Efficient End to End Verifiable Electronic Voting
Employing Split Value Representations

Michael O. Rabin
Harvard SEAS
Columbia SEAS
Email: morabin@gmail.com

Abstract—We present a simple and fast method for conducting
end to end voting and allowing public verification of correctness
of the announced vote tallying results. In the present note
voter privacy protection is achieved by use of a simple form of
distributing the tallying of votes and creation of a verifiable proof
of correctness amongst several servers, combined with random
representations of integers as sums mod M of two values. At the
end of vote tallying process, random permutations of the cast
votes are publicly posted in the clear, without identification of
voters or ballot ids. Thus vote counting and assurance of correct
form of cast votes are directly available. Also, a proof of the claim
that the revealed votes are a permutation of the concealed cast
votes is publicly posted and verifiable by any interested party. We
present two versions of the method, one assuring voter privacy
and proof of correctness in the presence of information leaking
devices, the other achieving the same goals as well as prevention
of denial of service by failing or sabotaged devices.

Advantages of this method are: Easy understandability by non-
cryptographers, implementers, and ease of use by voters and
election officials. Direct handling of complicated ballot forms.
Independence from any specialized cryptographic primitives.
Verifiable mix nets without using public-key or homomorphic
cryptography, a novel result of significance beyond e-voting.
Speed of vote-tallying and correctness proving: elections involving
a million voters can be tallied and proof of correctness of results
posted within a few minutes.

I. INTRODUCTION AND OVERVIEW

End-to-End Verifiable Voting (E2EVV) systems provide
high confidence that errors and fraud can be detected and
that the announced election outcome is correct. See [1]-[5]
for some surveys and results about E2EVV. Cramer et al. [6]
have also used secret-sharing to ensure robustness of a voting
system, as we do in Section Recently, E2EVV systems
have been used in actual elections [2] and are proposed for
use in new systems such as the STAR-Vote system in in Travis
County (Austin) Texas [7].

The parties and agents involved in our E2EVV scenario are:
Voters: We assume n voters Vi, Vo, ..., V,,.

Tablets: Each voter uses a tablet to compose her vote. The
tablet can also print out a receipt for the voter.

Election authorities: Individuals responsible for running the
election.

Election Servers:
in the election.

Secure Bulletin Board (SBB): An election server providing
a secure public append-only record of election-specific

Computers performing specific functions

Ronald L. Rivest
MIT CSAIL
Cambridge, MA 02139
Email: rivest@mit.edu

data, including all cast ballots, the final election outcome,
and a proof of correctness of the election outcome.

Proof Server: An election server that produces a proof of
correctness of the election outcome. In our method, the
proof server is implemented with a two-dimensional array
of independently-controlled computers; these servers are
also servers in our mix-net implementation (so we also
call them “mix-servers”).

Tally Server: An election server that computes the election
outcome from the publicly posted list of decrypted cast
votes.

Adversary: The adversary attempts to cause an incorrect
election outcome to be accepted. (An accepted proof
of correctness as presented here, assures correctness of
announced tally outcome no matter how the adversary
acted.) An adversary may also attempt to violate the
privacy of voters.

An election then comprises the following steps:

1) Setup: The list of eligible voters is determined. The list
of ballot questions is determined. (For presentation pur-
poses we assume only one question on the ballot, which
may nonetheless require a complex answer such as a
preference ordering of the choices. For more questions
the entire method may be repeated.) Cryptographic keys
are set up as necessary for tablets and election servers.

2) Vote Casting: Each voter uses a tablet to enter her
choice on the ballot question. The system uses some
convention for providing each ballot with a unique ballot
id bid. The choice is “encrypted” (more on that later),
and sent to the election servers with the bid. The voter
is given a printed receipt with the bid and the hash of
the encryption.

3) Posting of Vote Records: The bid’s and encrypted
choices are posted on the SBB at the end of election
day.

4) Verification of Postings: Voters may access the SBB to
verify that the encryptions of their choices are correctly
posted (comparing their receipt with the hash of the
posted encryption for their ballot).

5) Mixing: The mix servers anonymize the encrypted
ballots by permuting their order and dissociating the
encrypted ballots from identifying meta-data such as
voter names or bid’s. Each of 2m copies of the list

of n encrypted ballots is independently mixed and re-
encrypted. The resulting 2m permuted lists are posted
on the SBB.

6) Random Challenge: A “random challenge” (a long
string of random digits) is derived by hashing the SBB
contents and/or from a public dice-rolling ceremony.
The unpredictability of this challenge to an adversary
prevents the adversary from undetectably manipulating
the election outcome.

7) Proving consistency with cast votes: A random half
(determined by the random challenge) of the 2m lists of
encrypted ballots are partially decrypted, to check that
the mixing was properly done. The method used here
depends on properties of split-value vote representations
to ensure that voter privacy is preserved. The partial
decryptions are posted on the SBB for all to confirm.

