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Abstract

We propose an approach to post-election auditing based
on Bayesian principles, and give experimental evidence
for its efficiency and effectiveness. We call such an au-
dit a “Bayes audit”. It aims to control the probabil-
ity of miscertification (certifying a wrong election out-
come). The miscertification probability is computed us-
ing a Bayesian model based on information gathered by
the audit so far.

A Bayes audit is a single-ballot audit method applica-
ble to any voting system (e.g. plurality, approval, IRV,
Borda, Schulze, etc.) as long as the number of ballot
types is not too large. The method requires only the abil-
ity to randomly sample single ballots and the ability to
compute the election outcome for a profile of ballots. A
Bayes audit does not require the computation of a “mar-
gin of victory” in order to get started.

Bayes audits are applicable both to ballot-polling au-
dits, which work just from the paper ballots, and to com-
parison audits, which work by comparing the paper bal-
lots to their electronic representations. The procedure is
quite simple and can be described on a single page.

The Bayes audit uses an efficient method (which may
be based on the use of gamma variates or on Pólya’s Urn)
for simulating a Bayesian posterior distribution on the
tally of a profile of ballots.

A Bayes audit is very similar to single-ballot risk-
limiting audits. However, since Bayes audits are based
on different principles, the precise relationship between
risk-limiting audits and Bayes audits remains open.

We provide some initial experimental results indicat-
ing that Bayes audits are quite efficient, requiring few
ballots to be examined, and that the miscertification rate
is indeed kept small, even for very close elections.

1 Introduction

This section provides a quick introduction to post-
election audits and our notation. Section 2 then presents
our proposed Bayes audit procedure. Section 3 gives
the results of our initial experiments using this method
on simulated and real election data. Section 4 consid-
ers some extensions and variations of the basic method,
and Sections 5 and 6 discuss and summarize what we
have learned about the Bayes audit. Appendix A pro-
vides some additional technical details on efficient im-
plementation methods.

1.1 Post-election audits

Informally, the purpose of a post-election audit is to
check that the reported election outcome is correct, by
auditing enough randomly chosen ballots.

Absolute certainty isn’t required of an audit (the only
way to achieve absolute certainty is to audit by hand all,
or nearly all, of the ballots), but a good audit should have
a high probability of exposing (and correcting) an incor-
rect reported outcome.

The number of ballots audited is typically variable, de-
pending on factors such as the margin of victory (close
elections require more work), the random sampling pro-
cess, whether the audit is a ballot-polling audit or a com-
parison audit, and (if a comparison audit) the number and
nature of errors found. The audit may proceed in stages,
auditing more and more ballots until an audit result can
be announced with sufficient statistical confidence.

Norden et al. [15] give an excellent introduction to
post-election audits. VerifiedVoting.org [24] summa-
rizes U.S. legislative requirements for post-election au-
dits. Philip Stark has pioneered many of the most recent
and powerful post-election audit methods; he provides a
web page [19] listing key papers and talks. Checkoway
et al. [2] give an interesting information-theoretic single-
ballot audit method.



Since election equipment and procedures are complex,
and since the initially reported election outcome may
be incorrect due to various errors or even fraud, post-
election audits are strongly recommended as a means
of providing a high degree of confidence—to the voters,
to the election officials, and to the candidates—that the
election outcome is indeed correct.

This paper provides election officials with a new post-
election auditing tool, one that is efficient and effective.

1.2 Framework and notation
Voters. We consider a single-contest election with n
voters, each of whom casts a single paper ballot.

Ballot types. We assume that each ballot has one of t
“types” (or “signatures”). In a plurality election, t may
equal the number m of candidates, and each ballot indi-
cates the voter’s preferred choice. If “overvote” and/or
“undervote” are allowed ballot types, t may be larger
than m by one or two. With ranked-choice voting, a bal-
lot lists candidates in order of preference, so t = m! (or
even larger, if overvotes and undervotes are allowed, or
if ballots may be partial).

Let [a..b] denote {a,a+1,a+2, . . . ,b}. Each ballot is
treated as an element of [1..t], that is, as an integer in the
range 1 to t, inclusive.

Reported ballot types and profile. Assume that the n
paper ballots are scanned, producing a sequence of n re-
ported ballot types, each in [1..t]. We let ri denote the
reported type of the ith ballot, for i = 1,2, . . . ,n. The
reported election profile is

rrr = (r1,r2, . . . ,rn) .

Some authors used the adjective “apparent” rather than
“reported”. Reported results are initial, preliminary, and
unofficial.

Denote the set of possible profiles for an election with
n voters and t ballot types as:

Pt,n = {(x1,x2, . . . ,xn) | (∀i)(xi ∈ [1..t])} ;

These are sequences of length n, of which each element
is a ballot type (an integer in [1..t]).

Tallies. Let R j denote the number of ballots of reported
type j, for j = 1,2, . . . , t. The R j’s are nonnegative inte-
gers whose sum is n. Let

RRR = (R1,R2, . . . ,Rt)

be the reported tally vector.

For any list xxx = (x1,x2, . . . ,xn) with positive integer
elements, let tally(xxx) denote the tally of xxx: the list
(X1,X2, . . .) whose kth component Xk is the number of
elements of xxx that are equal to k. Thus

RRR = tally(rrr) .

Let

Tt,n = {(X1, . . . ,Xt) | (∀i)Xi ≥ 0 and
t

∑
i=1

Xi = n}

denote the set of possible tally vectors for an election
with n voters and t ballot types. Each such tally vector
has length t; the ith element Xi denotes the number of
ballots of ballot type i. The sum of the tally elements
is n.

It is convenient for us in this definition to admit ar-
bitrary nonnegative real numbers as tally components,
rather than just arbitrary nonnegative integers, even
though in reality there will never be “fractional votes”
cast. This detail is not consequential here. Note that so-
cial choice functions are almost always based on com-
parisons between tallies, or sums of tallies, so they work
just fine on an input “tally vector” consisting of arbitrary
real numbers.

Voting system election outcome. We assume that the
reported election outcome is determined by applying the
appropriate social choice function f to the reported tally:
f (RRR) is the reported election outcome. The function f
depends on whether the voting system is plurality, ap-
proval, IRV, etc. We assume that f is deterministic (that
is, not randomized); f always reports the same outcome
for the same given input tally. (In practice, this just
means that ties are broken in some pre-determined way.)

We let M denote the number of possible election out-
comes, and represent the outcome as an integer in [1..M].
In a plurality election, M equals m, the number of candi-
dates. In an election with multiple winners, M equals the
number of possible winning combinations. For example,
suppose there are four candidates vying for two open city
council seats; in this case m = 4 and M = 6.

