The Mutual Exclusion Problem for Unreliable Processes: Preliminary Report

Ronald L. Rivest ‘and Vaughan R. Pratt
Massachusetts Institute of Technology:

Cambridge, MA

Abstract

Consider n processes operating asynchronously in
parallel, each of which maintains a single "special" variable
which can be read (but not written) by the other processes.

All coordination between processes is to be accomplished
by means of the execution of the primitive operations of a
process (1) reading another process’s special variable, and (2)
setting .its own special variable to some. value. A process may
"die" at-any time, when its special variable is (automatically) set to
a special "dead" value. A dead process may revive. Reading a
special variable which is being simultaneously written returns
either the old or the new value.

Each process may be in a certain "critical" state (which
it leaves if it dies). We present a coordination scheme with the
following properlies.

(1) At most one process is ever in its critical state at
a time.

(2) If a process wants to enter its critical state, it
mdy do so before any other process enters its critical state more
than once.

(3) The special variables are bounded in value.

(4) Some process wanting to enter its critical state can
always make progress to that goal.

By the definition of the problem, no process can prevent
another from entering its critical state by repeatedly failing
and restarting.

In the case of two processes, what makes our solution of
particular interest is its remarkable simplicity when compared
with the extant solutions to this problem. Our n-process
solution uses the two-process solution as a subroutine, and is
not quite as elegant as the two-process solution.

I ntroduction

In this introduction we first make precise the model of
parallel computation that we are using, and then specify
carefully the problem to be solved.

We assume the existence of n processes operating
asynchronously in-parallel. The number n is known to every
process, Furthermore, new processes may not be added to the
system; the number n may not change over time. Therefore,
processes may not leave the system either, although they may
"die" in a sense to be explained later. The processes act
independently in the sense that any action possible for a process
may be performed at any time; none of the basic operations that a
process can perform require for their successful completion any
sort of delay or any dependence on the state or actions of other
processes. {(Thus our model differs from one in which the P and V
coordinating primitives are used.)

This research was supported by the National Science Foundation
under contracts 1ICS76-14294, MCS76-184bl and DCR74-12937.

82139

Each process maintains a single "special” variable which
it uses to convey information to the other processes. A special
variable may be changed only by the process that owns it,
although it may be inspected at any time by any of the other
processes. [f a special variable is being simultaneously changed
by its owner and read by some other process, the other process
will see either the old or the new value., More precisely, the
effect of any set of read and writes of a special variable will
always be the same as if they were executed sequentially in some
order. Later on, we shall assume that the entire set of reads
and writes of all the special variables during a particular
computation can be arranged in a sequence without changing the
net effect. That this may be done follows directly from the
above assumptions.

All communication between processes will be accomplished
by means of the special variables. The only information that
process i can obtain about process j is the value of process
j's special variable, A process’s local variables, program
counter, internal state, etc., are invisible to the other
processes. Note that for one process to request the value of the
special variable of another process, it must have a name for that
other process. We will assume that the names are the integers @
to n-1.

The most outstanding feature of the coordination scheme
to be presented is that it continues to work correctly in spite
of the failure (or even repeated failure and restarting) of any
subset of the processes. In the real world a device may fail, or
die, in any one of many possible fashions. For example, it may
simply cease to function but in such a manner that the only way
to tell that it has failed is to notice that one can not obtain a
response from it. . Or it may fail by continuing to act but in
such a manner that it behaves ‘as if it were some different
device; it ceases to lie within its design parameters. Or,
finally, it may fail in a very disciplined fashion by simply
posting a flag that it has failed and then stopping.

The first mode of failure (dying without any symptoms)
cannot be incorporated into our model. Since we do .not wish to
make any assumptions about the absolute or relative speeds of the
various processes, process i cannot, merely by noticing that
process j's special variable has not changed in a long time,
conclude that process j has died. Therefore process i could
not distinguish between the death of process j and a long delay
due to (say) process | -executing a very long internal
computation, ~ We do require that each process continues
progress, however slowly or. quickly. Thus no process is
permitted to stop during its computation with no evidence visible
to the other processes that it has stopped, since this could hang
up the system (the other processes might think that the stopped
process was in its critical section, for example).

to make

Simitarly, the second mode of failure could cause
problems. In particular, if processes were allowed to misbehave
in an arbitrary fashion, a solution to the mutual
exclusion problem would become impossible, since a process could
enter its critical state and then refuse to alter its special
variable when it leaves it, causing the other processes to be
locked out.

Therefore, we require that a process may fail only in the
following disciplined manner (the third mode of failure}: it must

leave its critical section if it is in it, set its special

variable to the value "dead" (or some value defined to be
equivalent), and then stop. This is the only way a process may
stop or fail.

The preceding specifies the nature of the parallel system
with which we are working. Now we turn our attention to the
specification of the problem to be solved.

A solution to Dijkstra’s mutual exclusion problem for n
processes [2,4] is a set of n programs, one per process, which
may be executed by their owners at any time. Each program-
contains a tritical section, which is a piece of the program that
requires for its correct execution that no other processes be
simultaneously in their critical section, This is our first
requirement of a solution:

(C1) Mutual exclusion: No two processes may be in their
critical sections at. the same time.