8) Posting and verification of election outcome: The
other half of the 2m lists are all fully decrypted and
posted on the SBB. Anyone may check that they are
identical lists (albeit differently permuted). The final
election outcome may be determined from any one of
these lists.

Adversarial model. We assume that the adversary is trying
to “rig” an election by trying to force an incorrect election
outcome to be accepted (because it appears to have been
proven correct) or to learn how some particular voters have
voted.

In Sections the adversary is assumed notr to be
interested in causing the election to fail (that is, to not produce
an election outcome or proof of correctness at all). Section [X]
deals with adversaries who attempt to deny service by failing.

Innovations re other E2E methods. The elements of our
end-to-end voting method are reasonably standard, except that

« Ballots are “encrypted” in a novel manner, using commit-
ments to secret-shared split-value representations of the
voters’ choices.

« No modular exponentiations or public-key operations are
required, yielding substantial efficiency improvements.

o The mix-net operation is proved correct in a new manner:
rather than proving each step of the mix-net to be correct,
the overall operation is proved correct.

o Because ballots are fully decrypted for the final tallying
operation, there is no restriction on the tallying method
used. Complex tallying rules (e.g. IRV) and write-in
candidates are easily handled. Furthermore, no zero-
knowledge proofs are required that the encrypted ballots
are valid.

We thus show how using Rabin’s Split Value Representation
(SVR) of integers method greatly simplifies an E2E implemen-
tation. SVR methods have been proposed for implementation
of secure auctions [8]], [9]; the extension to voting involves,
however, further innovations.

The current paper extends our previous works [10], [11]
exploring such innovations; In particular, we note that our

earlier work [[10] has the problem that a single election server
must know how everyone voted; the present work remedies
that defect.

Outline of paper. We begin in Section [[I] with some pre-
liminary notation and a discussion of the properties of split-
value representations, including methods for securely proving
equality of the values represented.

Then Sections discuss each phase of our method in
detail, from initial setup to creating and verifying the final
proof of correctness of the election outcome.

Section [X] shows how to extend the basic method to one that
tolerates a certain number of failures of the mix-net servers,
by using Shamir’s secret-sharing method.

Finally, Section [XI| provides some discussion of the practical
aspects of our methods, and Section concludes.

II. PRELIMINARIES

A. Notation

We let z || y denote the concatenation of z and y.

B. Representations modulo M

For a given race, votes and values used in the system are
described by values modulo a given integer M. Here M is
chosen large enough so that any voter choice (including a
“write-in” choice) may be represented by a unique integer
modulo M. In the following, additions and subtractions of
values are performed mod M.

Our methods are independent of the way such values are
used to represent candidates or complex choices (as with
preferential balloting).

Some of our methods (see Section [X) require that A/ be
prime.

C. Split-Value Representations

Our methods are adapted from those of [8]], [9].
Definition 1: Let x be a value modulo M, so that 0 < z <
M. A split value representation of x is any vector

X = (u,v)

where v and v are values modulo M such that © = v + v
(mod M).

Definition 2: We define the value of a split-value represen-
tation X = (u,v) modulo M to be

VAL(X) = (u+v) mod M .

Note that there are M different split-value representations
of any given value x, since u can be arbitrarily chosen from
{0,1,...,M — 1}, and then the corresponding v derived via
v = (x —u) mod M.

Definition 3: A random split-value representation of a
value x modulo M is a randomly chosen split-value repre-
sentation of modulo M.

D. Commitments

Commitment to values mod)M We use a commitment
function CoM(K, u) employing a (randomly chosen) key K
to commit to value v modulo M.

It is assumed that COM is computationally hiding: given the
value C' = COM(K, u), it is infeasible to gain any information
about u.

Opening a commitment COM(K, u) means to reveal K and
u; this opening can be verified by re-computing COM (K,).

It also assumed that it is computationally infeasible to
find two pairs (K, u) and (K’,u’) such that COM(K,u) =
CoM(K',u’). This renders the commitment by COM to be
computationally binding; no one can open a commitment in
more than one way.

CoM can be implemented, say, by use of AES with 256 bit
keys, or with the HMAC cryptographic hash function.

We sometimes write COM(u) instead of COM (K,), with
the understanding that a randomly chosen K is used (which
is revealed with u when the commitment is opened).

Commitment to split-value representations

Our use of a commitment to a split-value representation
is analogous to the “encryption” of a choice in other E2E
methods.

Definition 4: A commitment COMSV (X)) to a split-value
representation X = (u,v) is a pair of commitments, one to
each component:

CoMSV(X) = (CoM(u), CoM(v)) .

Note that COMSV(X') denotes commitment to a split-value
vector representation of a value 2, 0 < 2 < M, while COM(u)
is a commitment to a value u, 0 < u < M.

The following fact is crucial to the security of our methods.
Fact. If just one of the two coordinates u or v in a commitment
to a random split value representation X of a value z is
opened, then no information about the value x is revealed.

