

Functions applied by the token and server include: 
keygen(l)i> (KOJtO): A key generation function that yields 

an initial sender key and its counterpart for the receiver, Where 
1 is a security parameter; 

evolve(t,1<t_)—>1<t: A randomized key-update function; 
updategen(t,Kt)Qp.t: A function that computes an update 

message; 
synch(t,7tt_l,[Nt_1],p.t)Q7tt: A server-knoWledge update 

function; When R receives no update (taking 115(1)), We de?ne 
synchwwn,[7~'t_1l,<l>)a7~t_1; 

keyver(t,l<t,7tt)Q{accept,reject}: A key veri?cation func 
tion; indicates Whether the key Kt appears valid to R, i.e., is 
consistent With kt in the vieW of R; in the case of attack, 
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indicates Whether Kt is suf?ciently close to Kt to enable suc 
cessful impersonation of S. We say that Kt is valid at time t if 
keyver(K,7tt)—>accept. 
We further de?ne: 
R(I,Kt,A)Z The drift range of a key Kt over an interval of 

time. Given Kt, R(I,Kt,A) is the set of possible values assumed 
by KHA, i.e., generated by A successive applications of evolve 
to Kt. 

In certain embodiments, keys are updated uniformly at 
random in K and independently of one another. We refer to 
such update processes herein as “simple.” In a simple update 
process, log‘K‘|R(t,Kt,A)| is equal to the number of distinct 
keys updated over the interval [t,t+A]. We Write 
R(t,1<t,A):|log‘ K‘R(t,1<t,A)|. 
We consider a passive adversary A, i.e., one that may learn 

but not modify state of sender S or receiver R. The adversary 
A corresponds to adversary 106 in FIG. 1 and may compro 
mise either sender S or receiver R at any time u of its choice. 
That is, it may perform one or both of the following tWo 
attacks: 

Sender compromise: A corrupts S, learning its internal 
state (Kt). 

Receiver compromise: A corrupts R, learning its internal 
state (i.e., kt,[7t't]). 

It is assumed that A does not compromise the source of 
randomness used by S, that is, it does not make future updates 
by S predictable. 

For simplicity, We assume thatA chooses to compromise S. 
This is in general a stronger attack than compromising R, 
Whose knoWledge (k?k't) of Kt may not be perfectly fresh. 
As an additional simpli?cation here, We may assume that 

When S updates R, R learns S’s state completely and exactly. 
In other Words, We assume updategen(t,Kt):p.tuKt, meaning 
that S transmits its entire current key Kt. 
Some time after the adversaryA has compromised S at time 

u, S sends an update to R. We let v denote the time at Which 
this update occurs. Later, at time W, A attempts to impersonate 
S. We model this impersonation as a forgery, in Which A 
attempts to produce a key K'W that is accepted by the receiver, 
i.e., such that K'WeR(v,Kv,W—v). 
We de?ne Aoqhu, that is, the time that elapses betWeen 

compromise of S, and S’s update to R. Similarly, We de?ne 
A lqv-v, the time betWeen S’ s update and the forgery attempt 
by A. We let A:AO+Alqv—u. We use AO informally to denote 
the time interval [u,v], Al to denote [v,W] and A to denote 
[u,W]. We let A denote a set of pairs (AO,Al); thus A de?nes a 
constraint on the attack timeline of A. A timeline of this attack 
by the adversary A is shoWn in FIG. 4. 
As described above, A is modeled as a strong adversary, 

one that can choose a time of compromise u, and set the keys 
(Kwku) respectively of S and R. Additionally, A is stateful. 
Thus, When it forges K'W, it remembers (Kwku). 

In another possible adversarial model, A attempts to guess 
a correct key at time v, i.e., before R receives an update from 
S, and S sends an update. In this case, A’s intrusion may still 
be detected after the fact. 

Suppose that A successfully passes off an incorrect key, 
i.e., is accepted With K'W#Kt, its intrusion Will cause R to 
accept update its oWn key knoWledge to K't. Such synchroni 
Zation With A creates a later opportunity to detect the intru 
sion: When S later sends an update KHA, R may reject it as 
inconsistent With K't. 