Audit types. We are concerned about
miscertification—where election officials certify
(accept) an incorrect election outcome. The risk of
such miscertification can be dramatically reduced by
conducting an effective post-election audit that involves
examining, by hand, some or all of the paper ballots.

The audit may be of one of two types: a ballot-polling
audit or a comparison audit [9]. In both cases, a hand ex-
amination of the audited ballots determines their actual
ballot types. The comparison audit also then compares
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these actual types, one by one, with their correspond-
ing reported types. This requires voting systems that can
track this correspondence. A comparison audit is usu-
ally significantly more efficient, requiring the auditing of
fewer ballots, but in either case an efficient audit for a
typical election may need to examine only a tiny fraction
of the paper ballots. The Bayes method works for both
audit types. Lindeman et al. [10] argue for the utility of
ballot-polling audits in today’s environment.

Errors and actual ballot types. Some reported ballot
types may be erroneous, due to scanning errors, scan-
ner limitations at interpreting voter intent, misprogram-
ming of scanners, recording errors, or even some form of
fraud. Such errors are usually inconsequential, but they
may in some cases cause election officials to accept (cer-
tify) the wrong election outcome.

We assume that a hand examination (audit) of the ith
ballot yields its actual type (or true type) ai. Let

aaa = (a1,a2, . . . ,an)

denote the actual election profile.
Let A j denote the number of ballots of actual type j,

and let
AAA = (A1,A2, . . . ,At) = tally(aaa)

be the actual tally. Thus, f (AAA) is the actual election out-
come, which is by definition correct.

When a ballot of reported type j has actual type k, we
say that ballot i has “error type” ( j,k). Of course, there
was an error only if j 6= k, but it is convenient to use the
term “error type” even in this case when there is no actual
error.

Correct election outcomes and upsets. If there are no
errors, then ri = ai for all i, and the reported tally RRR
equals the actual tally AAA. Errors may cause an incorrect
reported election outcome:

f (RRR) 6= f (AAA) .

We call such an event an “outcome error” or, for brevity,
an “upset.” That is, an “upset” happens when the re-
ported election outcome was incorrect. An audit should
not only detect upsets with high probability, but also pro-
vide the correct election outcome in such cases. A Bayes
audit will stop examining ballots when the probability of
an upset is estimated to be sufficiently small.

2 Bayes Audit Method

This section presents details of the “Bayes audit.” We be-
gin with an intuitive overview of the approach, and then
dive into the technical details.

Intuitive overview. A Bayes audit examines randomly
selected paper ballots one at a time. When a selected
paper ballot is audited, its actual type is determined by
hand examination. The actual type of an audited ballot
may or may not be compared to the reported type for that
ballot—this is the difference between a comparison audit
and a ballot-polling audit.

The Bayes approach can be viewed as providing an
“oracle” or “magic box” that can answer the question:

What is the probability that each candidate
would be determined to be the actual winner, if
the auditing process continued to examine all
the ballots, and the remaining ballots audited
showed results similar to what we’ve seen in
the ballots audited so far?

This is an informally stated question; the precise inter-
pretation is given later in this section.

Thus, as more and more ballots are examined, the
“winning probability” for each candidate, as computed
by the oracle, will vary. Figure 2 of Section 3.1 illustrates
how the estimated winning probabilities might vary with
the number of ballots audited, for an example election.

As the number of audited ballots increases, however,
one election outcome—the correct election outcome—
will see its winning probability increase towards 1.
When its winning probability exceeds a given threshold,
such as 0.95, then the Bayes audit may stop with high
confidence that the correct election outcome has been de-
termined. Otherwise, the audit continues.

As a matter of policy, however, it seems politic to only
stop the election early, before all of the ballots have been
audited, when it is the reported winner whose winning
probability exceeds the given threshold. If some other
election outcome has an estimated winning probability
in excess of the threshold, then the audit process has de-
tected an upset, and the audit may continue, more for
political reasons than for statistical reasons. An elec-
tion official may reasonably require an audit of all of
the ballots in order to overturn the initially reported win-
ner and announce that another outcome is indeed the
correct outcome. The Bayes audit described here takes
this approach: the audit stops early only when the win-
ning probability of the reported winner exceeds the given
threshold. Equivalently, the Bayes audit stops when the
probability of an upset drops below a given upset proba-
bility threshold.

The ability of the Bayes approach to provide an an-
swer to the question, “What is the chance that candidate
X will be the winner if we proceed to a full audit?” dis-
tinguishes the Bayes approach from other post-election
auditing procedures, such as risk-limiting audits. Such
information can be helpful in estimating how close the
audit is to stopping, or to understanding what the initial
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auditing results mean if the audit has to be stopped part-
way through for budgetary or scheduling reasons.

The Bayes audit also provides a framework for sev-
eral auditors to participate, each of whom has a differ-
ent approach to answering the key “winning probability”
question. For example, each candidate might approach
this question with slightly different biases, suspicions, or
prejudices. This variability can be reflected by having
each such auditor use a different Bayesian prior. The au-
dit stops when all such auditors agree to stop. We include
discussion of such multi-auditor methods below, but rec-
ommend only using a single “nonpartisan” auditor.

Relation to prior work on Bayesian audits. Our ba-
sic approach is only slightly new—it follows established
paradigms in Bayesian analysis—for example, see Mee-
den [13], Ghosh and Meeden [4], and Meeden and Sar-
gent [14] for very similar approaches to the auditing of
financial books and other applications; also see Lazar et
al. [8], Ghosh et al. [3].

What is perhaps new here is mostly just the applica-
tion of these methods to post-election audits, and their
experimental evaluation. However, since Bayesian meth-
ods appear to be very effective (see Section 3), and since
Bayesian methods have not (to our knowledge) been pro-
posed before for election audits, it seems worthwhile to
explore the details, pros, and cons of this approach.

Auditing process. A Bayes audit works in a sequential
decision-making manner; Stark [22] gives for a frame-
work for performing post-election audits in this manner.
However, because our approach is Bayesian, our details
differ from his.

Figure 1 presents the Bayes (comparison) audit; the
following section gives a detailed explanation.

Single-ballot auditing. We consider only audits that
examine single ballots one at a time in a randomly cho-
sen order—we call these “single-ballot audits.” Such an
audit operates in stages: the sth stage examines ballot s.