Dijkstra’s solution [2] satisties (C1) and also the
obviously desirable criterion:

(C2) No deadlock: It is not possible for all processes to
become simultaneously blocked in such a fashion that
none of them will be able to enter their critical
sections,

Unfortunately, Oijkstra’s solution does not have the
foliowing property ({this was pointed out by Knuth [B6]1):

(C3) No lockout: It is not possible for an individual
process to be kept forever from entering its critical
section by some (perhaps highly improbable} sequence of
actions by the other processes.

In other words, a particular way of interleaving the
basic operations was able to "lock out" an individual process.
Knuth presented a new solution which satisfied all of (C1)-(C3).
In fact, in an n-process system, a process would be able to enter
its critical section before the other n-1 processes were able to

execute their critical sections (collectively) 2“-1 times., A

modified procedure by de Bruijn [1) reduced this figure to
(;) . Finally, Eisenberg and McGuire [S] constructed a

coordination scheme satisfying (C1)-(C3). and:

(C4) Linear waiting: A process that is waiting to enter its
critical section will at worst have to wait for every
other process to take one turn (in its critical
section) .

Thus no process can execute its critical section twice
while 'some other process is kept waiting.

All of the above solutions have the property that they
employ a global variable (one that is set by every process).
This has the drawback that if the memory unit containing the
global variable should fail, the entire system breaks down.
While this is not serious if the processes themselves are relying
on this common memory for storage of program and data, as in a
typical multiprocessing system, it is undesirable in a
multicomputer (distributed) system. Leslie Lamport [7] invented
a system which satisfies (C1)-(C4) using variables local to each
process (the specisl variables of our model}; each process may
set only its own variable, but may read the special variables of
any other process. He assumes that if a process (or the memory
unit containing its variable) should fail, its variable may
assume arbitrary values for a period of time, but eventually must
give a value of zero (until of course the process is restarted).

The failure of any given process does not disable the system. Ue
extract from the above discussion a constraint that our solution
will satisfy:

(CS) No global variables;
special variables only.

Coordination is achieved by use of
A related "distributed control" problem is studied by Dijkstra in

{31.

Lamport’s solution still suffers from two drawbacks, in
that it does not meet the following requirements:

(C6) Finite ranges: The special variables can only assume a
finite number of values.

(C7) Impotence of repeated failing: A process cannot
deadlock the system by repeatedly failing and restarting.

The solution to be presented here will satisty (C6) and
(C7}), although in order to satisfy (C7) it is necessary, as we
remarked earlier, to assume in (C5) that when a process fails its
special variable does not assume arbitrary values for a period of
time, but rather changes directly from its previous value to
zero. Otherwise a process that repeatedly failed and restarted
could have a random value in its special variable whenever
another process was reading it.

A solution satistying (CS) permits even rather widely
separated systems to coordinate their activities in a simple
fashion. Assuming that each pair of processes are directly
connected, a process that changes its special variable need delay
just enough to let the new value propagate to each other process.
Or in a message-passing network a read could be implemented as a
message sent from the process which is doing the reading to the
process which owns the special variable, who in turn replies with
a message giving the value of his variable (or a message
indicating that he has failed).

For the sake of precision we give formal constraints on
the model of parallelism we have in mind. The various
assignments, functions and tests we use in our programs may all
be abstracted as functions from system states to system states.
Further, though our solutions impose considerable structure on
the state of each process, in the form of various registers,
together with the program counter, we shall be content to
stipulate minimum structure of two "registers,” separating the
visible and invisible components of a process state.

A process state (sa. ,sb) is a pair of natural numbers,

(respectively the invisible and visible components of its state).
A system state is an n-tuple (VB’VI""'Vn-l) of process states;

we let v, denote (vg.,vi..e.0,v(y 1),) and likewise for v, . D

is @ set 16p,81,...,8, 11KgiKpseeaky 4]
of n state transition functions and n failure functions; the
§;'s and k;’s map system states to system states. The

i €
solution may specify only the 5;'s ; the x;'s are given.

The rest states of a process are those with first
component 8 ; the critical states have first component 1 .
(This permits processes to remember things, albeit publicly, when
critical or at rest; we are being generous here, since. most
solutions in the literature, including ours, wili work even if
only one rest state and one critical state is permitted each
process, i.e. no memory while in those states.)

Let D*, the reflexive transitive closure of D , be the
smallest set of functions satistying 1UDUD*UD*-D* = D*

That is, D* = ll,se....,8883,8081,....82x38789x2,...} y

all possible compositions of elements of D . UWe take sisj to

be the function (5;5,) (x) = 5;(5;(x}) . Let V = Dk((8,0)™,

i
the set of system states accessible from the system start state

@,

The constraints that any solution must meet are as
follows. (Assume every constraint is prefixed by
"Vi,jin Yv,w:V i£j>" , where itn means that i is "of type"
n (i.e. Bsi<n}, v:V means that v is an accessible system state,
k:N means that k is a natural number, etc.)

1. V s finite.

2. xjlvl; = 18,8) . «x; Kkills the i-th process.

3. «x; (v.)j vy x; can’t atfect other processes.
b, 8V} =i, 8§, can't affect other processes.
S

clviewi A B V) S (WD) > 8 (V) ey

§; can't store while fetching.

6. 3k[(vi=wi A vkb'wkb) > si(V)i"s-i(W)i] .