Such after-the-fact detection corresponds to a timeline in 
Which the positions of W and v in FIG. 4 are reversed. In some 
drifting-key processes, e.g., one or more of the uniformly 
staggered update processes described beloW, the probability 
of detection of A’ s intrusion Will be identical for the original 
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10 
and reversed timelines. To see this, We can think of A and S as 
entities in Which is Kf. evolves independently. Intrusion detec 
tion requires only that tWo evolving keys differ and that A and 
S therefore present inconsistent keys to R. The order of pre 
sentation doesn’t matter. 
We also consider a stronger A that may, after compromis 

ing S, intercept a total of e updates emitted by S. That is, at e 
distinct times t, it may perform the folloWing update inter 
ception action: A learns pt, but R doesn’t. We assume here that 
A not only learns pt, but prevents it from reaching R. Thus, 
A’s attack is strictly stronger than eavesdropping. An inter 
ception of this kind might come about, for instance, as the 
result of a phishing attack against the passcode generated by 
an authentication token. The assumption that pt doesn’t reach 
R also ensures that R receives no updates in the interval A1. 

Security against this stronger adversary is possible, for 
example, When updates contain only partial information 
about S’s key. It may be helpful to con?ne pt to a partial 
“vieW” of Kt not merely to protect against an intercepting 
adversary A. As We explain beloW, partial vieWs are also a 
useful optimiZation for resource-constrained environments, 
as they result in shorter messages pt. 

Observe that security against a sender-compromising 
adversary is possible if evolve is randomiZed. If evolve is 
deterministic, then once A learns the sender’s state, it can 
compute all future states. 
An active adversary is one capable of arbitrary modi?ca 

tion of the state of R and S. It can modify the keys and/or 
executable code of either party. 
A limited form of active compromise, namely transient 

modi?cation of keys Kt or M, Wouldn’t bene?t the adversary. 
By increasing lid-M, i.e., weakening synchronization 
betWeen sender and receiver, A increases the likelihood of an 
authentication failure by S, Which may trigger an alarm in the 
authentication system indicative of a potential compromise. 
By decreasing |Kt—7»t|, i.e., tightening synchronization 
betWeen the sender and receiver, A makes authentication 
failure on its oWn part more likely. 
On the other hand, by modifying executables, A Would gain 

an advantage. It might, for instance, modify the key-evolution 
function on S so that keys evolve pseudorandomly under a 
seed s knoWn to A, and are thus trackable by A. Intrusion 
detection for a general adversary of this type is generally not 
possible, as A can perfectly simulate S. 

In some scenarios, it may be hard for A to achieve persis 
tent, active compromise in any case. The executable code of 
standalone hardWare token, for instance, may reside in read 
only memory. Similarly, if R is an authentication server, good 
security practices Would prompt periodic refresh and mea 
surement (e.g., via a hardWare root of trust) of R’s softWare 
stack, and thus the detection and removal of malWare. 
Exemplary key update processes With full key transmission 

Will initially be described. Intuitively, a drifting-key process 
is secure When R achieves more precise knoWledge of KW than 
A. To capture the notion of knoWledge formally, consider a 
?xed triple (u,v,W). De?ne D R:|R(v,1<v,AO)| as the number of 
possible values of KW given R’s knoWledge of Kv; D R is the set 
ofkeys that R accepts as valid. De?ne DA:|R(u,KM,AO+Al)| as 
the set of possible, valid keys in the vieW of A, given its 
knoWledge of K”. 
The objective of A is to guess a key in the space DR. As the 

set of possible valid keys givenA’ s knoWledge is D A, then the 
probability that A guesses correctly is at most DR/DA. This 
assumes that keys in D A are equiprobable. 
The key space D A groWs over the interval AO+Al, While D R 

groWs over the shorter interval A1. A drifting-key process 
achieves strong security When D A groWs substantially larger 
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than D R. This security aspect of one or more embodiments of 
the present invention is illustrated in FIG. 5. 

For the special case of simple processes, We introduce the 
notion of a safe key K[i]. A key may be vieWed as “safe” if it 
drifts advantageously in a designated security experiment: In 
particular, R knoWs KW[i], butA doesn’t. 
More speci?cally, a key K[i] may be considered safe if it is 

updated during the interval A0, so that the adversary doesn’t 
knoW its value at W, but remains unchanged during the inter 
val A1, so that R knoWs its value at W. The timeline corre 
sponding to a safe key is depicted in FIG. 6. 

In a simple process, security depends on the number of safe 
keys induced by the triple (u,v,W). The more safe keys there 
are, the more precise R’s knoWledge of Kt With respect to A’s. 
Indeed, given k safe keys for a triple (u,v,W), it can be shoWn 
that DR/DAIIKFk. 

In one embodiment, We employ periodic updates. S’s key 
K, is refreshed by means of periodic randomiZations of each 
its keys at different times. 