Auditing randomly chosen single ballots may be much
more efficient than auditing randomly selected batches of
ballots (e.g. by precinct, see Stark [18]) but requires (at
least for comparison audits) individual marking of the
paper ballots so that they may be associated with their
scanned representations, an operation that many existing
scanners do not support. Stark [23] gives a framework
for single-ballot audits.

We assume, without loss of generality, that the ballots
are well-shuffled to begin with (equivalently, the ballots
are numbered 1,2, . . . ,n in a random order), so we may
audit ballot 1 first, then ballot 2, up to ballot n if nec-
essary. Of course, a paper ballot and its electronic rep-

resentations are reordered or randomly numbered in the
same way. (See Stark’s site1 for an approach to determin-
ing how to access the ballots in a random order, based on
the use of the cryptographic hash function SHA-256.)

For a comparison audit, after ballot s is audited (i.e.,
after as is determined by a hand examination), the state of
knowledge of the auditor can be represented as follows:

i 1 2 · · · s s+1 · · · n

ri r1 r2 · · · rs rs+1 · · · rn

ai a1 a2 · · · as ? ? ?

(1)

The auditor knows the reported ballot types r[1..n] and
also the sampled actual ballot types a[1..s]; the values
a[s+1..n] are as yet unknown to the auditor. Let Ds de-
note the data available to the auditor after s ballots have
been audited:

Ds = ((r1,r2, . . . ,rn),(a1,a2, . . . ,as)) . (2)

For a ballot-polling audit, we have

Ds = ((a1,a2, . . . ,as)) , (3)

since the reported types corresponding to the actual types
of the audited ballots are not available. (Equivalently,
one could implement a ballot-polling audit within a
comparison-audit framework where one pretends that the
reported ballot types are all equal to some fixed value.)

Note that the auditor knows in either case the reported
tally RRR, and so he knows the reported election outcome
f (RRR).

The auditor does not know the actual tally AAA, and so
he does not know the actual election outcome f (AAA) (typi-
cally, although as s nears n the actual outcome may be no
longer depend on the actual ballot types of the unaudited
ballots).

Stopping. At the end of any stage the auditor may do
one of three things:

• OK: Stop and declare that the reported election out-
come is correct.

• NOT OK: Stop and declare that the reported elec-
tion outcome is incorrect.

• Don’t know yet: Announce that the auditing so far
is inconclusive, and more auditing should be done.

An audit may make errors of two types:

• (False OK) Declaring that the reported outcome is
correct when it is not. We also call this error a mis-
certification.
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• (False NOT OK) Declaring that the reported out-
come is incorrect when it is correct.

We assume an audit may not make “False NOT OK”
errors—the audit must examine all of the ballots before
an output of “NOT OK” is produced.

One may view an audit as testing the hypothesis

H = “The reported election outcome is incorrect.”

(see Stark [22]). Hence a “False OK” error is “False neg-
ative” error, while a “False NOT OK” error is a “False
positive” error.

Risk-limiting audits. An audit is risk-limiting if the
probability (over the random ordering of the ballots and
the random choices of the audit) of a “False OK” error
is at most a pre-specified value α (the “risk limit”); here
α might be 0.01, 0.05, or 0.10. Lindeman and Stark [9]
give an introduction to risk-limiting audits. Bayes audits
are not known to be risk-limiting, although experimental
results make this plausible.

Multiple auditors “The purpose of an election is not
to name the winner, it is to convince the losers that they
lost.” 2

“Indeed, it is often said that the main purpose of elec-
tion fairness is to convince the loser that he or she lost
the election fair and square – winners rarely complain
about the fairness of an election. Perhaps more impor-
tant, these comments apply even more strongly to the
electorate supporting the losing candidate.” 3

In support of this principle, we suggest that post-
election audits might be run in the following manner.
There is at least one nonpartisan auditor N (repre-
senting, say, the election officials) and perhaps several
partisan “auditors” Pk (with one partisan auditor rep-
resenting each candidate, say). The audit proceeds to
examine ballots one by one until all of the auditors are
convinced that the reported outcome is correct (or that
their preferred candidate has lost), or until all of the bal-
lots have been examined. We call such a Bayes audit by
one nonpartisan auditor and one partisan auditor for each
outcome as an N P audit. While our recommend audit
is an N audit (with a single nonpartisan auditor), the
N P audits are nonetheless well-motivated and intrigu-
ing; we study their performance as well.

A post-election audit is an ideal situation for running
multiple Bayesian audits in parallel, since the interests
and prior probabilities of various candidates are likely
not well aligned. The data provided by the sequential
hand auditing of the ballots can be used by all such audi-
tors to determine whether they are “ready to throw in the
towel.” When all do, the audit stops.

Modeling uncertainty; upset probability. The true
values of the actual profile aaa and associated actual tally AAA
are unknown to the auditor. It is reasonable for the audi-
tor to represent this uncertainty regarding aaa after s ballots
have been audited using a probability distribution πs on
Pt,n.

In a Bayesian framework πs might be called a “subjec-
tive probability distribution,” even though “subjective”
seems inappropriate for an entirely mechanical auditing
procedure.

Intuitively, πs(xxx) is the (subjective) probability that the
true profile aaa equals xxx, where xxx = (x1,x2, . . . ,xn), and
where the probability is taken over the various ways the
initial known segment (a1,a2, . . . ,as) may be completed
to yield the actual profile a = (a1,a2, . . . ,an).

Let bbbs be a Pt,n-valued random variable distributed ac-
cording to πs. Likely values of bbbs represent ways of com-
pleting a[1..s] to a profile a[1..n] that seem likely to the
auditor, given what is known so far.

Let BBBs be the corresponding random variable taking
values in the set Tt,n of possible tallies, so that

BBBs = tally(bbbs) .

Likely values of BBBs should represent actual election tal-
lies that seem likely, given what is known so far. We
may say for convenience that both the profile bbbs and its
associated tally BBBs “have distribution πs”; we hope this
causes no confusion.

Finally, likely values of f (BBBs) should represent actual
election outcomes that seem likely, given what is known
so far.

At the end of the sth stage the auditor can compute
from πs the winning probability ws,` for each possible
election outcome ` ∈ [1..M]:

ws,` = Pr[ f (BBBs) = `] .

Let wwws denote the vector of winning probabilities:

wwws = (ws,1,ws,2, . . . ,ws,M) .

Simulation of posterior; estimating winning probabil-
ities. It is important that the auditor be able to compute
wwws (at least approximately), so that the auditor can deter-
mine whether to stop auditing. To do so, it suffices for
the auditor to be able to sample the random variable BBBs
(or equivalently, be able to sample bbbs); the method we
propose makes use of this approach.