§; can fetch only vi

and kb *

7. Via"l v vjaﬂ . Mutual exclusion.

8. N Vi, in WiV VD'cD-15;} P: (0- tx;) -0") 8K 3r:p
(7, 18,¢0" 5> v <81) 5 () -11.

No lockout (& hence no deadlock).

This last condition require some explanation. Define a
path of- A~ (A any set of functions) to be a set of elements of
“A¥ of the form AT PO I

(l,aia,aioail.....aieail iy
We take A&k . where AcD , to be the set of all paths of
minimal cardinality formed from elements in A such that some
function in each path was formed using each &, in A at least
k times. Thus this condition says that if all processes not at
rest have run for k steps, we will have found that each of the
non-failing ones among them will have entered its critical

section at some time during our wait,

Though we shall present our solution in the vernacular of
the programming milieu, it should be clear how to translate our
solution into a system of &;'s satistying the above
constraints. Barring oversights on our part, it should also be
possible to translate any system of &,'s satisfying the
constraints into a system of programs satisfying our intuitive

understanding of the problem’s constraints.
The research presented here was motivated by an

unpublished solution by A. Meyer and M. Fischer which satisfied
all conditions but (CS) and (C7).

The Two-Process Solution

In this section. we present a solution for the two-process
problem satistying (C1)-(C7). UWe aiso present a proof of its
correctness, which turns out to be surprisingly complicated for
such a short program. This solution will be used later as a
subroutine in the n-process solution.

The special variable of process number i will be
considered as an ordered pair of variables (R,S); . The R
component may take on the values @, 1, or 2. UWhen R =-8@
process i is either dead or uninterested in entering its
critical section. The S component acts as counters modulo 33
we assume from now on that all arithmetic performed on it will be
performed modulo 3. By the nature of our assumptions, both
variables may be changed simuitaneously by making a single
assignment to the special variable. Even though each of R and
S may assume one of three values, the special variable will only

assume seven distinct values, since the combinations (8,1) and
(8,2} will not occur.

The procedure for process i is given in Figure 1. The:
other process is named process | .

(R,S)i t= (1, 145}

(R.S)i 1= (2, 145%);

wait(Rjzﬁ v Sj=1+5i v ligj A (R.S)js(R.S)i));
critical section;

(R,S)i := (8,0):

Figure 1. The Two Process Solution

The "wait" statement on the third line merely waits until
the specified condition is true. This might involve either
repeatedly fetching (R,S) . and evaluating the test (busy
waiting), or merely some sort of hardware circuitry for detecting
the condition, if the variables on which the condition depends
are continuously available. UWe shall interpret the statement
"wait (P)" as "repeat until P" (i.e. busy waiting) in what
follows. To ensure the correct behavior of the test, (R,S) .
should be fetched just once and then the whole condition
evaluated. In general, we will assume that the condition for a
"wait" command is always evaluated by first fetching the special
variable required for the evaluation of the condition, and then
evaluating the condition based on this value. {A wait condition
will always require the value of just one other special
variable.)

The conditions for the two processes can obviously be
simplified when the values of i and | are instantiated, since
the truth of i<j is fixed once i and j are known.

To clear up any possible ambiguities, we rewrite our
program using only indivisible statements, We use felch
frepresented as assignment to the temporary pair (U,V), a
register inaccessible to the other process}, store (an assignment
whose right hand side names no variables visible to the other
process}, =, if and goto. We have labelled with A-E and H the
statements that fetch (R,S}; or change (R,S);. These are the
stalements that matter when considering alternative interleavings
of statements executed by the two processors. The if’s and go
10’s commute with ali other statements in that their order does
not affect the stale of any variables, whether visible or
invisible to the other process.

A: tU,v) = (R.S)j:

B: R,S); := (1,14V);

C: U,v) := (R,5)::

D: (R.S); :=(2,14V1;

E: w,v) := _(R.S)j;

F: if ~(U=8 v V=145 v ligj A (U,V)=(R,5};)
lhen go to E;

G: critical section;

H: R,S); := (8,8)

Figure 2. Program using only indivisible statements

The semantics of a programming language do not normally
take into account the possibility of processor failure., Rather
than change the semantics we will ‘change the program to reflect
the possibility that after each instruction the indivisible
statement

goto H

may non-deterministically be executed. It is more convenient to
describe this addition to the program using a nondeterministic
state transition diagram than to stick to the ALGOL-like

notation. For discussion purposes, the only stale information

needed is the contents of (R,S)i and (U,V), Hence the whole
critical section collapses to a single state. All code executed
external to the program of Figure 2 similarly collapses to a
single state, labelled "entry" in Figure 3, on the assumption
that eventually the program will be used again. This assumption
is inessential to any correctness argument using it, since a
process may wait arbitrarily long before re-entering.

H

0—— 0 ——>0 > 0
etry A 1 B 2 C€C 3 D fa4

E ’crit
sect
E

Figure 3. State transition diagram of the program

(We have for convenience collapsed together as state 4
alt states satisfying R=2 but not satisfying the wait
condition. - This will not affect the correctness proof.)