Associated With each component i is a pair of positive 
integers (pl-,di), respectively denoting the period and phase of 
updates to Kt[i]. Updates in this embodiment proceed accord 
ing to the folloWing rule: Update key Kt[i], i.e., set Kt[i]<i K, at 
time t if tIdZ-(mod pi), Where the notation x‘& K denotes 
assigning to x an element selected at random from K. Other 
Wise, Kt[i]el<t_l[i], i.e., the key remains unchanged. 

This general frameWork offers considerable ?exibility, as 
there are no a priori constraints on the periods pl- or the phases 
di. In the case of authentication token design, for instance, 
considerations such as the frequency of login by ordinary 
users, etc., can play a role in the selection of the periods and 
phases. 
A natural strategy of periodic updates is one in Which a set 

of m keys have the same period p, but distinct phases that are 
multiples of d, for some d|p. Thus mrp/d. We refer to this as 
a uniformly staggered process US With period p and phase 
shift d. Its use is illustrated by the folloWing example. 
A hardWare authentication token contains a drifting key Kt 

consisting of seven one-bit keys, each updated on a different 
day of the Week. It maintains this key in addition to its primary 
key for generating passcodes. The ?rst bit is randomiZed 
every Sunday, the second every Monday, and so forth. That is, 
it employs US With p:7 and d:1, Where timesteps are days. 
Thus m:p/d:7,Kt:{Kt[1], . . . , Kt[7]}, K:{0,1}, and key K[i] 
has (pl-,di):(7,i) for 1sis7. 
When computing a passcode, the token combines its pri 

mary key With a representation of Kt, providing protection 
against compromise of its primary key. As Will be described 
beloW, other approaches may be used to combine the tWo 
keys. 

For a US process With period p and phase shift d, it can be 
shoWn that for any timeline With AOzZd and A lsp-Zd, there 
are at least Z safe keys. 

Also, if We de?ne 0t,[3,Z such that 0<[3<0t and Z>1, and let 
A:{(AO,A1)|ZSAlSZ(l +6) and AO>0tA1}, it can be shoWn that 
a US process With period p:Z(1+0t), d:Z(0t—[3), and thus 
m:(1+0t)/(0t—[3) keys is safe for A. 

Additional techniques for achieving security in a similar 
context are disclosed in G. Itkis, “Cryptographic Tamper 
Evidence,” Proc. CCS ’03, pp. 355-364, October 2003, and G. 
Itkis and L. ReyZin, “SiBIR: Signer-Base Intrusion-Resilient 
Signatures,”Advances in CryptologyiCRYPTO 2002, Lec 
ture Notes in Computer Science, pp. 101-116, 2002, Which 
are incorporated by reference herein. 

In a US process of the type disclosed herein, the drift range 
of K covers the full key space after p:md timesteps. (i.e., 
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12 
R(t,K,md):K'".) It can be shoWn that US is in fact optimal for 
a broad class of timelines in Which A:md. 

To see this, ?rst de?ne Am,d:{A:{(AO,A1):(s,md—s)}SES}S 
£[O,md]. Observe that the class Am’d includes, for instance, the 
set A of all timelines in Which A:md. It can then be shoWn that 
given key space K’", US With period p:md phase shift d is 
optimal for any AeAm?. That is, for any 1, max ASucc DK Aha” 
(l)[A] is minimiZed by DKIUS. 
We noW consider constructions With partial key transmis 

sion. These generally include processes in Which pt contains 
partial information about Kt. We refer to pt as a vieW of Kt. 
Adopting this design variant brings at least tWo bene?ts. First, 
it is possible to create a process resistant to an A that inter 
cepts/eavesdrops on updates pt during the interval A l . Second, 
pt can be compact, i.e., We can achieve ||J.t|<<|Kt|,Wl1iCl1iS a 
bene?t in resource-constrained settings. 
One possible approach to partial key transmission is for S 

to send keys directly. For instance, it might set pt to a ran 
domly selected key Kt[i], i<i [1 ,m]. This approach helps 
achieve the tWo objectives above, but other embodiments can 
provide better results. 

