
111

On Public-Key Infrastructures

by Ronald L. Rivest
MIT Lab for Computer Science

(SDSI is joint work with Butler Lampson)

222

Outline

 Context and history
 Motivation and goals
 “SDSI” (Simple Distributed Security

Infrastructure):
– syntax
– public keys (principals)
– naming and certificates
– groups and access control

333

The Context

 Public-key cryptography invented in 1976
by Diffie, Hellman, and Merkle, enabling:
– Digital signatures:

private key signs, public key verifies.
– Privacy:

public key encyrpts, private key decrypts.
 But: Are you using the “right” public key?

Public keys must be authentic, even though
they need not be secret.

444

How to Obtain the “Right’’ PK?

 Directly from its owner
 Indirectly, in a signed message from a

trusted certification agent (CA):
– A certificate (Kohnfelder, 1978) is a digitally

signed message from a CA binding a public key
to a name:
 “The public key of Bob Smith is
 4321025713765534220867 (signed: CA)’’

– Certificates can be passed around, or managed
in directories.

555

 How do I find out the CA’s public-key
(in an authentic manner)?

 How can everyone have a unique name?
 Will these unique names actually be useful

to me in identifying the correct public key?
 Will these names be easy to use?

Scaling-Up Problems

666

 (PEM, X.509): Use a global hierarchy with
one (or few) top-level roots:

 Use certificate chains (root to leaf):
A B C D

 Names are also hierarchical: A/B/C/D.

Hierarchical “Solution”Hierarchical “Solution”

D

C

B

A

777

Scaling-Up Problems (continued)

 Global name spaces are politically and
technically difficult to implement.

 Legal issues arise if one wants certificates
to support commerce or binding contracts.
Standards of due care for issuing certificates
must be created.

 Nonetheless, a global hierarchical PK
infrastructure is slowly beginning to appear
(e.g. VeriSign).

888

PGP “Solution”

 User chooses name (userid) for his public
key:
 Robert E. Smith <res@xyz.com>

 Bottom-up approach where anyone can
“certify” a key (and its attached userid).

 “Web of trust” algorithm for determining
when a key/userid is trusted.

999

Is There a Better Way?

 Reconsider goals...
 Standard problem is to

implement name key maps:
– Given a public key, identify its owner by name
– Find public key of a party with given name

 But often the “real’’ problem is to
build secure distributed computing systems:
– Access control is paradigmatic application:

should a digitally signed request (e.g. http
request for a Web page) be honored?

101010

SDSI (a.k.a. “sudsy”)

 Simple Distributed Security Infrastructure
 Effort by Butler Lampson and myself to

rethink what’s needed for distributed
systems’ security.

 Attempts to be fresh design (start with a
clean slate).

111111

Motivations for designing SDSI:

 Incredibly slow development of PK
infrastructure

 Sense that existing PK infrastructure
proposals are:
– too complex (e.g. ASN.1 encodings)
– an inadequate foundation for developing secure

distributed systems
 A sensed need within W3C security

working group for a better PK infrastructure

121212

Related Work

 IETF’s “SPKI” (Simple Public Key
Infrastructure) working group (esp. Carl
Ellison’s work)

 Blaze, Feigenbaum, and Lacy’s work on
“decentralized trust management”

 W3C (world wide web consortium) work on
security and on PICS

 Evolution of X.509 standards

131313

SDSI has Simple Syntax
A SDSI object (an S-expression) may be:

 abc (token)
“Bob Dole” (quoted string)
#4A5B70 (hexadecimal)
=TRa5 (base-64)
#03:def (length:verbatim)
[unicode] #3415AB8C (with hint)
(RSA-with-MD5: (list)
 (E: #03)
 (N: #42379F3A0721BB17))

141414

Keys are ``Principals’’

 SDSI’s active agents (principals) are keys:
specifically, the private keys that sign
statements. We identify a principal with the
corresponding verification (public) key:
 (Principal:
 (Public-Key:
 (RSA-with-MD5:
 (E: #03)
 (N: #34FBA341FF73)))
 (Principal-At: “http://abc.def.com/”))

151515

All Keys are Equal*

 Each SDSI principal can make signed
statements, just like any other principal.

 These signed statements may be certificates,
requests, or arbitrary S-expressions.

 This egalitarian design facilitates rapid
“bottom-up” deployment of SDSI.

 * Some SDSI principals may have a special syntax, e.g.:
VeriSign!! USPS!!

161616

Signed Objects

 Signing adds a new signature element to
end of list representing object being signed.

 A signature can be managed independently
of the corresponding signed object.

 An object may be multiply-signed.
 A signature element may itself be signed

(this is used to reconfirm a signature).

171717

Users Deal with Names, not Keys

 The point of having names is to allow a
convenient understandable user interface.

 To make it workable, the user must be
allowed to choose names for keys he refers
to in ACL’s.

 The binding between names and keys is
necessarily a careful manual process. (The
evidence used may include credentials such
as VeriSign or PGP certificates...)

181818

Names in SDSI are local

 All names are local to some principal; there
is no “global” name space. Each principal
has its own local name space.

 A principal can use arbitrary local names;
there is no need for you and I to give the
same name to a public key.