We observe that the procedure consists of a loop-free
block of code (statements A-D)} followed by a single loop which
waits until the process may safely enter its critical section,

The variable R; indicates how many times process i has set S;
to be 14S;. The act of setting S; to 145; is equivalent to
saying "After you" to process j since if both processes arrive

at statement E simultaneously, that process whose S value is
one less than the other process's S value may enter its

critical section. The repetitive nature of A-D ("After you,

after you") may appear redundant, but we doubt the existence of a
solution with only one fetch from the other process’s memory (not
counting the fetch in the test).

Lemma 2.1. Deadlock is impossible {i.e. (C2) is satisfied).
Proof: Statement E contains the only waiting command, so a
deadlock could only arise if both processes were looping at
statement E . In this case both R wvalues are 2 , and of the
two S values one must be one less than the other (since we are
working mod 3), or else the two special variables are identical.

In either case exactly one process will find that it may proceed

to enter its critical section. [|

We next show that (Cl) is not violated:

Lemma 2.2, The two processes are never simultaneously in their
critical sections,

Proof. First observe that if (C1) can be violated, then it can
be violated without using any unsuccessful E transitions.
Hence we shall assume in this proof that all E transitions are
successful.

We exhaustively consider all computation sequences
leading up to such a catastrophe, an initially forbidding
prospect that fortunately collapses into six easily disposed-of
cases. To analyse how (Cl) might have failed, we consider the
final ABCD trajectory each process took through .its .transition
diagram just before the catastrophe; these two trajectories can

be merged in (AZ") = 78 ways; labelling as

process i the first process to execute its A transition reduces

this to 35 cases. (Naturally we shall not assume that i is the
winner or loser in the tie-breaking "isj" test.) Each of

these 35 cases will in general include many variants on the basic
merge of the two ABCD's., Thus the case AiBiAijCjC'iDiDj may

(if (C1) is violated) include such sequences as
A,AHB.AB.C.C,D;DE;E;, ...A;B;A;B.H;A;B,C,C,0;E;D;E;,

MR 1 imivj=ikge (e NN i A 1A el it

...A;BIAIBICIC{D{E{DE], ‘and so on.

We can ignore any sequence containing as a consecutive
pair any of AC,, C-Ci, B-Bi. B.joi- on the ground that the
sequence derived from that sequence by reversing the order of the
pair will have the same outcome. Note that D.D; and D;
are not on the list because E. may occur between them. T‘:e
interchangeability of pairs is not as symmetric as it may appear;
though the transformation from AC; to C;A; is harmless, if we
instead transform C;A; A to A C ‘we may overlook the possible
sequence ...C,AJBJH, oo

The above reduces the 35 cases to 19 cases, which
collapse further to six cases as follows. In cases 1 and VI we
argue that whoever executes the last D cannot proceed. In cases
I1, 111 and V, we argue that no one can proceed until the last D
has been executed. In case IV we argue that whatever happens
after the D, is unaffected by the following Dj .

{I) Sequences that end in the fetch-store sequence ciDi
(ABABCDCD AABB-C-D-C-D- A;A:8.C.8.0,C,0;,

B d d é é i0;) 1orbl 'E'J ,J smc'e Ia!ter b,l .j ' 'J- ' +1 .
Slmafarfy, sequences that end in C.D (A-B C|D JB If ’
ABICADBCD;. A@A&qmﬂﬂ. B,C{0;B;C}D;
AABB D)1orbldE

J

{11} Sequences ending in C.D.D.

ABABICCID0; AABiC8,C0,0,. AiABIBICiCIDI0]
forbid é

iNjRiiiz i
before D; because the C.D. sequence sets é to
145;. After D, , process j will be enabled to enter its

critical section if and only if process i is not by Lemma 2.1.

Similarly, A. AJBJCJB|C D, D forbids E; before Dj .

(A;B,C;A;8,C;0,0;.
)

(111} Sequences that end in C.C.D.D,
(AB;A; B C F D D AA; B,BJC|CJD'DJ) succumé to the argument in
(ll) smce C and C commule.

In A;B;C; A)B .C.0.0. stores the same

(v i0i0;- the D;
value that B, stored. smce and C. are not separated by
any stores due to process i . lI'hus the tieusnon made by process

i will not later be invalidated by the stere DJ

\2} InAABCBCDD the AJ and the C;
fetches each take place whrle the other process is between A
and B . Hence each will fetch the same value, namely @, and so
store the same value, namely 1, via B; and D; respectively.
This forbids Ei before ' D, (Notice that this argument breaks
down if S is not constralned to be 8 when R is 8, and indeed

the algorithm is incorrect without this precaution.)

(VI) In AABCJBCDD, the A. and C;
fetches both take place wh;{ is between A; and Bi .

Hence B: and 0; both store 1. So C; must fetch the 1
stored by B , SO D‘ will store 2, But after Di‘ , we
have S; = S +1 =1, so i cannot’ proceed.

This completes the proof of Lemma 2.7, []

Lemma 2.3.
(C3) holds) .

Lockout of a non-failing process is impossible (i.e.

Proof: Ue shall prove this for process P,
other process. Consider the transition diagram for P without its
H transitions. The only icop is an E transition, Recall that we
assumed that processes made progress. Hence if a process is
locked out it must be continually taking that loop. Now
eventually either P’ makes an H transition or it settles down to
taking its E' transition for ever. In the former case, after P’

letting P' denote the

has' taken the H transition, E

(the condition evaluated when P

takes transition E) becomes true, and now cannot be made false
by any sequence of transitions allowed P’ provided P stays in
state 4. Thus the next transition P makes is to its critical
section. In the latter case, once both processes are looping, as
‘in the proof of Lemma 2.1, exactly one process will be permitted

to enter its critical section.
Otherwise P* must eventually
to the former case.