For example, pt can instead be computed as a function over 
multiple keys. This approach yields at least tWo improve 
ments. First, R can learn information about Kt from partial 
updates With better communication e?iciency, i.e., from 
feWer updates than via random keys; R thereby detects diver 
gence in keys and thus intrusions more quickly. Second, R can 
achieve a security advantage over A When it has fresher 
knoWledge of Kt. Intuitively, We can “encrypt” updates under 
keys for Which R already has a fresh vieW. 
We more particularly can compute pt as the parity symbol 

of a non-systematic linear erasure code computed over Kt. 
Conceptually, then, We treat Kt as a message to be transmitted 
over a lossy channel. When an update doesn’t reach R, it 
constitutes a lost symbol. A parity symbol in this embodiment 

is computed as the dot product <Kt[l], . . . , Kt[m]>~vt, Where 

vteK’", although other types of error-correcting codes can be 
used in other embodiments. 
As a simple example, if the symbols/keys of Kt are bits, a 

one-bit update value pt might be computed as the exclusive-or 
@(OR) of a pseudorandom subset determined by t, i.e., 
A 

v te{0,1 
The goal of R is not explicitly to reconstruct any key Kt, but 

to detect inconsistencies in parity symbols. HoWever, recon 
struction of keys is a convenient approach to detecting incon 
sistencies. 
While it isn’t necessary that R reconstruct Kt explicitly, it 

may be advantageous in forensic analysis for R to be able to 
determine the time of intrusion, i.e., time at Which Kt has been 
compromised. 
We Will noW describe periodic update processes With par 

tial vieWs. Since updated keys in such processes are generated 
independently at random, it’s convenient to think of them as 
neW keys appended to K. With this perspective, K is initialiZed 
as an m-symbol message, but groWs over time. For example, 
in a US process With phase shift d, a neW key is appended to 
K every d timesteps. At time t, then K is a message of length 
mt:m+[t/d]. Let y(t) denote the number of updates/parity 
symbols received by R at time t. For simplicity, We’ll label 
updates and parity vectors here iteratively. Thus R has col 

. . ‘> . . . . 

time t. p.1- 1s computed as Kt‘ v i. R s1gnals an 1ntrus1on When1t 

lected a vector of parity symbols jwfhthpq, . . . 

A 

detects an inconsistency among the parity symbols in p. W). 
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We thus treat Kt as an mt-symbol message and the codeword 
a 

p. W) of y(t) parity symbols. These parity symbols are com 
puted by a linear erasure code de?ned by the generator matrix 

Wu) 

a 

One possible Way to detect inconsistencies in p. W) is to 
a 

check for inconsistencies in 11,10) at every timestep t. For 
example, one could compute the parity-check matrix Ht cor 

responding to Gt and check that HtFYmIO. 
A more e?icient approach is one in Which the parity vectors 

V, are uniformly random, With the constraint that vi[m]:1, 
i.e., the most recently updated key bit is alWays included in 
the parity check. 
When the server receives an update, it performs Gaussian 

elimination to solve for the most recently updated key bit, if 
possible, or to check for consistency if the update gives an 
equation that is linearly dependent on the previous equations. 

Note that by constraining the parity vectors to have a 1 in 
the last position, We ensure that the ?rst update in any given 
key period is linearly independent of all previous equations 
the server has received. 

Suppose keys are updated Weekly and the parity vector 
changes every minute. For simplicity, We assume for noW that 
the server gets completely synchronized With the initial key, 
and afterwards the user logs in at least once per Week. This 
means at the end of each Week the server completely knoWs 
that Week’s key. 

The adversary’s probability of logging in successfully may 
be analyZed as folloWs. Suppose the adversary’s break-in and 
eavesdropping all occur before Week i, and the adversary 
attempts to log in during Week i. Then inconsistency Will be 
detected With probability 1/2, because the adversary effec 
tively needs to guess the most recent bit in order to guess the 
update bit. Speci?cally, if the user has already logged in 
during Week i, then the adversary has probability 1/2 of suc 
ceeding (and never being caught), and if the user has not yet 
logged in during Week i, then the adversary’s login Will suc 
ceed With probability 1, but When the user logs in later during 
Week i, inconsistency Will be detected With probability 1/2. 

If the adversary forges during the same Week as the break 
in, it Will alWays succeed. 

Suppose the adversary breaks in during Week i, then does 
some eavesdropping of updates, including at least one update 
during Week i+d, and attempts to log in during Week i+d. If it 
can ?nd a vector that is linearly dependent on What it knoWs 
(and can attack precisely at the corresponding minute), then 
the adversary can login With success probability 1. If the 
adversary cannot attack at a time When the vector is linearly 
dependent on What it knoWs, then it Will succeed With prob 
ability 1/2. If the adversary has obtainedk linearly independent 
equations from the eavesdropping, then it effectively has 
k+(m—d) linearly independent equations in the m current key 
bits. Then the probability that another vector of random 
binary coef?cients (ending With a 1) Will give an equation that 
is linearly dependent on the ones knoWn to the adversary is: 
2(k+’"_d_l)/2(’"_l):2k/2d. So, if the eavesdropping rate is high 
and/ or the adversary has precise control over the minute When 
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14 
it attacks, the adversary Will be able to succeed in logging in 
Without inconsistency ever being detected. 

