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Abstract: We consider the problem of identifying an unknown 

value xE{],2,...,n} using only comparisons of x to constants when as 

many as E of 'the comparisons may receive erroneous answers. 

For a continuous analogue of this problem we show that there is a 

unique strategy that is optimal in the worst case. This strategy 

for the continuous problem is then shown to yield a strategy for 

the original discrete problem that uses 

Iog2n+E,Iog2tog2n+O(E.Iog2E) comparisons in the worst case. This 

number is shown to be optimal even if arbi trary "Yes-No" 

questions are allowed. 

We show that a modified version of this search problem with 

errors is equivalent to the problem of finding the minimal root of a 

set of increasing functions. The modified version is then also 

shown to be of complexity Iog2n+E.!og21og2n+0(E.Iog2E). 

INTRODUCTION 

Let x be an unknown number which we wish to identify by 

asking "Yes-No" questions about it. Our objective is to minimize 

the number of questions required in the Worst case, taking into 

account that some of the answers received may be erroneous. 

This problem comes in several versions based on the possible 

values of x and the nature of the "Yes-No" questions, in the 

discrete case x is a member of the finite set {1,2,...,n}; in the 

continuous case x is a member of the half-open real interval (0,1]. 

* This research was sponsored by NSF Grants lvlCS77-19754, 

MCS76-ILI294, and MCS77-19754A0| and ONR Grant 

NOOO- J 4-76-C-OO36. 

In the continuous case we will not in general be able to ident i fy x 

exact ly with a finite number of questions; rather we t ry  to 

minimize the size, E, of the region which is known to contain x. In 

ei ther case let U denote the universe of possible values of x. 

Independent of the choice of U, the allowable questions may in one 

case be arbitrary, "Yes-No" questions about x, i,e. questions of the 

form "Is xeT?" where T is a specified subse t "  of U, or in the 

other case the allowable questions may be restricted to 

comparisons, i.e. questions of the form "is x c?" where c is a 

specif ied element of U. 

We carry out a worst-case analysis of the preceding 

idenli f ication problem under the additional assumption that up to E 

of the answers may be incorrect. This bound E may be a constant 

or a function of n (the size of the universe)- in the discrete case or 

of e (the desired size of the region found to contain x) in the 

continuous case. We are mainly interested in strategies that use 

comparison questions only and consider strategies with arb i t rary 

"Yes-No" questions only in order to derive lower bounds for the 

complexi ty of comparison strategies. It is wor.th noting that in 

none of the cases we consider does the restriction to comparison 

questions cause any significant increase in the number of questions 

needed in the worst case. 

In Section II we answer an open problem from [5]  by 

showing that there is a unique optimal strategy for the continuous 

**  in the continuous case we restrict the choice of T to 

measurable subsets of U. 
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problem with only comparison questions allowed. For a given 

number Q of questions the strategy minimizes the worst-case 

size of the region A which is found to contain the unknown x. 

This comparison strategy for the continuous case does not 

translate into a strategy for the original discrete problem just by 

sett ing t = l / n .  The reason for this is that the region A which is 

found to contain x may not be an interval. In Section i l ]  we 

show that E extra comparison questions are always sufficient to 

cut A d o w n t o  an interval. This then yields a comparison 

s t ra tegy for the discrete problem using no more than Ign÷E.Iglg n 

+ O(E.IgE) questions* in the worst case, which again is optimal even 

among strategies using arbi t rary "Yes-No" questions about x. 

In Section IV we consider the problem of finding the minimum 

root  of a set of increasing functions. This problem is considered 

by  Gal et. al. in [3]. i t  arises in determining how far a point in a 

feasible region of a mathematical programming problem can be 

translated in a given direction before striking a boundary. The 

lat ter  is a familiar subproblem of the common gradient4ol lowing 

approach to nonlinear programming (cf. [3]). We show that this 

minimum root identification problem (without errors) is equivalent 

to a var iat ion of the continuous search problem with errors 

considered in Section it. The variation is that errors may occur in 

"No"-answers only. The Ign+E.Iglgn÷O(E.IgE) result from Section II 

then immediately applies as an upper bound and we prove that it 

also is a lower bound. Establishing the equivalence of the two 

problems and establishing lower bounds were staled as two open 

problems in [5]. 