(C4) holds:

1f P is the winner, we are done.
take an H transition, which reduces

Lemma 2.4, The algorithm has "linear waiting".

Prodf: Suppose P is waiting

at state 4, By the above proof,

once P' has made an H transition, it cannot execute its critical

section before P does.

Trivially (C5) and (C6) hold by the construction. (C7)
follows from Lemma 2.2, whose proof does not depend on the
integrity of P'. We have now demonstrated (C1)-(C7).

The n-Process Solution.

We now solve the mutual exclusion problem for n
processes where n>2 , stil heeding constraints (C1)-(C7). A
straightforward generalization of the two-process solution eludes

us, and we content ourselves

with a quite different solution that

requires the foregoing two-process solution as a subroutine.

We first solve the n-process problem in the absence of

canstraint C4, which. requires

that no process be served twice

while another is waiting. This uses the two-process solution as

a subroutine, and ‘in. turn will

itselt be used as a subroutine to

solve the n-process problem with all constraints in force. For

notational canvenience we say
process j when i and j
two-process solution -and proc

that process i is racing with
are the two processes of the

ess. i is executing the part of the

code of that solution that precedes the critical section. When
process i completes execution of that code we say it has won

the race and beaten process

j

In the absence of constraint (C4), our solution is for
each process to race with processes @ through n-1 in turn,

‘winning against itself. When
executes ‘its critical section.

process have n-1 copies of
two-process solution, one for

own data, ‘Then when it has
copy | of its data as it is,

it ‘has won every race, it then
One approach is to let each
the data structures used.in the

each of the other processes. Uhen
process i races with process j , process i fetches from
copy i of process j's data, and stores into copy j of its
won against process j , it leaves

preventing process j from later

racing ‘with and beating process i , and procgeds to race with

process j+1 . HWhen it has

beaten all the other processes, all

n-1 copies of its. R register are 2 . It then executes its
critical section; when done it sets all n-1 copies of its R
register to. @ , permitting processes waiting on process i to

proceed.

A slight improvement
to have only one copy of the

to this scheme is for each process

R and S registers, but to have

in addition a U register whose contents names the process

currently being raced with.
can proceed at the end of its
u j-D v U.<iv

(U;=i A (R;=8 v 5;=145; v ((R,5);=(R,S),

Then the test for whether process
race with j becomes

A igj)))

We arbifjrarny favor the smaller-numbered process io break any

ties. By making this test isj

the tie that must happen when a

process races with itself allows that process to proceed. A dead

process is assumed to have

UsD , while a critical process has

i

U= n-1. Actually the test for R.=8 is now redundant, since this
condition is implied by Ung v Uj<i .

Lemma 3.1. - This algorithm satisties C1-C3 and CS5-C7 (i.e. all
but C4).

Proof.
(C1) Mutual Exclusion, Suppose processes i and j are
simultaneously in their critical sections. Then process i beat

process - j and vice versa while the respective’ processes were
leading up to their critical sections. Suppose without loss of
generality that i beat | before j beat i . If j beat i
before i increased U; to j+l , this would contradict the
correctness of the two-process solution. 1f | beat i after

I increased Ui to j+1 -, this would contradict j’s being
stopped by the failure of both U;<j and U;=j .

(C2,C3) No Deadlock or Lockout. Assume there exists a process in
the system. UWe shall constructively prove the existence of a
process that is able to make progress in the sense that it can
complete the race it is presently engaged in. Since for fixed n
the number of races a process engages in is fixed, it follows

that some process will eventually reach its critical section.

The only way for a process not to be able to. make
progress is for it to be unable to pass the test when racing with
some other process. Starting from the process that we postulated
tfo bé in the system, we enumerate processes such that the next
process enumerated is the one the last one enumerated is racing
with and is beaten by. Eventually this enumeration must either
terminate or cycle. If it terminates, the last process
enumerated is free to proceed. MUWe claim that it cannot cycle.

For suppose it does cycle; then either the cycle is of length 1,

2 or greater. Length 1 is ruled out because the algorithm
ensures thal a process always beats itself, Length 2 is ruled

out since C2-C3 hold for- the two-process solution. So assume the
cycle is of length 3 or more. Let i,j,k be three consecutive
processes in the enumeration such that k is the least-numbered
process of the three. {Choosing k to be the least-numbered in
the cycle will ensure this.) Then | has thus far raced only
with processes 1 through k . Since i>k , j cannot have
raced with i yet, conlradicting i's being beaten by j .

(C5) No global variables. Self-evident.
(Ce) Finite ranges. Self-evident.

(C7) Impotence of Repeated Failing. Follows from the proof of
C2-C3. []

We turn our attention now to satistying (C4). The
problem is that while a lower-numbered process is working its way
up through the ranks as it competes with 1,2,3,..., a
higher-numbered process may repeatedly enter the lists, win
because no one has worked his way high enough fo challenge him
yet, and proceed to his critical section.