It should be noted that if V is computed as a function of t 
alone, thenA can select a time W that biases uw in its favor. For 

example, if V€{0,1}'", and A doesn’t knoW K[i] at a given 

time, it can choose a time W such that vW[i]:0. The value K[i] 
in this case Will not form part of the computation of uw. One 

approach to addressing this issue is to make Vt depend on Kt. 
In other embodiments, computationally secure processes 

may be used. One or more of the previously-described 
embodiments provide information-theoretic security. That is, 
they assume no computational bounds on A. Variants are 
possible, hoWever, in Which updates are constructed as 
ciphertexts using keys of Kt for encryption. R’s imperfect 
vieW of Kt remains in this approach, as above, a challenge. 
Such variants may be based on an encryption process that 
functions even When R knoWs only a fraction of the encryp 
tion key, Where that fraction is unknoWn to S. 

Applications of the techniques disclosed herein include, 
for example, hardWare and softWare authentication tokens, 
Wireless sensors, device pairing arrangements, and RFID 
tags. The corresponding devices in these and other applica 
tions may be vieWed as examples of “cryptographic devices” 
as that term is broadly used herein. Thus, a Wireless sensor or 
RFID tag With cryptographic capability may be considered a 
type of cryptographic device that can participate in a key 
update process of the type described herein. 

With regard to device pairing, key update processes as 
disclosed herein can support device pairing according to a 
policy in Which a target device grants access rights only to 
other devices in communication With it over an extended 
period of time. 
An example of a knoWn pairing protocol that may be 

adapted to incorporate a key update process as disclosed 
herein is described in G. T. Amariucai et al., “An Automatic, 
Time-Based, Secure Pairing Protocol for Passive RFID,” 
RFlDSec, 2011, Which is incorporated by reference herein. 
This knoWn pairing protocol is referred to as an “adopted pet” 
or AP protocol. It should be appreciated that the AP protocol 
is just one example of a knoWn pairing protocol that may be 
adapted to incorporate one or more aspects of the present 
invention. Techniques disclosed herein may also be applied to 
other knoWn pairing protocols. 

In an AP protocol, a device such as an RFID tag, gradually 
leaks a secret key K. A reader in proximity to the tag for an 
extended period of time can learn K. HoWever, one that 
receives tag outputs over only limited-duration intervals of 
time cannot learn K. Thus, for instance, a tag in a user’s home 
might pair With a reader there overnight, While a maliciously 
operated reader in a commuter bus Wouldn’t have time 
enough to harvest K from the tag. 
As proposed, the AP protocol leaks K through a key stream 

generated by a cryptographically Weak pseudorandom num 
ber generator (PRNG), such as a linear-feedback shift register 
(LFSR), seeded by K. By harvesting enough contiguous key 
stream data, a reader can break the PRNG and recover K. 

Drifting keys as disclosed herein offer a more ?exible, 
general, and secure approach to AP protocol design. Very 
simply, the “adopted” device can emit vieWs of its drift state 
K. Continuous harvesting of these vieWs permits recovery of 
a current state Kt, Which can serve as a key for access to the 

adopted device. This key may be used for temporary privi 
leges or to obtain a long-term credential. 
One advantage to this approach is that it may be calibrated 

to achieve any of a range of policies. For instance, if a large 
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number of vieWs are emitted per key update, then the receiv 
ing device need not listen continuously over a given interval 
of time, only intensively. Having differing periods among 
keys is another policy lever: If some keys have long periods 
(or are static), then learning a current key Kt initially requires 
more intensive communication than maintaining knoWledge 
of K t. Another advantage to key disclosure via vieWs is the fact 
that bounds on the rate of disclosure are information theo 
retic. They don’t require assumptions about the security of an 
underlying cryptographic primitive. 

With regard to RFID tags, the cheapest type of RFID tag, 
and the one becoming most prevalent, is a barcode-type Elec 
tronic Product Code (EPC) tag. Such tags have read/Write 
interfaces and PIN protection for sensitive operations such as 
tag disablement and sensitive data access. But they include no 
explicit features for tag authentication beyond a Weak, easily 
spoofable read-only tag ID. 