In Section V'we mention'some open problems. 

We do not consider the case where the bound E on the 

number of erroneous answers is a function of the number Q of 

questions. The discrete version of this' problem where arb i t rary 

"Yes-No" questions are allowed and where E is a linear function of 

Q is equivalent to the problem of optimal block coding for a noisy 

r~hannel wi th a noiseless and delayless feedback channel. This 

:equivalence was pointed out in [2]  and [6]. The coding problem 

has been studied and asymptotic bounds on the "transmission rate" 

(Ig n)/Q have been given in [ l ]  and [6]. 

in contrast, we consider the case of strategies that use only 

comparison questions and where E is independent of Q (but may 

depend on n). 

It. THE CONTINUOUS CASE 

in this section we give a complete answer to lhe fol lowing 

questions: Given e>Ot how many comparison questions about an 

unknown xE(O,l]  are necessary in the worst case to determine a 

subsel A of (0,1] of size less of equal to e which contains x? Note 

that we do not require A to be an interval. (It will, however, be a 

union of disjoint intervals; the size of such a set is the sum of the 

sizes of its component intervals.) 

To state the following Theorem it is convenient to reverse 

the situation and let the number Q of questions be given and to 

determine the smallest e achievable with Q questions. We use ((n~)) 
m 

to denote "=l~O(~)" 

Theorem h For any two ~onnegative integers Q and E let 

e(Q,E) denote the smallest t such that Q arbi trary "Yes-No" 

questions about an unknown xE(0,1], up to E of which may receive 

erroneous answers, are sufficient in the worst case to determine a 

subset A of (0,1] with xEA and IAI_<t. Then e(Q,E) = ((~)).2 -Q. 

This smallest E can be achieved by a strategy using only 

comparison questions. This optimal comparison strategy is unique. 

Proof: The state of knowledge of the questioner at any point 

during the questioning can be summarized by the number q of 

questions remaining and the E+ltuple Aq=(Aq,...,Aq)O E defined by 

xEA~ if_.[ exactly e of the previous answers were incorrect. 
E 

Clearly we always have xc U A e. Define the weight w of a state 
e=0 H 

Aq when there are q questions remaining by: 

* We use Ig to denote log 2 throughout this paper. 

E 

w(q,Aq) = e~=o((Eqe))-IA¢~l. 

(This definit ion is due to Berlekamp [J].) 
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We now define an "adversary answering strategy" to answer 

the next question. Suppose the question is "is xET?". A 

"Yes"-answer then results in a state described by 

YAq_ l =( yAO- J'""YAq E- 1 ) with 
y e e e-!  Aq_ 1 = (AqAT)U(Aq -T) for l<e<E,_ _ and 

YAO_I = AqOAT. 

Similarly, a "No"-answer results in a state described by 

in^O nAE ~ 'with nAq -]  = ~ '-'q-I'"" ~q- I '  

nAq_]e = (Aq-T)U(Ac~-IAT) for l<e<E,_ _ and 

n 0 = AOT. Aq_! 

It is straightforward to verify that w(q-l, YAq_l)+w(q-l, nAq_]) = 

w(q, Aq), using the identity ((n~t)) = ((~)) + ((m_nl))'. The 

adveqsary answering strategy consists in answering "Yes" if w ( q - | ,  

YAq_!)_>w(q-J , nAq_ 1) and "No" otherwise, thereby making sure 

that w(q-I, Aq_l)_>w(q, Aq)/2. 

The definitions of w and Aq imply that w(Q, AQ)=(((~))_ and 
£ 

w(O,A O) = :~ IA~I. Hence no e = ~ JAil smaller than ((~))'2 -Q is 
e=O e=O 

achievable against the adversary answering described above. 