E. Proving equality of commitments

The nice thing about commitments to split-value represen-
tations is that they can be (probabilistically) proved equal
without revealing the values represented.

Suppose a Prover asserts that

CoMSV(X) =
CoMSV(Y)

(CoM(uy),CoM(vy))
(CoM(uz), COM(v2))

represent the same value: VAL(X) = VAL(Y"). To prove this,
the Prover first reveals ¢, where

t =
t =

(mod M) and (1)
(mod M) ()

U2 —Uq

U1 — V2

The Verifier then picks a random value ¢ € {1,2};ifc=1
he asks the Prover to open COM(u1) and COM(us). Otherwise,
the Prover must open COM(v;) and COM(vz). The Verifier
correspondingly checks (I) or (Z). The Prover fails if the
checked equation fails.

Fact. If VAL(X) # VAL(Y), then the Prover fails with
probability at least 1/2.

It is very important that a given split-value commitment
should not participate in more than one such proof. Otherwise
both its components may be revealed, thus revealing the value
represented.

Generalization to tuples We use a generalization of the above
proof method, wherein X is replaced by a tuple X3, Xo, X3
such that VAL(X) = VAL(X) + VAL(X3) + VAL(X3), and
similarly for Y and Y7, Y5, Y3. (This is for our default three-
row proof server arrangement; more values are used if there
are more rows.)

A proof of the equality that

VAL(X1) + VAL(X3) + VAL(X3) =
VAL(Y1) 4+ VAL(Y2) 4+ VAL(Y3)

proceeds just as before, except that opening the first com-
ponent of X is replaced by opening the first component of
each of X, Xo, and X3, and opening the second component
of X is replaced by opening the second component of Xj,
Xo, and Xg3; similarly for Y. Again a value ¢ such that
X1+ Xo+ X3 =Y, + Yo+ Y3+ (—t,t) is posted by the
Prover.

The basic fact (that a cheating Prover is unmasked with
probability at least 1/2) remains true.

F. Proving Equality of Arrays of Vote Values

We further generalize such proofs of equality to proofs of
equality for lists of length n of commitments to vote values.

In our mechanism votes are represented by triplets 7' =
(X,Y, Z) and committed to as

COoMT(T') = (CoMSV(X),CoMSV(Y),CoMSV(Z)) .
By definition,
VAL(T) = (VAL(X) + VAL(Y') + VAL(Z)) mod M .

Assume that a Prover has posted in a SBB two arrays of
commitments to triplet representations of values:

CoMT(Ty), CoMT(T3), ..., COMT(T,)
CoMT(T}), CoMT(Ty), ..., COMT(T)).

The Prover claims that VAL(T}) = VAL(T}) for 1 < j <n.

To post a proof of correctness on the SBB, the Prover
posts the values ¢4, ..., t, required for proving the claimed
equalities.

Afterwards, employing appropriate randomness (see Sec-
tion , n random independent values ¢; € {1,2},1 < j <
n, are computed and posted by the Verifier.

Now the Prover constructs and posts a corresponding proof
for each claimed equality VAL(T};) = VAL(TJ{), 1<j<n,
which can be verified as shown above.

Theorem 1: If more than k of the claimed n value equalities
are false then the probability of acceptance of the claim is at
most (1/2)F.

Proof: If for an index j, VAL(T;) # VAL(T}), then
the probability of the inequality not being uncovered is at
most 1/2. Because of the independent random choice of the
challenges c¢; € {1,2}, 1 < j < n, the probability of not
uncovering at least one of the k inequalities is most (1/2)*.

|
This completes our review of the mathematical preliminaries
needed for our methods.

III. SETUP

We now begin our more detailed description of our method,
beginning in this Section with the Setup phase.
See Figure [I) for a graphic depiction of the overall method.

A. Choice of M

We assume that there is only one race in the election. (The
entire method can be replicated for additional races.)

A value of M is chosen so that each possible choice a voter
can make in this race (including write-in votes, if allowed),
may be uniquely represented as a value w, where 0 < w < M.

If the extensions of Section [X] are used that use Shamir’s
secret-sharing method [[12]] to handle failing servers, then M
should be prime.

B. Tablets and Servers

The voter casts her vote in a voting booth by use of a Tablet.
Multiple voters may vote on a single Tablet. A representation
of the vote is transferred as described below from the Tablet
to various to election servers.

Some of the servers are “mix servers” that anonymize the
vote by removing identifying information and shuffling them
according to a secret permutation.

The mix servers also act collectively as a “proof server” (PS)
that prepares a publicly verifiable proof of the correctness of
the election results.

The proof of correctness will be publicly posted by the PS
on an electronic Secure Bulletin Board (SBB) accessible to
voters, parties involved in the election, and the general public.