In many RFID system architectures, e.g., EPC Information 
Services (EPCIS), readers transmit data about the tags they 
scan (at least sporadically) to a centraliZed service. Research 
ers have proposed counterfeit detection techniques that 
exploit this global system vieW by detecting anomalous 
events, e. g., appearances in quick succession of a given tag ID 
in disparate locations in a supply chain. 

Drifting keys as disclosed herein provide an improved 
approach to the detection of counterfeit tags in such environ 
ments. 

As passive devices With ?xed functionality, tags can’t 
update keys themselves. Instead, in embodiments of the 
invention, readers perform updates to create drifting keys in 
tags. Within a tag is stored a drifting key Kt’ and the last time 
of update t'. When a reader scans a tag, it applies the function 
evolve as many times as required, if any, to bring the tag up to 
the current timestep t. It transmits the resulting key Kt to the 
centraliZed service. Thus the tag/reader combination plays 
the role of S, While the centraliZed service acts as R. In an 
embodiment such as this, the RFID tag and its reader may be 
collectively vieWed as a “cryptographic device” as that term is 
used herein. 

The cloning of a tag is a type of intrusion: Its ID is instan 
tiated in a clone device. Drifting keys can render this event 
detectable by the centraliZed service. 
Of course, a malicious reader can update a tag With an 

invalid key, generating a false appearance of intrusion. But 
the presence of a malicious reader in the system is itself an 
intrusion Whose detection is valuable. Alternatively, a reader 
can fail to update a tag’s keys, a denial of service simply 
equivalent to the tag not being read. 

FIG. 7 shoWs one example of a key update process Which 
implements drifting keys in an illustrative embodiment of the 
invention. This process is implemented by ?rst and second 
cryptographic devices corresponding to the respective sender 
102 and receiver 104 in the authentication system of FIG. 1. 
As noted previously, these ?rst and second cryptographic 
devices may comprise a respective authentication token 202 
and authentication server 204, or a pair of devices undertak 
ing a device pairing protocol, or a respective RFID tag/reader 
combination and associated centraliZed service, or any other 
pair of cryptographic devices that implements a key update 
process to provide drifting key functionality Which alloWs 
detection of key compromise. 

The key update process as shoWn in FIG. 7 includes steps 
700 through 706 as shoWn, Which may be implemented at 
least in part utiliZing cryptographic device processor and 
memory elements of the type previously described. 

In step 700, one or more keys are initialized in each of the 
?rst and second cryptographic devices. 
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In step 702, at least one key is updated in the ?rst crypto 

graphic device. 
In step 704, an update message is sent from the ?rst cryp 

tographic device to the second cryptographic device. The 
update message comprises information characterizing the 
updated key. 

In step 706, the second cryptographic device processes one 
or more update messages to update at least one of its keys. As 
part of this processing, the second cryptographic device is 
able to determine if at least one updated key has been com 
promised, as described in greater detail above. 

At least portions of the process as shoWn in FIG. 7 may be 
repeated periodically in order to provide multiple updates and 
associated compromise detection opportunities over time. 

Other embodiments may use alternative process ?oWs. For 
example, process steps indicated as being performed serially 
in FIG. 7 may be performed at least inpart in parallel With one 
another. 

In one possible implementation of the FIG. 7 update pro 
cess, the ?rst cryptographic device 102 sends a sequence of 
update messages to the second cryptographic device 104, 
Which authenticates the received messages. The adversary 
may have compromised the state of the sender or receiver in 
a manner that alloWs the adversary to insert messages into the 
stream that are accepted as authentic by the receiver. The 
sender through the sequence of update messages Will evolve 
its key state randomly, While transmitting enough information 
to the receiver to alloW it to track the corresponding key 
updates. If the adversary compromises the sender or receiver 
state at a particular time, but does not have access to all of the 
updates provided by the sender since that time, the adversary 
risks being detected. This is because later messages from the 
adversary Will appear to the receiver to be inconsistently 
authenticated With respect to the updated key state possessed 
by the sender and receiver. 
Numerous alternative implementations of the FIG. 7 

update process may be used in other embodiments. 
It is to be appreciated that the term “inconsistency” as used 

herein in the context of a cryptographic device detecting 
compromise of an update is intended to be broadly construed 
so as to encompass update-related observations that are 
unlikely or otherWise improbable. For example, in an 
embodiment in Which the next key to be updated is selected at 
random, and the keys are decimal digits, the cryptographic 
device receiving the updates may make the folloWing obser 
vations at times T1, T2 and T3: 
T1:259124192 
T2:279338192 
T3:259124192 