Our solution to this problem is modelled ‘on that of
Eisenberg and McGuire [5], who use a global variable to point to
processes 8,1,2,...,n-1,8,... in turn, permitting the indicated
process to execute its: critical section. The appropriate imagery
is of 4 (one-handed) clock , the term we shall use for such- a
pointer.

In the absence of global variables, we shall arrange for
each of. the waiting processes to maintain an up-to-date copy of a
virtual clock. The absence of a single time-keeping authority

complicates the Eisenberg-McGuire solution considerably. It is
‘clearly impossible to have afl the- waiting processes maintain the

same value for the clock, However, it is possible to have at most

two. {consecutive) values in the system at any moment. HWe
formalize this situation thus.

Window Hypothesis (WH). At all times no two. system clocks

(clocks owned by processes with U=Q) differ by more than 1 mod
n . (Hence for each moment in time there must exist k such
that for every process. i with Ui=0 ;€€ [k, k+11 .}

(Here and later, we adopt the notation [a,b] to denote
the set .of integers la,a+1,a42,...b-1,b} , where the arithmetic
is performed modulo n . Thus [a,b-1]U(b,a-1] =
8,1,...,n-1} while when axb , (a,b-11nlb,a-1) = {} .}

The general prkinciples for maintaining this state of
affairs are:

(i) Process i may not tick (increment its clock) unless for
every live process j , ¢ € fejoc;+ll .

(i) To join the system, a process sets its clock to-an existing
system clock, or to an arbitrary value if no other process is in
the system.

Our implementation of (i} will have for each process not
only a clock but a variable Ui just as in the previous
algorithm. When process: i is "hors de combat,” U;=D Dis a,
constant denoting death) .- The condition for advancing one's
clock is
VilU;=D v c;a¢; v cj=c;+1]
Thus the main loop consists of waiting for this condition to come
true, then doing . Ci:=°i+1 .
When c;=i , process i proceeds to execute its' critical
section. The test for this condition is performed after the test
for whether to advance, but before ‘the actual advance. It is not
hard to see how this guarantees Cl (mutual exclusion), at least
for the case when no processes are in the -act of joining .the
system.

Now let us consider the implementation of (i), joining
the system. UWhile the basic idea {set your clock to some system
clock) seems plausible, the process is akin to boarding a rapidly
spinning carousel. . One may pick up a clock value, but find it
out-of-date by the time one has stored it in one’s own: clock:
The solution to this is to set U.i#U before selecting a clock
value. In this way the system cannot spin much further while
your clock does not change. This raises.the possibility. of not
meeting C7. The solution is as for the two-process solution -
set your clock initially to some -system clock before you set U ,
independently of selecting another clock value after setting U .
Thus although no guarantee is made that the first attempt to set
your clock will bring you up to date, at least it avoids your
being responsible for the system’s making no further progress;
each time you fail and re-enter, the system is no longer
prevented by you from incrementing its clock one more time.

A separate problem is that of the "phantom. clock.” A
process may fetch a system clock, but. not store it immediately.
In the meantime everyone in the system leaves it, one way or
another. Then another process: attempts to join the system, finds
no usable clock value, so chooses an arbifrary value. (The
example can be made to work no matter what he chooses because
of the inaccessibility of the "phantom clock" being held by our
temporarily suspended process.) The first process now joins the
system with its clock set to the "phantom clock," the value he
saw originally, which may bear no relation to the new system
clock. -

The solution we adopt -to this problem is to make the
final fetch-and-store one atomic operation, using the previous
n-process solution as the synchronization mechanism. This

precludes any other process’s joining the system while a phantom
clock exists.

Yet another problem exists. Suppose that at some time
¢;=2, U;=n-1, c;'-=8 and Uj=D {possible because of potential
delay between s first fetch and store of a clock value, or by
virtue of the entire system dying and being .replaced .by a new one
with an unrelated* system clock, as in the "phantom clock”
example) . Further, suppose that process j is just about to
increment its clock. Now suppose process i fetches (but does
not yet store) c¢.=8 , then ¢, ticks twice to 2 as it is
entitled to do, and then ¢, is set to @, If there are no other
system clocks, ¢; will proceed to join the system and (for n>3}
destroy the window hypothesis WH.

Our ‘solution is simply to ensure that ¢; cannot be so
out-of-date as to be overtaken in this manner. We accomplish
this with one more. assignment of a system clock to Ci
immediately before the final assignment and after U; ceases to
be B (and hence after the first assignment, so altogether three
similar assignments are made). To avoid the problem of the
vanishing and reappearing system, we make the second and third
assignments one atomic block of code, using the same
synchronizing mechanism we proposed to use for the last
assignment alone. After the middle assignment, no system clock
will be able to advance more than three ahead of ¢; (proved
below), so for n;?,,S , the wrap-around problem we are trying to
solve cannot uccur.

Here is another problem. Suppose cj-=1 and cj+1=ﬂ .

and suppose ¢; becomes 1 at the intermediste assignment. Now
let j leave the system (say by dying) so that for the final
assignment, i fetches j+1's clock, -which is still 8 . But
before i can store this value, j+l ticks twice to 2

(permitted since c;=1). . Now c; becomes B and again we
lose WH. This problem can actually be detected by process i ,
since the final value it fetched was one less than the .intermediate
one. In this case, process 'i can ignore the final value and

keep the intermediate one.