One very nice property of this approach is that it does
not restrict the social choice function f in any way. (This
is reminiscent of the way in which bootstrap or other re-
sampling methods may be used to provide estimates of
the sampling distribution of complex statistics.)
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Stopping rule. An auditor might wish to stop auditing
when (1) the estimated probability of an upset becomes
very low, or (2) the estimated probability of his favored
candidate winning becomes very low.

Here “very low” means “at most ε ,” where ε is a value
selected by the auditor. Values such as ε = 0.01, ε =
0.05, or ε = 0.10 might be appropriate for a typical audit.
Here ε corresponds to α in a risk-limiting audit.

Given wwws, the auditor can easily estimate the probabil-
ity us,` of an “upset by `” (where ` 6= f (RRR)) as the proba-
bility of ` winning:

us,` = ws,` ; (4)

and can estimate the overall upset probability

us = Pr[ f (BBBs) 6= f (RRR)]

= 1−ws, f (R)

= ∑
6̀= f (R)

ws,` .

When s = n, the upset probability un is either 0 or 1, as
no uncertainty remains about the unaudited actual ballot
types—there are no unaudited ballots.

We assume that the auditor really cares about either the
overall upset probability us (for a nonpartisan auditor) or
an individual upset probability us,` (for a partisan audi-
tor). Let vs denote the value the auditor cares about; we
may call this a generalized upset probability. (In general,
vs = v(wwws) for a suitable function v.)

The auditor will wish to stop auditing at the end of
stage s if

vs ≤ ε .

That is, the auditor will be willing to stop and accept the
reported election outcome (i.e., say “OK”) when he esti-
mates that the probability that auditing all of the remain-
ing ballots will yield an upset (of the sort cared about)
with probability no more than ε .

For those familiar with auditing methods based on p-
values (e.g., Stark [22]), we have, as Meeden [13] notes,
a situation where “it might be somewhat of a surprise that
the posterior probability studied here behaves approxi-
mately like a p-value.”

Selecting πs. How should the auditor determine the
probability distribution πs on bbbs (equivalently, on BBBs)?
How to determine the probability of an actual profile (or
its tally), given the ballots audited so far (and also the
reported profile, for a comparison audit)?

We recommend a Bayesian approach. That is, πs has
the form of a posterior distribution, given the data Ds
available and a suitable prior π0; the distributions πs fol-
low Bayes’ Rule:

πs(xxx) = Pr[Bs = xxx | Ds] (5)
= const ·Pr[Ds | BBBs = xxx] ·π0(xxx) (6)

Of course, the Bayesian auditor needs to start with a suit-
able prior distribution on profiles (or tallies).

Our recommendation is for a nonpartisan auditor to
start with a prior distribution that is noninformative—it
gives equal prior probabilities to all possible tallies—
while our recommendation for a partisan auditor is to
assume that all unseen actual ballot types favor the au-
ditor’s favored outcome.

Our general approach is then that of Bayesian Sequen-
tial Analysis (see Berger [1, Ch. 7]).

We thus may call our auditors “skeptical Bayesians”
that choose a prior for the Bayesian approach not to be re-
alistic, but to be rather pessimistic (about confirming the
reported outcome). While he is using a Bayesian frame-
work, the choice by N of a noninformative prior helps
to ensure that an incorrect reported election outcome will
not be easily accepted as correct. In this manner we at-
tempt to avoid many of the usual concerns about using
a Bayesian approach arising from the choice of prior. A
partisan auditor Pk doesn’t start with a balanced nonin-
formative prior, but rather a highly unbalanced one that
says, “I suspect my candidate was cheated out of this
election; show me evidence to the contrary!”

Ballot-polling versus comparison audits. The sample
set of s audited ballots are used to form a Bayesian model
that provides a probability distribution πs on the set of
possibilities for the “completed” actual profile—that is,
what the profile would look like if all of the ballots were
audited.

For a ballot-polling audit, the probability distribution
πs is based only on the distribution of actual ballot types
in the sample of audited ballots. A ballot-polling audit is
simpler to describe, so we shall do that first.

For a comparison audit, the probability distribution πs
also depends on the reported ballot types rrr. Comparison
audits are usually much more efficient than ballot-polling
audits, since the actual ballot types are very strongly cor-
related with the reported ballot types. A comparison au-
dit is roughly comparable to t ballot-polling audits, one
for each reported ballot type (although only a single de-
cision is made, not a decision for each reported ballot
type).

As noted, we shall focus first on ballot-polling audits
as they are simpler to describe.

Dirichlet distributions. We choose to use Dirichlet
distributions for the prior probability distribution π0 and
the distributions πs, for four reasons:

• The Dirichlet distributions form a rich class that are
well-matched to our application.

• It is possible to choose a noninformative prior distri-
bution π0 from within this class, that gives all possi-
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ble tallies equal likelihood (for the nonpartisan au-
ditor).

• The Dirichlet distributions are conjugate to the
multinomial distribution, so that the posterior distri-
bution at each step is Dirichlet, given that the prior
is Dirichlet and the data is multinomial. This is ex-
actly our situation (see equation (6)).

• It is possible to efficiently sample from a Dirichlet
distribution (see Appendix A).

A (scaled) Dirichlet probability distribution Dir(ααα,n)
on t distinct possibilities (i.e., of order t) is defined by a
vector of t nonnegative “hyperparameters”

ααα = (α1,α2, . . . ,αt)

and a scale factor n. It is defined on the (t − 1)-
dimensional simplex Tt,n with density function

pDir(xxx) ∝

t

∏
i=1

xi 6=0

xαi−1
i

(where xi = 0 if αi = 0; this is an “improper prior”).
Of special interest is the case ααα = 1t = (1,1, . . . ,1),

when the Dirichlet distribution is uniform; we suggest it
as a prior for the nonpartisan auditor N :

π0 = Dir(1t ,n) ;

this is a common choice when using the Dirichlet dis-
tribution in Bayesian analysis. For example, in an
election of n = 600 votes and m = 3 candidates, a
tally of (200,200,200) is as likely with π0 as one of
(150,392,58), which is as likely as one of (0,0,600),
which is as likely as any other tally.

Of course, choosing a prior is at the heart of a Bayesian
approach, and the use of a prior distribution makes a
Bayes audit not obviously “risk-limiting” in the usual
sense. However, a Bayes audit has a very similar goal:
making the subjective (i.e. posterior) probability of mak-
ing a “False OK” error (an “upset”) less than a given up-
set probability limit ε .