In this example, the drift key changes signi?cantly betWeen 
T1 and T2. Then betWeen times T2 and T3, all changes are 
reversed. If T1, T2 and T3 de?ne long enough intervals of 
time, then such a sequence is possible, but it is unlikely. It is 
instead more likely that an adversary has intercepted and 
replayed Tl. Accordingly, an improbable event, possibly 
combined With other, external indicators, may be used to 
detect compromise of an updated key based on a sequence of 
update-related observations associated With received update 
messages in embodiments of the present invention. 
One or more of the illustrative embodiments provide key 

update techniques that advantageously alloW an authentica 
tion server or other receiving party to determine if key updates 
have been compromised by an adversary under certain con 
ditions. Also, these embodiments alloW key updates to be 
performed very ef?ciently, While maintaining a high level of 
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security, particularly for devices such as authentication 
tokens or RFID tags that have limited cryptographic function 
ality. 

It should again be emphasized that the above-described 
embodiments of the invention are presented for purposes of 
illustration only. Many variations and other alternative 
embodiments may be used. For example, although described 
primarily in the context of authentication tokens, the tech 
niques are applicable to a Wide variety of other types of 
cryptographic devices that can bene?t from key update With 
compromise detection. Also, the particular con?guration of 
system and device elements shoWn in FIGS. 1-3, and the key 
update processes and associated update message formats, can 
be varied in other embodiments. Moreover, the various sim 
plifying assumptions made above in the course of describing 
the illustrative embodiments should also be vieWed as exem 
plary rather than as requirements or limitations of the inven 
tion. Numerous other alternative embodiments Within the 
scope of the appended claims Will be readily apparent to those 
skilled in the art. 
What is claimed is: 
1. A method comprising the steps of: 
updating at least one key in a ?rst cryptographic device; 

and 
sending an update message comprising information char 

acteriZing the updated key from the ?rst cryptographic 
device to a second cryptographic device; 

Wherein said update message as sent by the ?rst crypto 
graphic device is con?gured to permit the second cryp 
tographic device to detect compromise of the updated 
key by determining if an inconsistency is present in the 
corresponding received update message based at least in 
part on that received update message and one or more 
previously-received update messages; 

Wherein the updating step comprises generating an updated 
set of keys by applying a key update function to a pre 
vious set of keys, the key update function updating at 
least one key selected from the previous set of keys; and 

Wherein said update message sent in the sending step com 
prises at least one of: a parity symbol of an error-cor 
recting code; an updated key appended to at least one 
previous key; and an updated key embedded in a digital 
signature. 

2. The method of claim 1 Wherein the ?rst cryptographic 
device comprises an authentication token and the second 
cryptographic device comprises an authentication server. 

3. The method of claim 2 Wherein the step of sending an 
update message comprises sending said update message to 
the authentication server embedded in a cryptographic output 
of the authentication token. 

4. The method of claim 3 Wherein said update message sent 
in the sending step comprises one or more bits of the crypto 
graphic output. 

5. The method of claim 1 Wherein the updating step com 
prises generating an updated set of keys Kt for time t by 
applying a randomiZed key update function to a previous set 
of keys Km for time t-l. 

6. The method of claim 5 Wherein the sending step com 
prises sending an update message Which is generated by 
applying an update message function to at least a portion of 
the updated set of keys Kt for time t. 

7. The method of claim 6 Wherein said update message sent 
in the sending step comprises the updated set of keys Kt for 
time t. 

8. The method of claim 6 Wherein said update message sent 
in the sending step comprises only partial information on the 
updated set of keys Kt for time t. 
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9. The method of claim 8 Wherein the set of keys Kt for time 

t comprises m keys, iIl, 2, . . . m, and Wherein said update 
message sent in the sending step comprises a particular 
selected key Kt[i], ie[1,m]. 

10. The method of claim 1 further comprising the step of 
processing said update message sent in the sending step and 
the one or more previous update messages in the second 
cryptographic device in order to detect compromise of the 
updated key. 

11. The method of claim 1 Wherein the ?rst cryptographic 
device stores the updated key and a time at Which the key Was 
updated. 

12. A method comprising the steps of: 
updating at least one key in a ?rst cryptographic device; 

and 
sending an update message comprising information char 

acteriZing the updated key from the ?rst cryptographic 
device to a second cryptographic device; 

Wherein said update message as sent by the ?rst crypto 
graphic device is con?gured to permit the second cryp 
tographic device to detect compromise of the updated 
key by determining if an inconsistency is present in the 
corresponding received update message based at least in 
part on that received update message and one or more 
previously-received update messages; 

Wherein the updating step comprises generating an updated 
set of keys Kt for time t by applying a randomiZed key 
update function to a previous set of keys KH for time 
t— 1; and 

Wherein the randomiZed key update function updates indi 
vidual keys Kt[i] in the set of keys Ktuniformly at random 
in a key space K and independently of one another, 
Where the individual keys are selected from the key 
space K such that Kt[i]€K. 