One more problem, a variant of the "phantom clock"
problem: suppose that ail system clocks are- @ or 1, but that all
processes joining the system set their clocks to 8, with other
system processes dying as needed to make room for new processes.
In this way the system can fail to make progress since there is
always a system clock at 8. Our solution is, to look at-all
system clocks in turn, ignoring those. system .clocks.one less than
the last distinct system clock we saw. In this way, if the
system is not making progress, we will get the maximum system
clock; if the system is making progress, the value we choose, -
while not guaranteed to be the maximum, .at least will be no worse
a choice than an arbitrary system clock.

T‘he whole algorithm is then:
1. ¢; == "max" system clock (to avoid hangup).
{Use previous algorithm, which inter alia sets U;.)
3. ¢; := "max" system clock {to update c;).
4. ¢y := "max" system clock, if this doesn’t decrement ;.
S. v,

(Suffices to set U; := Q - see below.)

6. - Uait till alt clocks of live (U:D) processes equal yours or
are one larger than it.

7. If your clock points to you, execute your critical section,
then set- ‘U to D and exit.

8. Increment your clock {mod n)} and return to step 6.

With the algorithm before us we can observe one final
problem. When a process leaves its critical section, it is
possible for it to re-enter the system and find everything
unchanged, with the system clock still pointing to it. In this
way it may repeat its critical section arbitrarily often before
other processes already in the system get a turn, To avoid. this
injustice we forbid a process from entering its critical section
the first time it reaches step 7 of the above algorithm. We do
this .with a flag ok that is set during step 5, tested at step
7, and cleared during step 8.

We now present the complete algorithm. We assume that
S is of type integer mod 3 and c; of type integer mod n ,
implying that ali arithmetic involving them is done modulo the
appropriate quantity. [Initially ¢; is set to some random value,
but its type forces the value to be in the range 8 to n-1 .
Ui takes on some prefix of the sequence of values
0,8,1,2,...,n-1,0 , followed by D . U takes over some of the
role of R, and the test R.=8 is subsumed by the test U.=D v Uj<i
v U.=Q . Hence we may assume that R takes on only two values,

1 and 2.

integer procedure sysclock;
begin integer m,j;s m := O3
for j := 8 step 1 until n-1 do
it U;=Q A ci+lem then m := cjs
sysclock :-_ﬁJ m=D then m else @
end sysclock;

1: c;

j $= sysclock;

2: for j := 8 until n-1 do
begin (R,5,U); i« (1.1+S,jj);
(R.S)i t= (2,145.);
wait(U.=0 v U;<i v U.=Q v
(Uj=i A (8;2145; v ((R,S)=(R,8); A isi))))

end;
31 ¢ = sysclock;
4r m 1= sysclock; if mwec;-1 then ¢; t= m;
S: U; := Qs ok := false;

B: for j := 8 until n-1 do wait{U;=D v c;=c; v cj=c;+1);
7t if ;=i A ok fhen
begin <critical section>; U; := D end
else
8: begin c; t= c;+l; ok := true; go to 6 end

In the following proof of the correctness of this
algorithm, we will do all arithmetic involving ci's modulo n .

For technical reasons {namely when using WH as an
induction hypothesis} we shall strengthen WH to include the
following condition. No system clock ¢, may be m when c¢;

is hot in [m~1,m] and process i is either in step 6 with j>k
or is between step 6 and the increment of step 8. This caters
for the possibility that a process might join the system with a
valid clock, only to have it invalidated a moment later as some
process proceeds to increment its clock.

Lemma 3.2. After process i has executed step 2,

U;«D .

Proof. 1Indeed, U; is set to @ at the outset of step 2, and
then increments up to n-1. B

Lemma 3.3. Assume WH. If Ui=Uk=O but

cannot pass step & before c; increments.

ck=ci-l ,

Proof. Evident from the code. The strengthened form of WH is
needed here to avoid the case where | has aiready passed step 6
when i arrives in the system with c-'+1=c- . (It is tempting
here to argue that WH unstrengthened will suffice, since from

the state described in the Lemma, j could legally proceed to
invalidate WH, (o tradicting ou: ussumpuos. hat WH held. The

calch is that we want to use Lemma 3.3 in the inductive step of
the proof of WH, and this sort of "looking into the future" would
invalidate this use.) []

n26 . After process i
in step 3, no system clock may reach cj+4
changes again.

Lemma 3.4, Assume WH and that

fetches some ¢j

before ¢
(If 6 seems a little high, note that when fetching

€j » some process may have its clock at cj—l , which is already

cj+4 when n=5 .)

Proof. At the moment c: is fetched, no process can have passed
the test at step 6 permitting it to increase to c¢;+2 (Lemma
3.3). Hence to reach c¢.+4 ‘a process must pass through step 6
three times, with three successively higher (modulo n)} clock

values. Because c; remains constant (hypothesis) and U;=D
(Lemma 3.2), the test at step 6 could not have succeeded all

three times.]

Coroflary 3.5. After process i completes step 3 and before any
process can execute another instruction, every system clock lies
in - fe;-1,¢;431 .