For a partisan auditor Pk , the prior only envisions the
possibility of ballots of a particular actual type k, that is,
the prior has hyperparameters α = (α1,α2, . . . ,αt) where
αk = 1 and α j = 0 if j 6= k. (This is an “improper prior”
because of the zeros, but no technical difficulties arise.)

In any case, we feel it is interesting and perhaps useful
to follow this line of thought to the end, to see what pos-
sible benefits such “Bayes audits” may have, compared
to non-Bayesian risk-limiting audits.

Applying Bayes’ Rule. Because the Dirichlet distribu-
tion is conjugate to the multinomial distribution, apply-
ing Bayes’ Rule is exceptionally simple: if your prior
distribution on the actual tally for a set of n ballots is
Dir(ααα,n), and you draw (without replacement) for a
ballot-polling audit a sample C = (c1,c2, . . . ,cs) of size
s with tally CCC = (C1,C2, . . . ,Ct), then your posterior dis-
tribution on the actual tally for the entire set of n ballots
will be [11]:

πs =CCC+Dir(ααα +CCC,n− s) .

The first term CCC represents the actual tally for the sample;
the second term represents the Bayesian posterior distri-
bution for the tally of the as-yet-unaudited n− s ballots,
where the tally CCC has been simply added to the hyperpa-
rameters for the Dirichlet distribution.

The operation of sampling from a Dirichlet distribu-
tion is standard and quite easy; details of drawing a sam-
ple are given in Appendix A. So the operation of drawing
a simulated tally BBBs

BBBs←CCC+Dir(ααα +CCC,n− s)

can be simulated on the computer numerous times to de-
velop an accurate estimate of the upset probability vs—
the probability that f (BBBs) 6= f (RRR) (for a nonpartisan au-
ditor) or that f (BBBs) 6= ` (for a partisan auditor favor-
ing outcome ` 6= f (R)). Note that the value of C here
is fixed—it is the sample taken—so the repetitions are
merely computational, involving repeated sampling from
Dir(ααα +CCC,n− s) to obtain a simulated tally vector for
the remaining n− s unaudited ballots, which is added to
the vector CCC to obtain a simulated tally BBBs for the entire
n-ballot profile. In particular, the computation of vs for
a given s does not require the examination of additional
ballots by hand.

Comparison audits. For a comparison audit, the re-
ported ballot types help form an “error model” for the
scanning process, as a simple extension of the ballot-
polling procedure described above.

Recall that the “error type” of a ballot with reported
type j and actual type k is the pair ( j,k).

Auditing the first s ballots of the profile determines
the count C(s)

jk of ballots of each error type among these
first s ballots. These counts, together with the prior hy-
perparameters, determine the error model.

This error model will then be used to estimate the
chance that the n− s unaudited ballots, if subject to the
same sorts of errors as seen so far, together with the s
audited ballots (as corrected) will yield a NOT OK judg-
ment (an upset).

The auditor’s prior probability model is fully charac-
terized by t2 positive integer values α j,k, one such pa-
rameter for each error type ( j,k). For the nonpartisan
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Procedure for a Bayes comparison audit
1. [Input reported ballot types] Number the ballots 1,2, . . . ,n in a random order. Let rrr = (r1,r2, . . . ,rn) be the profile of n

reported ballot types (each given as an integer in [1..t]). Let RRR = (R1, . . . ,Rt) denote the reported tally per ballot type. Let
f denote the desired social choice function, and f (RRR) the reported outcome.

2. [Outer audit loop] Let ε denote the desired upset probability limit.
For each s between 1 and n, inclusive:

• Determine actual type as of ballot s by hand examination.

• If s < n and you wish to consider stopping early, or if s = n:

– Compute the “upset probability” vs from rrr and (a1, . . . ,as).
– If vs ≤ ε: Stop and report “OK”.

3. [Upset] Stop and report “NOT OK”.

Procedure for computing upset probability
1. [Compute many simulated outcomes] Compute outcomes for many (e.g. 5000) simulated profiles bbbs generated using

Pólya’s Urn, or (more efficiently) for many simulated tally vectors BBBs generated using Dirichlet.

2. [Return upset fraction] Return the fraction of simulated outcomes that are “upsets”.

Procedure for generating a simulated outcome using Pólya’s Urn
1. [Initialize urns] Create an urn for each reported type j, and add α j,k balls to it of each type k, 1≤ k ≤ t.

2. [Condition by audited sample of size s] For each i, 1≤ i≤ s:

• Add a ball of type ai to urn ri.

• Let bi = ai.

3. [Draw from urns (n− s) times] For each i, s < i≤ n:

• Remove a randomly selected ball from urn ri and let x denote its type.

• Let bi = x.

• Return two balls of type x to urn ri.

4. [Return outcome] Return f (BBBs) where BBBs = tally(bbbs)) and bbbs = (b1,b2, . . . ,bn).

Procedure for generating a simulated outcome using Dirichlet
1. [Generate simulated tally] For each reported type j, compute a simulated tally BBBs, j by sampling from

CCC+Dir(ααα j +CCC,R j−C j)

where CCC = (C1, . . . ,Ct) is the distribution of actual ballot types among the ballots audited so far having reported type j and
ααα j = (α j,1,α j,2, . . . ,α j,t). See Section A.1.

2. [Return outcome] Return f (BBBs) where BBBs = BBBs,1 +BBBs,2 + · · ·+BBBs,t is the overall simulated tally.

Figure 1: A Bayesian comparison audit method for a single auditor with prior hyperparameters α j,k.



auditor N , we propose setting each such hyperparam-
eter to 1:

α j,k = 1 .

We also consider a partisan auditor Pk for each actual
ballot type k, who has α j,k = 1 and α j,k′ = 0 for k′ 6= k.
We let P denote the auditor consisting of all t such par-
tisan auditors, and N P denote the auditor consisting
of the nonpartisan auditor N and all t auditors in P .
All see Section 4.

For each reported type j, then, we have a posterior
probability distribution πs, j on the possible actual tallies
for the set of all ballots of reported type j. For each such
reported type, the posterior distributions are updated just
as for a ballot-polling audit. More precisely, the posterior
for the actual tallies of the ballots of reported type j has
the form

πs, j =CCC j +Dir(ααα j +CCC j,R j−C j) .

where CCC j = (C j,1,C j,2, . . . ,C j,t) is the actual tally vector
for the ballots in the sample of reported type j (which
sums to C j), where R j is the total number of ballots of
reported type j in the entire profile of size n, and C j is the
number of ballots of reported type j within the sample,
and where

ααα j = (α j,1,α j,2, . . . ,α j,t)

are the hyperparameters for the Dirichlet prior distribu-
tion on the actual tallies for the ballots of reported type j.