13. The method of claim 12 Wherein associated With each 
key index component is a pair of positive integers (pl-,di), 
respectively denoting period and phase of updates to the 
corresponding key Kt[i], and Wherein key Kt[i] is updated by 
setting Kt[i]<i K at time t if tId7-(mod pi) and otherWise key 
Kt[i] remains unchanged. 

14. The method of claim 13 Wherein the set of keys Kt for 
time t comprises m keys, iIl, 2, . . . m, and the m keys have the 
same period p, but different phases that are multiples of a 
phase shift d such that mrp/d. 

15. A method comprising the steps of: 
updating at least one key in a ?rst cryptographic device; 

and 
sending an update message comprising information char 

acteriZing the updated key from the ?rst cryptographic 
device to a second cryptographic device; 

Wherein said update message as sent by the ?rst crypto 
graphic device is con?gured to permit the second cryp 
tographic device to detect compromise of the updated 
key by determining if an inconsistency is present in the 
corresponding received update message based at least in 
part on that received update message and one or more 
previously-received update messages; 

Wherein the updating step comprises generating an updated 
set of keys Kt for time t by applying a randomiZed key 
update function to a previous set of keys Kt_l for time t-l ; 

Wherein the sending step comprises sending an update 
message Which is generated by applying an update mes 
sage function to at least a portion of the updated set of 
keys Kt for time t; 

Wherein said update message sent in the sending step com 
prises only partial information on the updated set of keys 
Kt for time t; and 
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wherein the set of keys Kt for time t comprises m keys, iIl, 
2, . . . m, and Wherein said update message sent in the 
sending step comprises a parity symbol of a non-system 
atic linear erasure code computed over Kt, With said 
parity symbol being computed as a dot product 

<K.[11. . 
vector. 

. , Kt[m]>~vt, Where vteK’" denotes a parity 

16. The method of claim 15 Wherein the parity vectors V, 

are uniformly random, With the constraint that vl-[m]:l. 
17. The method of claim 15 Wherein the individual keys of 

Kt comprise respective bits, and a given one-bit update value 
is computed as an exclusive-or of a pseudorandom subset of 

the parity vectors V30, 1 
18. A method comprising the steps of: 
updating at least one key in a ?rst cryptographic device; 

and 
sending an update message comprising information char 

acteriZing the updated key from the ?rst cryptographic 
device to a second cryptographic device; 

Wherein said update message as sent by the ?rst crypto 
graphic device is con?gured to permit the second cryp 
tographic device to detect compromise of the updated 
key by determining if an inconsistency is present in the 
corresponding received update message based at least in 
part on that received update message and one or more 
previously-received update messages; 

Wherein the updating step comprises generating an updated 
set of keys by applying a key update function to a pre 
vious set of keys, the key update function updating at 
least one key selected from the previous set of keys; and 

Wherein the updating and sending steps are repeated over 
multiple iterations, and receipt of a designated minimum 
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number of the resulting update messages by the second 
cryptographic device alloWs the second cryptographic 
device to be cryptographically paired With the ?rst cryp 
tographic device. 

19. A computer program product comprising a non-transi 
tory processor-readable storage medium having embodied 
therein one or more softWare programs, Wherein the one or 

more softWare programs When executed by a processor cause 
the steps of the method of claim 1 to be performed. 

20. An apparatus comprising: 
a ?rst cryptographic device comprising a processor 

coupled to a memory; 
the ?rst cryptographic device being con?gured to update at 

least one key and to send an update message comprising 
information characterizing the updated key to a second 
cryptographic device; 

Wherein said update message as sent by the ?rst crypto 
graphic device is con?gured to permit the second cryp 
tographic device to detect compromise of the updated 
key by determining if an inconsistency is present in the 
corresponding received update message based at least in 
part on that received update message and one or more 
previously-received update message; 

Wherein updating the at least one key comprises generating 
an updated set of keys by applying a key update function 
to a previous set of keys, the key update function updat 
ing at least one key selected from the previous set of 
keys; and 

Wherein said update message comprises at least one of: a 
parity symbol of an error-correcting code; an updated 
key appended to at least one previous key; and an 
updated key embedded in a digital signature. 

* * * * * 