The above analysis also shows that the best questioning 

strategy is to choose the next question "Is xcT?" such that the two 

possible weights are equal. Any such strategy does in fact 
E 

achieve e = eZoIA~I smaller than ((~)).2 " Q ' '  in the worst case. This 

can be done with a comparison "Is x_<c?" because w(q-1, YAq_ 1) 

and w(q-l,nAq_ 1) are continuous functions of c, for c=0 w e  have 

w(q-I ,  YAq_])_<w(q-j,nAq_t), and for c=! we have 

w(q-],YAq_])_>w(q-l,nAq_l). Hence there is at least one c where 

the two weights are equal. F'I 

We can of course rephrase the Theorem into a statement 

about the number O=Q(e,E) of questions necessary to achieve ! 

against up to E erroneous answers: 

Q(e,E) = min{Q'lG>((~')).2-Q'}. 

it is worth pointing out that this defines Q not only for E being a 

constant but also for E being a function of ¢ 

IH. THE DISCRETE CASE 

Any strategy for the continuous problem discussed in the 

preceding section can immediately be used for the discrete 
E 

problem (by setting e=l /n)  if' the final.set eUoA~ known to contain. 

the unknown x, is an interval. Unfortunately, this Is not always the 

case with the optimal comparison strategy, as can be verified with 

an example as simple as E=I and Q=4. Since the optimal 

comparison strategy for the continuous problem is unique, we 

cannot hope to duplicate its performance in the discrete case. 

However, we will not do much worse either. 

Lemma h Consider the optimal comparison strategy for the 

continuous problem as described in the proof of Theorem 1. Then 

E additional comparison questions asked after the end of .the 
E 

strategy suffice to reduce the set eUoA~ to a single interval. 

Proof: The proof is easy and w e  only give a brief outline. 
E 

The set eU_0A~_ consists of a finite number of intervals, say 

Ilr..,I r (where r___E+l). Define depth (lj) to be the number of sets 

A~), O<e<E,_ _ that intersect Ij, and define depth(A O) = j~'l'- depth(l j). 

Using the fact that A0=(Ag,...,Ao E) can described completely by no 

more than E+! previous "Yes"-answers and E÷I previous 

"No"-answers, it is not hard to see that depth(Ao)_<E+l. The proof 

can then be completed by observing that any comparison questions 

placed between two intervals reduces depth(A O) by at least 1, no 

matter what the answer is. I"1 

Theorem 2: For any nonnegative integer E and positive 

integer n, let Q(n,E) denote the number of comparison questions 

necessary in the worst case to identify an unknown xE:[l,2,...,n} 

when up to E of the questions may receive an erroneous answer. 

Then 

min{Q'12Q'_>n.(((~'))}< Q(n,E) < min{Q'I2Q"E>_n'((Q'F-E))} • 

Proof: Immediate from the remark after Theor.em 1, temma 1, 

and from the fact that any strategy for the continuous problem 

that produces an interval as the final set known to contain x can 

be used for the discrete problem by simply setting e=J/n. [3 

The theorem holds when E is a constant as well as when E is 

a function of n. With some tedious manipulations the inequalities 

given in the Theorem can be shown to imply 

Q(n,E)=lgn÷E,Iglgn+O(EIgE). 
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IV.  FINDING MINIMUM ROOTS 

The probiem of determining a small interval containing the 

rain mum root in the interval (0,1] of a set of continuous increasing 

functions gi' O_<i_<k, is considered by Gal et.al. [3]. (We assume 

that gi(O)<O and gi(!)>O for all i.) The small interval is to be 

determined by testing the sign nf the functions gi' evaluated at 

Various points, i.e. by asking questions of the form "Is gi(c)>O?" 

wi th  O_<i_<k and cE(O,1]. All questions are to be answered 

correct ly .  First we show that this minimum root identification 

problem is equivalent to a variation of the search-with-errors 

problem considered in Section H. ("Equivalence" of the two 

problems is taken to mean that any optimal strategy for one 

problem translates tr iv ial ly into an optimal strategy for the other 

problem, and conversely.) Then we show that its worst-case 

complexi ty is essentially the same as that of the 

search-wi th-errors  problem in the previous section. 

Theorem 3: The minimum root identification problem for a set 

{gilO_<i<_k} ~f str ict ly increasing functions over (0,1] is equivalent 

to the problem of identifying an unknown XqE(O,I] using only 

questions of the form "Is x<c?" with cE(O,]], when up to E=k of the 

"No"-answers but none of the "Yes"-answers may be erroneous. 

Sketch of Proof: The slate of the questioning in the minimum 

root  identif ication problem can be summarized by k+2 real 

numbers 

O_<Lo<_L ] <__..._<Lk<R<! 

and a permutation /r of {O,...,k} chosen such that L i is the largest c 

such that the question "Is g/r(i)(c)>O?" has received a "No" answer 

(L i is 0 if no such answer has been received yet.) and R is the 

smallest c for which a question "Is gj(c)>o?" has received a "Yes" 

answer, for some j (R is J if no such answer has been received 

yet). 