Since we can sample from these posterior distribu-
tions πs, j for all j, by adding the results together we can
easily obtain a sample from the posterior distribution πs
for the actual tally vector for the entire profile.

Given this ability to sample from πs we can as before
use repeated sampling to compute (accurately estimate)
the upset probability vs.

Determining upset probability. The Bayes audit has
the structure of two nested loops: an outer, “real-world”
loop that is auditing the ballots one by one, and an inner
“simulation” loop that is using Monte Carlo simulation to
estimate the probability that the Bayesian model would
generate an election upset (compared to the originally re-
ported election outcome).

Since computers are fast, and human time is precious,
this seems like a reasonable structure for an audit.

Although the computers are doing Monte Carlo simu-
lation, their use of randomness can be made reproducible
by using deterministic pseudo-random generators based
on a seed generated at the time of the audit that is un-
predictable to an adversary (see [9]). Therefore, all the
computations in a Bayes audit are checkable by others.

The simulations may involve a fair amount of compu-
tation, but not an undue amount for today’s computers;

less than a second of computation is required to estimate
each upset probability. However, this computation is not
something that can be performed reasonably by hand.

Our hope is that the proposed structure and approach
would yield audits that are noticeably more efficient in
terms of the number of ballots that need to be audited
when the reported election outcome is in fact correct.
The next section provides some experimental support for
this goal.

3 Experimental results

This section gives experimental evidence regarding the
effectiveness and efficiency of a Bayes post-election au-
dit.

We start in Section 3.1 with a simple example election,
just to get a feeling as to how the winning probabilities
might evolve in a Bayes audit of a three-candidate elec-
tion with 10,000 voters.

Section 3.2 gives experimental results studying the
miscertification rate of the Bayes audit for a very close
election (10,000 votes with a margin of 2 votes) with an
incorrect reported election outcome. The results show
that the Bayes audit can be effective at controlling the
miscertification rate to a low level.

Section 3.3 compares the efficiency (number of bal-
lots audited) of the Bayes audit to the single-ballot com-
parison audit method of Checkoway et al. [2]. The re-
sults show that the Bayes audit is an order of magnitude
more efficient. (Caveat: the Bayes audit and the Check-
oway method are both post-election audit methods, but
are solving somewhat different problems.)

Section 3.4 compares the efficiency of the Bayes au-
dit to the single-ballot comparison auditing method of
Stark [20] for real election data from Stanislaus Oakdale.
The Bayes audit appears to be somewhat more efficient
(but again, these audits are not solving exactly the same
problem, so it is a bit of apples versus oranges).

Finally, Section 3.5 compares the efficiency of the
Bayes audit to the single-ballot ballot-polling audit of
Stark [21] on real election data from Monterey. The
Bayes audit was several times more efficient (although
this is still apples versus oranges, and may suffer from
small-sample effects).

We find these initial experimental results tremen-
dously encouraging. Further experiements are needed to
assess how well the Bayes audit would do on a larger
variety of election data.

Audit types used in experiments. We consider in our
experiments three types of Bayes audits:

• The nonpartisan auditor N ,
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Winning probabilities vs. sample size in a Bayes audit
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Figure 2: Winning probabilities vs. sample size, for
a three-candidate example election of size n = 10,000,
where candidate 1 received 5000 votes, candidate 2 re-
ceived 4000 votes, and candidate 3 received 1000 votes,
with the N auditor. Candidate 3’s winning probabil-
ity drops to zero after 15 ballots have been audited, and
candidate 2’s winning probability drops below 5% after
55 ballots have been audited, and below 1% once 80 bal-
lots are audited. It is assumed for this experiment that
the actual ballot types are all equal to the correspond-
ing reported ballot types (i.e., there were no errors in the
scanning).

• The collection P of partisan auditors, consisting
of one partisan auditor Pk for each actual type
k. The auditor P stops only when all component
auditors agree to stop. The Pk auditors agree to
stop when they agree that the probability of an upset
is at most ε .

• The auditor N P , consisting of one nonpartisan
auditor N and also one partisan auditor Pk for
each actual type k. As with P , the auditor N P
stops only when all component auditors agree to
stop. The auditor N P is just the union of the
auditor N and the auditors in P .

The Python software we used for these experiments,
or for running additional experiments, is available from
the authors.

3.1 How subjective winning probabilities
change with sample size

This section illustrates how the subjective winning prob-
abilities evolve as the sample size grows, using as an ex-
ample a three-candidate plurality election with no errors,
with candidate 1 receiving 5000 votes, candidate 2 re-
ceiving 4000 votes, and candidate 3 receiving 1000 votes
(a total of n = 10,000 ballots). The N prior was used.

Figure 2 illustrates how the winning probabilities

Actual type
Reported type 1 2

1 4999 2
2 0 4999

Table 1: Example two-candidate election used to evalu-
ate miscertification rates.

ε N P N P
0.00 0.008 0.002 0.003
0.01 0.037 0.015 0.015
0.02 0.042 0.037 0.035
0.05 0.075 0.042 0.042
0.07 0.099 0.042 0.042
0.10 0.103 0.078 0.085

Table 2: Miscertification rates for various ε and Bayes
audit types N , P , N P , on the election of Table 1.

evolve as the sample size grows. We observe that these
probabilities have large fluctuations for very small sam-
ple sizes but converge nicely as the sample size grows:
to 1 for candidate 1, and to 0 for candidates 2 and 3.

3.2 Miscertification Rate
We experimentally evaluated how the miscertification
rate of a Bayes comparison audit compares with the upset
probability limit ε . We used the example election shown
in Table 1.

The reported totals are 5001 votes for candidate 1 and
4999 for candidate 2, so candidate 1 is the reported win-
ner. There were 2 votes for candidate 2 that were misre-
ported as votes for candidate 1, so candidate 2 is the ac-
tual winner. (Of course, for an election with such a small
reported margin of victory, a full hand count would in
any case be a good idea!)

For each of five different values of upset probability
limit ε , and for each auditing type N , P , N P , we
counted the number of miscertifications (i.e., the number
of times the audit declared the election outcome “OK”)
out of 1000 trials. See Table 2.

Thus, we observe that the empirical miscertification
rates are roughly equal to the upset probability limit ε .
We ran similar experiments on several other elections, in-
cluding those used to test miscertification rates in Check-
oway et al. [2], and obtained similar results: the empiri-
cal miscertification rate was usually less than or close to
the upset probability limit ε .

We leave proving or disproving the following conjec-
ture as a very interesting open problem.