In this note, to achieve high assurance of voter privacy the
PS consists of nine independent devices Py ; , P>, P53 ,
J =1,2,3 (considered as three rows of three devices each).

It will be demonstrated that as long as no more than
two devices may leak out information, privacy of voters is
protected. Generalizations for other parameterizations will be
described later. The obvious generalization to the case of /
leaky devices employs (¢ + 1)? devices.

C. Secure Channels

We assume that suitable arrangements are made for secure
channels between the tablets and the election servers.

For example, one may use three pairs (e;,d;) of a public-
key encryption method (PKE), for j = 1,2,3. Here ¢; is
a public encryption key, and d; is the corresponding secret
decryption key. Every voter Tablet has all public encryption
keys ej, j = 1,2,3. Every P;; has the secret decryption
key dj .

However, in such an implementation, the public-key decryp-
tion may become an overall computational bottleneck. Thus,
we recommend using a simple hybrid encryption method to
set up private symmetric keys, employing only one PKE en-
cryption key per tablet and the corresponding PKE decryption
key by the Proof Server per Tablet. This reduces the overall
PKE decryption time significantly.

Each proof server also has secure channels to every other
proof server in the same row or column.

IV. VOTE CASTING

We assume that the Voter’s Tablet is given (or creates) a
unique ballot id bid for each voter.

The Voter’s Tablet takes the Voter’s V' vote w, where 0 <
w < M, and randomly represents w as a triple (z,y, z) such
that

w=(x+y+z) mod M .

It then creates random split-value representations of x, y, and z
as X = (u1,v1), Y = (ug,v2), and Z = (us,vs). Tablet
chooses for X random keys K;, K, and sends to P; ; the
ballot representation:

bid, CoMSV(X), PKE(e1, (K1,u1) || (K2,v1)))
where
COMSV(X) = (COM(Kl, Ul), COM(KQ, Ul)).

Similarly a message containing COMSV(Y') is sent to P ;
and a message containing COMSV(Z) is sent to Ps 1, using
different pairs of random keys for each commitment, and
using e for encryption for P, and ez for encryption for
Ps 1. In this way the Tablet sends to the first device in each
row a portion of a distributed representation of vote w (each
portion being a commitment to a split-value representation of
a component of w, where the components add up modulo M
to w).

The use of the above split value representations X, Y, Z,
for x, y, 2, is one of the main innovations of this paper. It is
used in creating the publicly verifiable proof of correctness of
the submitted votes and of the tally of the election.

As part vote-casting, the voter may participate in a “cast-or-
challenge” protocol see Benaloh [13] to verify that her Tablet
has faithfully represented her choice(s). We omit details.

V. POSTING OF VOTE RECORDS

In E2EVV each ballot is encrypted and posted on a secure
public append-only Bulletin Board (SBB) [[14].

All encrypted ballot information received from Tablets is
publicly posted on the public Secure Bulletin Board, so
that voters may confirm their correct reception. To simplify
procedures, a voter is given on her receipt the ballot id bid of
her vote, and the postings may be in order of ballot id.

n voters

3 X 3 server array

2m lists/server

l
1
I
1
1

In

l
1
i
i
i

|
1
i
i
i

Fig. 1. An illustration of the method for n = 4 voters. Information flows from left to right. Each voter
sends an encrypted share of his vote to each of the servers in the first column; these encrypted shares are
also posted on a secure bulletin board. Each column obfuscates and reshuffles its data (each server in a
column using the same random permutation) before sending it on to the next column. The information
flow from the first column to the output is repeated 2m = 4 times (with different randomness used each
time). A “cut-and-choose” method randomly selects m columns of output lists to be re-routed back to be
compared for consistency with the input. The other m columns are opened, checked for consistency, and
posted to reveal the election outcome. A proof of the correctness of the election outcome is then prepared

and posted, as described in the text.

VI. VERIFICATION OF POSTINGS

The voter was given a paper receipt from the Tablet giving
a hash value of what should be posted, to enable simple
verification of correct inclusion of her ballot.

Every voter can then verify that the cipher text of her
ballot has been properly posted, this without her being able to
convince anybody what her actual vote was. (The voter does
not know how to open any commitments.)

VII. MIXING

The implementation of a fast verifiable mix-net, described
in this Section, is one of the main contributions of this paper.

We emphasize that the required computational primitives
are just additions mod M of integers of value at most M, and
concealment of integers u of size at most M as COM(K, u)
by a fast commitment function COM(-,-). These primitives
are done on individual proof servers P;;, not in a multi-
party fashion, and are executable on ordinary laptop or desktop
computers at the rate of millions of operations per second.

Our mix-net, consisting of Py, P»;, P34, j = 1,2,3,
creates and publicly posts 2m arrays of length n, each of
which is a secret random permutation of the (encrypted) votes
W1y ooy Wp.