Proof. B8y WH, when cj was fetched all system clocks lay in
(cj-l.cj+1] . By Lemma 3.4 and the fact that system clocks can
only increase, théy can only move on to as far as cj+3 .
Immediately after the assignment of this ¢. to ¢; » we can

R J
say the same of c¢. . B

i
After process i completes step 3 but before c;
changes again, every system clock lies in [ci-l,ci+3] , and any
system clock in [ci,ci+3] that increments during this time will

not subsequently be able to pass the test at step 6 during this

time and so cannot increment more than once.

Coroliary 3.6.

Proof. During step 3, after c¢; has been fetched, every system
clock is either in [c.-1,c;+2] ‘or cannot pass the test at step 6
on account of (at least} '¢; . Assigning ¢; to c; then leaves
us with every process either in [c;-1,c;+2] " or still unable to
pass the test on account of ¢; . Tie former can clea-ly now not
increment past c,+3 before being stopped at & on account of

¢; . Moreover, any that increment to c;+1 or beyond (and
hence were initially in [c;,c;+2]) cannot pass the test at

the next encounter of 6, again on account of ¢; » and so can
increment at most once. |
Lemma 3.7. Provided the system starts with all processes dead,
the Window Hypothesis will aold at all times.

Proof. MWe proceed by induction on the number of instructions
executed by all processes since some time. when all processes were
dead. We only care about instructions that assign to c; while
U;=0Q, and instructions that set U; to O . All others cannot
do any harm immediately. For each i there is only one
instruction of each of these two kinds, ¢, := ¢;+1 at step 8,
and U; := Q atstep S. The first of these preserves WH since
i has passed the test at step 4 (whose intent is clearly to
preserve WH), and the strengthening of WH assures us that no
process has since then joined the system with a value other than
c; or c;+1 . The second preserves WH on account of Coroliary
3.6, which promises not only that the joining process is within

the window but ensures that any process with a greater clock will
be stuck at step 6 on account of the joining processbefore it can
invalidate WH. []

Theorem 3.8. This algorithm satisties C1-C7.
Proof.

{Cl) Mutual Exclusion. Because of WH, only one process can
simultaneously satisfy ¢;=i and have a minimal clock’ {one such
that for no j is c;=c;-1). Because system clocks do not

decrease, the minimal clock property guaranteed by step 6 must
still hold at step 7, by WH as strengthened.

{C2,C3) No Lockout or Deadiock. The only source of problems for
the reliable process i are the wait at step 2, dealt with

already by Lemma 3.1, the wait at step 6, and the goto at step 8.
By WH, eventually all processes with U=D will have a clock

value equal to ¢; or c;+1 , by WUH and the fact that the

largest system clock is chosen. Moreover, any process with
c=ci—1 will pass the test at step 6, so eventually no such
process will remain. Then i - will pass the test at step 6. The
goto at step 8 allows ¢; to make progress, and this combined
with setting ok means that eventually the test at step 7 will

be satisfied, and i will enter its critical section.

(C4) Linear Waiting, If we weaken this condition from its
original statement to "each process need wait while at most kn
other (not necessarily all distinct) processes execute their

critical sections,” then this is evident from the argumént for
C2-C3. In order to improve the waiting to "while U=D, each other
process may execute its critical section at most once," we need
to change ‘the algorithm to avoid processes i-1 through i-5 being
served twice. A simple solution to this is to introduce about 4n
"dummy" processes, renumbering the original processes so that
they are 5 apart. This need not entail the actual construction
of memories for the dummy processes, since the real processes
will. always know that the dummies are dead. The effect is to
"slow down" the system clock a bit, at the cost of additional
overhead in the execution of the algorithm. An additional
benefit of such an appreack is to solve the problem for the case
when there are fewer than 6 processes. Unless the cost of the
critical sections far outweighs that of our solution to their

mutual exclusion, this "padding" of additional processes is
probably of no practical value.

(CS) No. Global Variables. Self-evident,

ce) Finite range. Self-evident.

{c7) Impotence of Repeated Failing.
C2-C3.

Follows from the proof of

Acknowledgments

We should like to thank Leslie Lamport, Michael Fischer,
and Albert Meyer for their helpful comments on earlier versions
of this algorithm and manuscript, and Michael Fischer and Gary
Peterson for detecting and correcting some serious flaws in
a later version.

References

11 de Bruijn, N. G., "Additional Comments on-a Problem in
Concurrent Control”, CACH 18 (March 1967), p 137-138.

(21 Dijkstra, E. W., “Solution of a Problem in Concurrent
Programming Control", CACM 8 (September 1965), p 563.

{31

(4]

[5]

(6]

71

Dijkstra, E. W., "Self-Stabilizing Systems in Spite of
Distributed Control", CACM 17 (November 1874),
p 643-B44,

Dijkstra, E. W., "Cooperating Sequential Processes", in
Programming Languages. F Genuys, Ed., Academic Press,
New York (1968}.

Eisenberg, M. A., and M. R. McGuire, “Further Comments
on Dijkstra’s Concurrent Programming Control Problem",
(CACM 15 November 1972), p 999

Knuth, D. E., "Additional Comments on a Problem in
Concurrent Control”, CACM 9 (May 1986), p 321-322.

Lamport, L. "A New Solution of Dijkstra’s Concurrent
Programming Problem", CACM 17 (August 1974),
p 453-455.