Conjecture 1 There is a small positive constant c such
that for any election and for any ε > 0, a Bayes audit
with upset probability limit ε is a risk-limiting audit for
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Reported Actual type
type 1 2 3

1 0.1n 0 0
2 0 (0.45−m/2)n 0
3 0 0 (0.45+m/2)n

Table 3: Checkoway example, with n = 10,000 ballots
and margin m varying between 0.5% and 5%.

Number of ballots examined
Margin m Checkoway N P N P

0.005 22,080 2000 2850 2940
0.010 10,949 921 1950 1900
0.015 7099 627 745 745
0.020 5022 486 590 581
0.025 3839 398 473 475
0.030 3206 325 400 400
0.035 2740 297 343 345
0.040 2391 273 300 300
0.045 2110 218 298 290
0.050 1889 203 274 258

Table 4: Average number of ballots audited for election
given by Table 3, compared to Checkoway et al. [2].

risk limit α = c ·ε . That is, for any election where the re-
ported outcome is incorrect, the probability that a Bayes
audit will miscertify the election is at most c · ε .

3.3 Comparisons with Checkoway et al. re-
sults

This section compares the efficiency of a Bayes audit
with that of the single-ballot audit method of Checkoway
et al. [2]. We use the same elections as [2], shown in Ta-
ble 3. The elections have two candidates (2 and 3), and
undervotes (candidate 1). Each election had n = 10,000
ballots, while the margin m varied between 0.5% and 5%.
We measured the efficiency of a Bayes audit, in terms of
the average number of ballots examined in order to com-
plete an audit for an upset probability limit ε = 0.01, av-
eraged over 100 simulated audits. We compared these
numbers to the average number of ballots examined in
an audit by Checkoway et al. for a risk limit α = 0.01,
averaged over 1000 simulated audits.

See Table 4. (Note: the number of ballots for Check-
oway et al. for m = 0.015 was estimated by linearly
interpolating between the numbers for m = 0.01 and
m = 0.02.) We see that Bayes auditing is significantly
more efficient than the method of Checkoway et al., re-
quiring almost 10 times fewer ballot to be examined, for
the election given in Table 3.

We also ran similar experiments comparing the effi-
ciency of Bayes auditing to Checkoway et al., for the

three other error models in [2]. The results are very sim-
ilar to those presented above, and thus are omitted for
brevity.

3.4 Comparison with Stark’s single-ballot
audit

We compare the efficiency of the Bayes single-ballot
comparison audit N to a single-ballot method of Stark
for the 2011 Stanislaus Oakdale Measure O Election,
which Stark audited as part of the AB 2023 pilot [20].
There were 1728 reported “Yes” votes, 1392 “No” votes,
and 32 undervotes. For our purposes, we ignore under-
votes. Stark’s audit at α = 0.10 examined 49 ballots [20].
The Bayes audit method N , at an upset probability
limit of ε = 0.10, over 100 simulated audits, examined an
average of 92 ballots, and a median of 39 ballots. Thus,
Bayes auditing appears approximately as efficient than
Stark’s audit. (These results are difficult to compare,
since our results are for 100 trials, while Stark’s actual
result was only for the single actual case; the variance
of his method, over different possible sampling results,
may be high, as was ours. Moreover, it isn’t clear what it
means to compare an ε of 0.10 in our case with an α of
0.10 in his.)

Further study is needed to more fully understand the
relative efficiency and effectiveness of Bayes audits and
existing risk-limiting audits.

3.5 Comparison with Stark’s ballot-polling
audit

We compare the efficiency of the ballot-polling variant
of the Bayes ballot-polling audit method (with audit type
N ) to that of Stark’s ballot-polling audit on the 2011
election for Monterey Peninsula Water Management Dis-
trict Director, Division 1 [21]. There were two candi-
dates, Lewis and Mancini, and write-ins. The reported
totals were 1353 votes for Lewis, 742 votes for Mancini,
13 write-ins, and 3 undervotes or overvotes. Stark’s audit
ignored undervotes and overvotes, and treated Mancini
and write-ins as one candidate with a reported total of
755. Stark’s audit looked at 89 ballots to complete an
audit with a risk limit of 10%. The expected number of
ballots for his method to examine, if there were no errors
in the reported data, is 58, according to Stark [21].

We ran the Bayes ballot-polling audit method on the
above data, ignoring under- and over-votes, treating
Mancini and write-ins as one candidate, and assuming
the reported data to be error-free (a reasonable assump-
tion, given that Stark’s single-ballot audits have never
found any discrepancies).

For an upset probability limit ε of 10%, over 100 trials,
the Bayes audit examined an average of 23 ballots, and
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a median number of 11 ballots. Thus, with similar pa-
rameters the Bayes audit method examined fewer ballots
than both the actual and the expected number of ballots
examined using Stark’s method.

4 Extensions and Variations

Multiple priors; other priors. One could use other
priors different than, or in addition to, the priors N and
Pk described above.

For example, one could set α j,k = 0.1 for all j,k; this
would decrease the significance of the prior relative to
the audit data, while still asserting that all error types are
possible.

One could also consider a prior where correct machine
operation is believed to be more likely than incorrect op-
eration, so that α j,k = 1 if j = k but α j,k = 0.01 if j 6= k.

However, we fear that a prior that places too much be-
lief in the correct operation of the machine may give mis-
leading results exactly when the machine is misbehaving.

So, for now we prefer the prior N with α j,k = 1
for all j,k. We believe that this prior will tend to give
reasonably conservative results, possibly requiring more
ballots to be audited than a more “realistic” prior. This
conservatism is appropriate for an adversarial situation,
such as our situation. The auditor method N P is by
design even more conservative. One could even envis-
age priors N (c) or N P(c) which are just like N
and Pk except all hyperparameters are multiplied by a
constant c > 1.

As noted, for simplicity we suggest using the Bayes
audit N for now, but further research may suggest the
advisability of using other or additional priors.

Voting systems other than plurality. The Bayes audit
method applies as well to other voting methods, as long
as t is not too large.

We have tested Bayes audits on the following voting
systems, in addition to plurality: IRV, Borda, Schulze,
minimax. These are ranked-choice voting systems, so
the test data was for m = 3 candidates, giving a total of
t = 3! = 6 ballot types. No problems were noted, and the
audit method seemed to work well (details omitted here).

If t becomes very large for a voting system, then mod-
ifications to the Bayes approach suggested here might be
workable. But this is future research, and we do not ex-
plore such possibilities further here.