Why are 2m permuted lists produced, instead of a single
one, as is usual for mix-nets? The answer is that we need
half of them to check against the posted inputs, and half to
produce the desired election outcome. Because no split-value
commitment can be compared for equality more than once,
we need multiple copies to make this approach work out.

The actual number 2m used depends on the degree of
correctness assurance the system is designed to achieve; The-
orem [3] in Section [IX] shows that 2m = 24 provides high
assurance.

Decryption. To begin, P; 1, P> 1, P51, each using its private
decryption key, opens its received commitments.

The Proof Server PS device P;; has the secret decryp-
tion key dj. It decrypts for each Ballot component X the
PKE(ej,(K1,u1) || (K2,v1)) part. The revealed values
(Kiy,u1), (Ko,v1) are checked as the correct opening of
COoMSV(X), enabling P, ; computes VAL(X) = x = (u1 +
v1) mod M.

Now P, ; has the sequence of X-components z1, ...
of the n vote values wy, wo, ..., Wy,.

Similarly P, ; computes yi, ..., ¥, and P5; computes z1,
..., zn. Here the first vote is w1 = (z1 + y1 + 2z1) mod M.

> T

Even though first-column devices now have components in
the clear, the distribution of a vote value w as the sum mod
M of z, y and z and sending each component to a different
P; 1,7 =1,2,3, ensures that if at most two devices are leaky,
the vote remains secret.

First column obfuscates and shuffles. To create an output
array consisting of the n vote values concealed and randomly
permuted, the servers P 1, P51, P3; comprising the first
column of the PS first obfuscate and then shuffle the list of n
vote values, before passing them on to the next column.

Obfuscating: The first-column proof servers create an obfus-
cation of the list of n vote values.

Definition 5: We say that S| = (z}, v}, z{) is an obfuscated
Sform of S1 = (x1,y1,21) if

ity +Zi =z +y1+21 (mod M),

that is, if S7 and S; represent the same value.

The method for P 1, P> 1, P31 to obfuscate the first vote
value (represented as a triple S; = (x1,y1,21) in the three
servers) is to chose three random values pi, g1, 71 in the
range 0 to M — 1, subject to (p1 + ¢1 + 1) mod M = 0
and to compute) = (p; + 1) mod M by P 1, etc. Similar
obfuscation is done on the components of the other n—1 votes
wy , ..., wy using different randomly chosen triplets p;, g;,
r; for each obfuscation.

Shuffling: P; ; has now the values zf , ..., z},, P»1 has
the values ¥, ..., y;, and similarly for Ps ;. Now P; 1, P51,
Ps ; together choose a random permutation 7 : {1,...,n} —
{1,...,n}.

Send data to next column. Then P;; transmits the ar-
ray x;(l),...,x;) 1O Py 5. Similarly P, ; transmits the
array y;(l), s Yy 1O P, 5 and P;; transmits the array
Z;r(l)’ ey Z;r(n)’ to P372.

Second column obfuscates and shuffles. The second column
Py o, P52, P39, repeats the same process of obfuscation and

shuffling, sending the obfuscated-shuffled array to the third
column P1’3, ngg, P33

Last column obfuscates and shuffles. Finally, P; 3, P» 3,
P33 again obfuscate and shuffle so that P; 3 has the ar-

ray (27, 7...,$g/(n)). Similarly for P»3 and the array
(Yor(1)s - -+ Yo(n)) and for Ps 5. Here o denotes the permuta-

tion of the original order of the ballots into the present arrays.

Posted of lists of votes. Server P; 3 creates and posts on the

SBB commitments (COMSV(X(,),...,CoMSV(X[[)))

to split-value representations of the components
(mg’(l), e ,gcg’(n)). Similarly, P, 3 creates and posts
(COMSV(Y;’(’I)), e COMSV(Y[;’(’n))) and so does Ps3

This total posted array of 3n commitments is one of the 2m
lists produced by the mix-net; the whole process is repeated
2m times to obtain the set of all 2m lists.

Remark. Note that in our method of shuffling, unlike in mix-
nets, components of votes are not shuffled amongst rows going

from one column to the next. They rather stay within the same
row obfuscated and in shuffled order.

Theorem 2: (Maintenance of Voter Privacy.) As long as
no more than two of the nine servers P; ; leak out unintended
data, there are at least one row and one column in the 3 x 3
array of servers P; ; that do not contain an improper server.
This, combined with the obfuscation and shuffling from one
column of servers to the next and the final obfuscation and
shuffling by the third column P; 3, P, 3, P33 of servers, results
in complete secrecy of votes by individual voters, even if the
above output arrays of P; 3, P 3, P33 are made public and
two servers of the PS leak out all their data.

We shall prove this theorem following the next remark. It

is assumed that the communications between any two mix
servers is secure.
Remark. If computations were properly done, then (:1:;”(1) +
y(’f’zl) + zgzl)) mod M = w, (1), etc. That is, from the output
arrays of P; 3, P» 3, P33, the votes wy, ..., w,, can be directly
read off (in the order o).