The state of the questioning in the search-with-errors 

problem described in Theorem ! can also be summarized by real 

numbers LO,...,Lk,R ordered as above. Here the Li's are the k+J 

largest numbers c such that the question "Is x<c?" has received a 

"No" answer (Lo=L] =..=Lk..= 0 if only k-k"  "No"-answers have 

been received yet)  and,R is the smallest c such that the question 

"Is x<c?" has received a "Yes" answer (R is I if no "Yes"-answer 

has been received yet). 

Gal et.aL have shown (Proposition 2 in Section 5.1 of [3]) that 

opf imal i ty of any strategy for the minimum root identification 

problem is preserved if questions of the form "Is g,/r(i)(c)>O?" are 

replaced by "Is glr(O)(C)>O?". It can easily be veri f ied that the two 

questions "Is g/r(o)(c)>O?" (for the root identification problem) and 

"is x<c?" (for the search-with=errors problem) create the same 

successor configurations, viz. 

0 <Lo-<L l <-'"-<Lr-<C-< I 

if the answer is "Yes", and 

O_<L 1 _<L2_<,.<_Lr_<C_<Lr. 1 _<...__.Lk_R_<O 

if the answer is "No". [ ]  

Because all the "Yes"-answers are guaranteed to be correct 

in this "half- l ie" version, the problem of ending up with several 

intervals, which complicated the connection between the 

continuous and the discrele cases of the "full-l ie" version in 

Sections II and I l l ,  does not exist here: The continuous and the 

discrete versions of the "half-l ie" problem are tr ivial ly equivalent. 

We now show that the worst-case complexity of the "half- l ie" 

problem is essentially the same as that of the "full- l ie" problem 

given in the previous Section. 

Since an upper bound carries over immediately form the 

(seemingly harder) full-l ie problem~ the results from Section I l l  

imply an upper bound of Ign+E.Iglgn+O(EIgE). We now establish 

this same expression as a lower bound. The proof is somewhat 

unusual in that it does not describe an adversary answering 

strategy. 

Theorem 4: Let Q(n,E) be the number of comparison questions 

"Is x~c?" necessary in the worsl c~se to determine an unknown 

value xE{l,...,n} when up to E of the "No"-answers, but none of the 

"Yes" answers, may be incorrect. Then 

Q(n,E}>IR n+E.Iglg n+O(EIgE). 

Proof: Consider an arbi t rary optimal (in the worst case) 

questioning 'strategy S, kept fixed throughout this proof. We model 

S by a finite binary "decision tree" T S. Internal nodes t in T S 

correspond to questions "Is x<ct?" t the left and right sons of an 
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internal node are the questions asked following a "Yes" and "No" 

answer respectively (unless they are leaves), and leaves are 

associated with the determined value of the unknown x. We may 

a~sume that the strategy S always asks exactly 0 questions, e.g. 

by asking "is x<n?" k times if the value of the unknown is already 

determined after 0-k questions. 

With each leaf JR of T S we associate not only the determined 

value of the unknown, denoted by value(JR), but also two subsets of 

{J,..,Q}: lies(Q.) and yes(JR). Here lies(JR) indicates which questions 

were answered incorrectly along the path of the leaf P- ( incorrect ly 

with respect to the correct value which is value(JR)), and yes(JR) 

indicates which questions received a "Yes" answer. 

The main idea of this proof is this: if t is an internal node of 

T S with question "Is x_<ct?" whose left son ("left" branches 

correspond to "Yes" answers) has a leaf .Q with value(JR)=x where 

x<c t and Ilies(JR)l<E among its successor, then the right son must 

also have at least one leaf JR" with value(~')=x (and, in fact, 

Ilies(Q.')Hlies(JR)l+l) among its descendants. This is just saying 

that if the "oracle" has not yet given E incorrect answers and the 

correct answer to the current question is "Yes", then the oracle 

may choose to answer (incorrectly) "No". if Ilies(JR)l was less than 

E-I  then any later "Yes" answer along the path from the right son 

of t to the leaf Q." with value(~')=x and Ilies(JR')l=llies(~)l+! (JR" is 

unique among the successors of the right son of t) in turn gives 

rise to another leaf ~.", with value x. This successive "creation" of 

leaves with value x then forces the number of.leaves of T S to be 

large enough to imply the desired lower bound on the depth of T S- 

Since these "new" nodes are only caused by "Yes" answers we 

have to show that there are plenty of "Yes" branches in the tree. 