 Two important exceptions:
– linking of name spaces (indirection)
– special treatment for DNS names

191919

Linking of name spaces

 A principal can export name/value bindings
by issuing corresponding certificates.

 SDSI syntax supports linking (indirection);
 I can refer to keys (values) named:

bob
 bob’s alice
 bob’s alice’s mother
if I have defined bob, bob has defined
alice, and alice has defined mother.

 (Sugar for (ref: bob alice mother))

202020

DNS names get special treatment

 A name of the form:
 billg@microsoft.com
is equivalent to the indirect form:
 DNS!!’s com’s microsoft’s billg

 (This assumes that public keys for entities in the
DNS have been created, which may happen in the
not too distant future.)

212121

Certificates

 Certificates are signed statements (signed S-
expressions).

 Certificates may bind names to values (e.g.
to principals or group definitions), may
describe the owner of public key, or serve
other functions.

 A certificate has an issuer (signer) and an
expiration date.

222222

Sample Certificate
(Cert:
 (Local-Name: “Bob Smith”)
 (Value: (Principal: ...))
 (Signed:
 (Object-Hash: (SHA-1: #34FD4A))
 (Date: 1996-03-19T07:00)
 (Expiration-Date: 2000-01-01T00:00)

 (Signer: (Principal: ...))
 (Signature: #57ACD1)))

232323

Auto-Certificates describe signer
(Auto-Cert:
 (Public-Key: ...)
 (Principal-At: http://bu.edu)
 (Server: http://aol.com)
 (Name: “Robert E. Smith”)
 (Postal-Address: ...)
 (Phone: 617-555-1212)
 (Photo: [image/gif] ...)
 (Email: alice@abc.com)
 (Signed: ...))

242424

On-line orientation

 SDSI assumes that each principal can
provide on-line service, either directly or
(more typically) indirectly through a server.

 A SDSI server provides:
– access to certificates issued by the principal
– access to other objects owned by principal
– reconfirmation service for expired certificates

(SDSI does not have CRL’s !)

252525

A Simple Query to Server

 A server can be queried:
“What is the current definition your
principal gives to the local name `bob’ ?”

 Server replies with:
– Most recent certificate defining that name,
– a signed reply: “no such definition”, or
– a signed reply: “access denied.”

262626

Reconfirmation of Certificates

 SDSI certificates have an expiration date,
and may have a reconfirmation period.

 A certificate is valid before expiration, as
long as most recent signature is not older
than reconfirmation period.

 A principal (or one of its authorized servers)
may reconfirm certificate by supplying a
fresh reconfirmation signature.

272727

Access Control for Web Pages

 Motivating application for design of SDSI.
 Discretionary access control: server

maintains an access-control list (ACL) for
each object (e.g. web page) managed.

 A central question: how to make ACL’s
easy to create, understand, and maintain?
(If it’s not easy, it won’t happen.)

 Solution: named groups of principals

282828

Groups define sets of principals

 Distributed version of UNIX “user groups”
 A principal may define a local name to refer

to a group of principals:
– using names of other principals:
friends = (Group: bob alice tom)

– using names of other groups, and algebra:
enemies = (Group: (OR: mgrs vps))

 Defining principal can export group
definitions, so you may say:
 friends = (Group: ron ron’s friends)

292929

Sample ACL’s
(ACL: (read: friends))
(ACL: (read: AOL’s subscribers))
(ACL: (read: VeriSign!!’s adults))
(ACL: (read: microsoft’s employees))
(ACL: (write: (OR: bob bob’s asst)))
(ACL: (read:
 (OR: bob
 bob’s friends
 mit’s eecs’s faculty))
 (write: ron))

303030

Querying for protected objects

 Can query server for any SDSI object it has.
 If access is denied, server’s reply may give

the (relevant part of) the ACL.
 If ACL depends upon remotely-defined

groups, requestor is responsible for
obtaining appropriate ``membership
certificates’’ and including them as
credentials in his re-attempted query.

313131

Membership Certificates

 Issued by principal defining group, or his
server, when requested.

 (Membership.Cert:
 (Member: <ron’s principal>))
 (Group: faculty)
 (Signed:
 (Signer: <mit’s principal>)
 ...))

323232

Encrypted Objects
 (Encrypted:
 (Key: (Key-Hash:
 (SHA-1 #DA3710)))
 (Ciphertext:
 =AZrGT57+30vB1QsMPuI5Ol79))

 One can indicate the key:
– by its hash value
– in encrypted form
– through its name

333333

Other issues and topics

 Generalized queries and templates
 Delegation and delegation certificates
 Multiply-signed requests
 Algorithm for evaluating names
 Algorithm for determining group

membership
 Data compression

343434

Implementations

 Microsoft (Wei Dai, in C++)
 MIT (Matt Fredette, in C)
 We expect working code by end of 1996.

353535

Recap of major design principles
 ACLs must be easy to write & understand
 Principals are public keys
 Linked local name spaces (one per key)
 Groups provide clarity for ACLs
 On-line client/server orientation
 Client does work of proving authorization
 Reconfirmation instead of CRLs
 Signing authority can be delegated
 Simple syntax

363636

Conclusions

 We have presented a simple yet powerful
framework for managing security in a
distributed environment.

 Draft of our paper available at:
 http://theory.lcs.mit.edu/~rivest

 Comments appreciated!