Proof: In first phase of obfuscation and shuffling going
from the first column P; 1, P>, P3; to the second column
Py o, Py o, Ps 9, obfuscating a typical S1 = (z1,%1,21) into
St = (x1,y1,21) by use of p1, g1, r1. Note that P; ; keeps x1
and z} in its own memory. Similarly for P51, Ps; and their
components of Sy and Sj.

This implies that even though pi, ¢1, 71 are known to all
three of P; 1, P» 1, P51, nothing is revealed about components
of votes stored in non-leaky devices.

The same holds about obfuscation and shuffling going from
the second column P 2, P> 2, P32 to the third column P 3,
Py 3, Ps 3.

Once the third column P 3, P» 3, P 3 is reached either it
or one of the two preceding columns do not contain any leaky
device. Thus third-column outputs protect voter privacy. H

VIII. RANDOM CHALLENGE

We note that the proof servers have a need for random
values of two distinct flavors:

o Internal randomness. The PS needs random values to
create random split-value representations random permu-
tations, etc. These values should be unpredictable to out-
siders, but need not be unpredictable to the proof servers
themselves. For these purposes, the proof servers may use
what we call “internal randomness”: truly random sources
available only to each proof server.

o External randomness (for challenges). The proofs of
correctness need random challenges (e.g. for the cut-and-
choose of m lists out of 2m, or for the proofs of equality
of split-value commitments) that are unpredictable even
to the proof servers (as they may be malicious). These
random challenges may be obtained in either of two ways:
in the Fiat-Shamir style [15] as the hash of the current
SBB, or from a random external source (e.g. a dice-rolling
ceremony). The former approach has the advantage that
the (pseudo-)random values obtained by hashing the SBB

may be verified by anyone, but has the disadvantage that
an evil proof server may try many values to be posted
on the SBB until the SBB hash is to its liking. Thus, the
value of 2m may need to be significantly larger if the
Fiat-Shamir method is used. Our analyses assume that
the challenges are derived from a truly random external
source; appropriate adjustments to the value of 2m should
be applied if the Fiat-Shamir method is used.

IX. PROOF OF CORRECTNESS

The election outcome and associated tally, as well as a proof
of correctness of the announced results, are also posted on the
SBB, and can be verified by anyone.

Posting of split-value representations of mix-net outputs.
The device P, 3 creates random split-value vector represen-
tations X/, for x,;, 1 < 4 < n, and commitments
COMSV(X;’&.)) for 1 < i < n. Similarly for P 3 with the
y(’y’zz) and P; 3 with the z;’Ei).

Using the notation of Section Py 3, Py 3, P33 together

prepare and publicly post for 1 <1 < n:

COMT(TU(Z-)) =
(CoMSV (X)), COMSV(Y/(;)), COMSV(Z];))) (3)

This process of obfuscation, shuffling and posting an array
of the form (3)) is repeated by the PS 2m times, where 2m is
chosen to yield the desired assurance of correctness. Each of
these posted arrays is of course created by use of a different
permutation of {1,...,n}.

Cut and Choose. By use of randomness extracted from all
posted data together with an independent random seed, m of
the posted lists (3) are randomly chosen for a proof of value-
consistency with the posted concealed votes (see Introduction).

Proving consistency with cast votes: Each of these m chosen
arrays (3) is rearranged by the Proof Server in the order of
of bids, hence in the order of the submitted-posted concealed
ballots. This is done by backtracking for the chosen arrays,
the permutations used by each column.

The permutations o for the m chosen arrays are posted, as
are the values (¢;, —t;) used in the proof. For brevity we omit
the simple details of how P 3, P» 3, P33 compute and post
the pairs (¢;,—t;) , 1 <i < n.

Now the randomness is used to open one coordinate in each
of the commitments in the posted concealed ballots and the
corresponding commitment in each of the m rearranged arrays
(3) and prove equality of values by the method of Section [[I-F|

By Theorem [l if even one of these m lists differs from
the ballot list by more than %k values then the probability of
acceptance is at most (1/2)*.

Posting and verification of the election outcome: Now all the
other m permuted lists are opened and the values are revealed.
Only if all opened lists are permutations of the same values
is the proof of correctness accepted. The election outcome is
then the result of applying the appropriate tallying function or

election outcome determination function to any of the opened
lists. (We assume that the election outcome does not depend
on the order of the ballots.)

Level of assurance provided. We now analyze the level of
assurance provided by the posted proof.

Definition 6: Call a permuted array of n values k-good if
when re-arranged in the order of the originally concealed n
ballots posted by the tablets on the PS, it differs from the
concealed ballot values in fewer than & locations.