Definition: A path from the root ('f T S to a leaf ~ is called 

re_£~ular if for all iE{O,...,E-I} at least l / 4  of the Q/E answers 

between (and including ) the ((0/E).i)+J st  and the (O/E).(i+l) th 

answers are "Yes" answers. A path that is not regular is irregular. 

Claim 1: For all large enough n, the number of irregular paths 

in T S is less than n/2. 

Proof: The number of "Yes"-"No" sequences of length Q/E 

with no more then (0/E)/4 "Yes" answers is bounded by 

2(Q/E).H( I /4)  where H is the "Entropy function" defined by 

H(p}=-p. lgp-( l -p) . lg( t -p) .  Hence the number of "Yes"-"No" 

sequences of length Q with less than 1/4 of the answers between 

the ((Q/E)'i)st+l and the (Q/E)'(i+I) th answer being "yes" answers 

is bounded by 2 (Q/E)'H(]/4)+(Q-(Q/E)) and consequently the 

number of regular paths in T S is bounded by 

£.2(Q/E).H(I/4)+(Q-(Q/E)). (For simplicity we are assuming that Q 

is divisible by E.) Let d=J-(1/E)+(I/E) 'H(l /4). Then 

d= ] -(. 18.../£) < ] and E.2 (Q/E)'H(I/4)+(Q-(Q/E))=2Q'd+IgE" Since 

Q_<lgn+E.Iglgn+0(EIgE) and d<l,  we have for all large enough n: 

Q.d+lgE<(Ign+E.Iglgn+O(EIgE)).d+lgE<(tgn)-l, which impJies the Claim. 

Claim 2: For any xE{t,...,n}, if all paths from the root of T S to 

leaves with value x are regular then there are at least (Q/4E) E 

leaves wi th value x. 

Proof: For each xE{l,...,n} and iE{0,...,E} define 

Nx(i) = {tit is a node in T S on level ((Q/E).i)+l 

t has among its descendants a leaf JR with 

value(P.)=x and Ilies(JR)l=i but no leaf JR" 

with value(JR')=x and Ilies(.~')l<i} 

For any x, Nx(O) consists of the root of T S, hence INx(O)l=l. 

For all i<E, INx(i+l)l>_l/4"(Q/E)'lNx(i)l because each "Yes" branch on 

the path from a node teNx(i) to a leaf JR with Ilies(JR)t=i and 

value(JR)=O gives rise to a node in Nx(i+l), and by assumption there 

are at least I/4.(Q) "Yes" branches between levels (Q/E)i+l and 

(Q/E).(i+I). This is explained above in the description of the main 

idea of this proof and is illustrated in Figure I. By induction, 

iNx(Q){_>(Q/4E)E.INx(O)I=(Q/4£) E, which proves the Claim. 

Since Nx(Q)FINx-(Q)=(~ for x~x ' ,  at least n/2 values x have 

only regular paths to leaves with value=x, and since O>__lg n, we 

get 

number of leaves in T S >_(n/2)'(O/4E) E _> (n/2)'(Ign/4£) E 

which implies that the depth of T S is at least Ign+E.Iglgn+O(EIgE). 

This lower bound result also holds for strategies with 

arb i t ra ry  "Yes"-"No" questions since the above proof does not 

make use of the restriction to comparisons. 
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level (0/E)'i+l 

Q/E 

level (Q/E).(i+t)+I 

~. tCNx(i) 

Y \ 

leaf£ with 

value(D.)=x and 

Ilies(•)l-i 

Figure 1. 

V. OPEN QUESTIONS 

We conjecture t.hat the gap of E questions between the 

continuous and discrete problems discussed in Theorems 1 and 2 

can be decreased. 

Clearly the issue of coping with erroneous answers could 

also be studied in the context of other familiar search problems 

such as sorting, finding medians, finding maxima of unimodal 

functions, elc. (cf.[4]). 
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