Theorem 3: The probability that the opened arrays are
permutations of the same values but they are not k-good, i.e.
the probability of accepting an announced tally result differing
from the correct tally by more than k£ vote values is at most

1/C(2m,m) + (1/2)% ~ v/3.14m/2°™ + (1/2)*,

where C'(2m, m) is the binomial coefficient ”2m choose m”.
Proof: Call H the set of m lists of n ballots revealed by
Py 3, Po3, P33. Assume that one, and therefore all, of these
ballot lists is not k-good. The probability that in the cut and
choose the set H is chosen to be opened is 1/C(2m,m). If H
is not chosen then the proof of value consistency is conducted
on at least one array of n concealed ballots which is not k-
good. The probability of this happening and proof of correct-
ness being accepted is at most (1 — 1/C(2m,m))(1/2)*. =®
For the case of no more than 20 wrong votes we use 2m =
24 and the probability of accepting a proof of correctness while
there are more than 20 discrepancies is less than 1.38/220.

X. COUNTERING DENIAL OF SERVICE ATTACKS (DEVICE
FAILURE)

It is relatively straightforward, using well-known secret-
sharing methods, to provide increased robustness against the
possibility that one or more of the proof server devices may
fail. As noted in the introduction, Cramer et al. [6] have also
used secret sharing to improve robustness of a voting system.
(Their paper employs homomorphic encryption and unlike the
present work reveals only the final value of the vote count.)

These methods allow construction of systems satisfying
specified robustness requirements in addition to voter privacy
protection. When failures may occur, then obfuscation is done
by the method of proactive secret sharing (see [16]]), rather
than the method described in the example of the previous
sections. Because Shamir secret sharing is used, M is chosen
to be a prime number, say M = 1009.

For example, suppose we wish to protect against one device
failure and one leaky device; we’ll use a PS with four rows
and two columns. The votes are (4, 3)-shared by in the finite
field Fy; by the voter Tablet and the shares of each vote are
securely sent to four devices P 1,..., P4 comprising the
first column of the PS. With (4, 3)-secret-sharing each value
is split into four shares, such that any three (but not any two)
suffice to reconstruct the value.

Every first-column Proof Server device P;. (4, 3)-shares
the value 0 among the 4 devices in the first column. Every
P; 1 adds the received shares of 0 to its input share. (This is

done separately for each vote.) The first column devices shuffle
the obfuscated quadruples and every P;; sends its obfuscated
share to Pj>. The second column of the PS obfuscates and
shuffles, produces the results as output.

Now the servers Pjo, Pro, P32 , Pso of the second
column each prepares an array of commitments to split value
representations of its permuted array of shares of the n vote
values w; , we , ...w, . These commitments are posted on
the SBB. This whole process is repeated 2m times. Then the
m permuted arrays of the (4, 3) shares of the n vote values
wy , Wy , ..., Wy, , are posted as in Sections

In general, if at most f devices may fail (where f > 0)
and at most ¢ may be leaky, then PS may have r rows and ¢
columns, where r > f + /4 2 (to protect votes from leaking),
use an (7, ¢ + 2) secret-sharing method, and choose ¢ > £+ 1
(to protect the shuffles). If f = 0, then the number of rows and
the number of columns need only be ¢+ 1, as in the example
of the previous sections.

For additional protection against possibly malicious servers,
one may for example employ Trusted Platform Module (TPM)
technology. Work in progress (to appear) presents additional
methods for countering malicious servers who attempt to
actively disrupt the protocol. Of course, when paper ballots
are available (as with Scantegrity or Star-Vote), one can always
recover the correct election outcome by counting them.

XI. PRACTICAL ASPECTS

We consider some practical aspects of the proposed method,
such as time and storage requirements.

Assume that the number n of ballots is 106, the number
of tablets is 10%, and that we use 2m = 24. The following
numbers are for a typical desktop computer or laptop, which
can execute 200 private-key operations (e.g. RSA 2048-bit)
per second or 8 million commitments (AES operations) per
second. Assume that PS has » = 3 rows and ¢ = 3 columns.

Time to decrypt votes from tablets: This requires 10*
private-key operations (using a hybrid method) per first-
column PS device—about 50 seconds. It also requires about
10 openings of pairs of commitments—under a second.
The 50 seconds for the private-key operations is the major
component of the running time. The last-column PS devices
must prepare 24 arrays of length n with 6 commitments
per vote—about 18 seconds (six seconds if the last-column
processors do this in parallel). The time to create the random
permutations is negligible.

Size of proof: If each commitment COM(u) is assumed to
require 30 bytes, then the overall size of the proof is about
25 x 2 x 3 x 30 x 10° bytes (4.5GB), about the size of a movie;
the proof can be downloaded on an typical internet connection
in a few minutes at most, and checked in a couple of minutes
on a typical laptop.

Code: A 2800-line python program for running simulated
elections was written and tested; in experiments it performs
flawlessly and rapidly. (See https://github.com/ron-rivest/
split-value-voting| .)

XII. CONCLUSION

The methods presented here provide new ways for im-
plementing verifiable mix-nets and thus end-to-end verifiable
voting. The new methods are particularly efficient since they
do not require any modular exponentiations or public-key
operations. We believe that the efficiency and generality of this
solution render it practical for actual deployment in elections.

ACKNOWLEDGMENT

We thank Tal Rabin for advice on proactive secret sharing.
The second author gratefully acknowledges support from
his Vannevar Bush Professorship. We thank the anonymous
EVOTE reviewers for numerous constructive suggestions.

REFERENCES

[1] B. Adida and R. L. Rivest, “Scratch & vote: self-contained paper-based
cryptographic voting,” in Proceedings of the 5th ACM workshop on
privacy in electronic society, R. Dingledine and T. Yu, Eds. ACM,
2006, pp. 29-39.

[2] R. Carback, D. Chaum, J. Clark, J. Conway, A. Essex, P. S. Herrnson,
T. Mayberry, S. Popoveniuc, R. L. Rivest, E. Shen, A. T. Sherman, and
P. L. Vora, “Scantegrity II municipal election at Takoma Park: The first
E2E binding governmental election with ballot privacy,” in Proceedings
USENIX Security 2010, 1. Goldberg, Ed. USENIX, August 11-13, 2010.

[3] A. Essex, J. Clark, U. Hengartner, and C. Adams, “Eperio: Mitigating
technical complexity in cryptographic election verification,” in Pro-
ceedings of the 2010 International Conference on Electronic Voting
Technology/Workshop on Trustworthy Elections, ser. EVT/WOTE’10.
Berkeley, CA, USA: USENIX, 2010, pp. 1-16.

[4] H. Jonker, S. Mauw, and J. Pang, “Privacy and verifiability in voting
systems: Methods, developments and trends,” Cryptology ePrint Archive,
Report 2013/615, 2013.

[5] S. Popoveniuc, J. Kelsey, A. Regenscheid, and P. Vora, “Perfor-
mance requirements for end-to-end verifiable elections,” in Proceedings
of the 2010 International Conference on Electronic Voting Technol-
ogy/Workshop on Trustworthy Elections, ser. EVT/WOTE’10. Berkeley,
CA, USA: USENIX, 2010, pp. 1-16.

[6] R. J. F. Cramer, M. Franklin, L. A. M. Schoenmakers, and M. Yung,
“Multi-authority secret-ballot elections with linear work,” Centrum voor
Wiskunde en Informatica, Tech. Rep. CS-R9571, 1995.

[7] J. Benaloh, M. Byrne, P. Kortum, N. McBurnett, O. Pereira, P. B. Stark,
and D. S. Wallach, “STAR-vote: A secure, transparent, auditable, and
reliable voting system,” arXiv preprint arXiv:1211.1904, 2012.

[8] S. Micali and M. O. Rabin, “Cryptography miracles, secure auctions,
matching problem verification,” CACM, vol. 57, no. 2, pp. 85-93,
February 2014.

[9] M. Rabin, R. Servedio, and C. Thorpe, “Highly efficient secrecy-
preserving proofs of correctness of computations and applications,” in
Proceedings of 22nd IEEE Symposium on Logic in Computer Science.
IEEE, 2007, pp. 63-76.

[10] M. O. Rabin and R. L. Rivest, “Practical end-to-end verifiable voting
via split-value representations and randomized partial checking,” April
3, 2014, CalTech/MIT Voting Technology Project Working Paper 122.

, “Practical provably correct voter privacy protecting end to end
voting employing multiparty computations and split value representa-
tions of votes,” May 12, 2014, CalTech/MIT Voting Technology Project
Working Paper 124.

[12] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979.

[13] J. Benaloh, “Ballot casting assurance via voter-initiated poll station au-
diting,” in Proceedings of the USENIX Workshop on Accurate Electronic
Voting Technology. USENIX, 2007, p. 14.

[14] C. Cullane and S. Schneider, “Peered bulletin board for robust use in
verifiable voting systems,” arXiv.org/abs/1401.4151, Jan. 16, 2014.

[15] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proc. Crypto 86, ser. Lecture
Notes in Computer Science, vol. 263. Springer, 1986, pp. 186—194.

[16] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,”
in Proc. 10th ACM Symp. Princ. Distr. Comp. ACM, 1991, pp. 51-61.

(11]

https://github.com/ron-rivest/split-value-voting
https://github.com/ron-rivest/split-value-voting

	Introduction and Overview
	Preliminaries
	Notation
	Representations modulo M
	Split-Value Representations
	Commitments
	Proving equality of commitments
	Proving Equality of Arrays of Vote Values

	Setup
	Choice of M
	Tablets and Servers
	Secure Channels

	Vote Casting
	Posting of Vote Records
	Verification of Postings
	Mixing
	Random Challenge
	Proof of Correctness
	Countering Denial of Service Attacks (Device Failure)
	Practical Aspects
	Conclusion
	References