Multiple contests. Bayes audits can be applied in a
straightforward manner to auditing multiple simultane-
ous contests. Ballots can be selected in a random order
and examined by hand if and only if the audit for any
of its contests is still in progress. The auditing for any

individual contest can cease once the audit develops suf-
ficient confidence in the reported election outcome for
that particular contest, independent of what happens in
the other contests.

Separating by reported ballot type. A Bayes audit
can also be performed by separating the ballots into piles
according to reported ballot type, and having auditing for
each pile proceeding at its own rate, since the error model
evolves separately for each reported ballot type. (Details
omitted.)

Parallel with another method. Note that the Bayes
audit computations can be done in parallel with any other
single-ballot audit, say as a pilot. The data being input to
both methods would be the same; the interesting question
would be which method recommends stopping first.

5 Discussion

A Bayes comparison audit does not require the computa-
tion of a “margin of victory” in order to get started. This
is particularly helpful for voting systems other than plu-
rality, where the computation of a margin of victory may
be difficult [12, 25].

We note that a Bayes audit may also be “risk-limiting”
in the standard sense [9]; we leave this as a fascinating
open question (Conjecture 1); perhaps the most interest-
ing open question in this paper.

A Bayes audit is very nicely sensitive to any regular-
ities in the errors seen. For example, if votes for Alice
and for Bob are always switched, and votes for Charlie
are frequently scanned as votes for David, but not the
reverse, then our error model will take such regularities
into account. This is not easy to do with many other au-
diting methods.

A nice feature of a Bayes audit is that you always have
a (Bayesian) estimate of the likelihood that there will be
an upset. Thus, you can decide whether to switch over
to a more efficient method for counting all of the ballots,
rather than the continuing with the single-ballot audit, if
the upset probability is large. You also have an estimate
as to how things look, if you have to stop auditing earlier
than one might like (e.g. for budgetary reasons).

You also have at each stage a (“subjective”) estimate
of the probability that each candidate would win if the
auditing “continues in more the less the way it has been
going so far.” This might be useful in situations where
the auditing budget is limited, but candidates could pay
out of pocket for additional auditing.

Can this work be extended from single-ballot auditing
to auditing by precincts? The handling of such “stratifi-
cation” is an interesting open problem.
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It would also be of interest to extend the Bayesian ap-
proach to elections with many more ballot types (e.g.
ranked-choice ballots on 20 candidates).

It also seems possible (although computationally a bit
expensive) to extend this approach to be able to estimate
the amount of additional auditing to be expected (details
omitted here).

6 Conclusions

We have presented Bayesian methods for conducting
single-ballot post-election audits. These methods are at-
tractive for the following reasons:

• A Bayes audit appears to have very well-controlled
and small miscertification rates.

• The efficiency of Bayes audits appears to be ex-
tremely good (in the sense that very few ballots need
to be examined by hand during a Bayes audit).

• A Bayes audit is very simple in structure, and is eas-
ily implemented.

• A Bayes audit is applicable to both comparison au-
dits and to ballot-polling audits.

• A Bayes audit is based on well-understood tech-
nology (Bayesian statistics, Dirichlet distributions,
etc.).

• A Bayes audit does not require the computation of
a margin of victory in order to get started.

• A Bayes audit is very flexible, and can be applied to
any voting system, as long as the number of ballot
types is not too large.

• A Bayes audit returns meaningful results—the es-
timated probabilities that each possible outcome is
in fact the correct outcome—even when the audit is
stopped early.

• A Bayes audit can accommodate multiple auditors,
each with his own prior.

On the other hand, the Bayes audit method has the fol-
lowing possible shortcomings:

• It is not (yet) known how to apply Bayesian tech-
niques to auditing “by precincts” (non-single-ballot
auditing); single-ballot auditing is required.

• The relationship of Bayes audits to risk-limiting au-
dits is unclear. While we conjecture that Bayes au-
dits are in fact risk-limiting, this is only a conjecture
at this point, although our experimental evidence
supports this conjecture.

• As with all Bayesian methods, the results depend to
some extent on the choice of the prior.

• The computations required during the audit are suf-
ficiently extensive that they can not reasonably be
done by hand; a computer program is required dur-
ing the audit to compute the “winning probabili-
ties.”

• While the average or median number of ballots ex-
amined may be quite low, the variance may be fairly
high.

• While Bayesian methods are frequently used and
well understood in other fields, their use in post-
election audits is still nascent, and better-tested
methods (such as risk-limiting post-election audits)
are available.

• A number of states are beginning to draft legislation
that specifies certain forms of post-election audits
(such as risk-limiting audits); a Bayes audit may not
qualify.

Further study is needed to clarify the comparative ad-
vantages and disadvantages of Bayes audits relative to
other methods, such as risk-limiting audits, but we sus-
pect that for practical purposes the differences between
Bayes audits and risk-limiting audits may not be large;
perhaps Bayes audits will turn out to be slightly more
efficient.

For election officials trying to figure out which audit-
ing method to use, the most important question is al-
most certainly “Are you auditing your elections?” and
not “Which auditing method are you using?”
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A Appendix. Sampling the Dirichlet and
Pólya Distributions

We give two methods for sampling from the poste-
rior distribution; the first samples from the (scaled and
shifted) Dirichlet distribution:

πs =CCC+Dir(ααα +CCC,n− s) (7)

given a tally CCC = (C1,C2, . . . ,Ct) for a sample C of size s
from a population of size n, where ααα = (α1,α2, . . . ,αt)
is the hyperparameter vector for the prior distribution π0;
the second method samples from the (equivalent for our
purposes) Pólya-Eggenberger distribution.

A.1 Sampling with Gamma variates.
This is the most efficient procedure, and is recom-
mended. It is slightly less exact than the Pólya’s Urn
method, as it yields simulated tallies that sum to n but
which need not be integers. We feel this difference is
inconsequential.

Let Yk have distribution Gamma(αk +Ck,1) for k =
1,2, . . . , t, and let Zk =Yk/Y for k = 1,2, . . . , t, where Y =

∑
t
k=1 Yk. Let

Bk = Ck +(n− s)Zk

BBBs = (B1,B2, . . . ,Bt) .
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Then BBBs has the desired distribution (7). Wikipedia4

gives Python code for generating a Dirichlet distribution
this way in time O(t).

A.2 Simulation with Pólya’s Urn.

Urn models are well studied; see for example Johnson et
al. [7], Grendar et al. [5], or Johnson et al. [6].

A Bayes audit may use the lovely simulation proce-
dure provided by sampling from Pólya’s Urn for ex-
act posterior distribution sampling. The simulated tally
counts will be integers and the distribution is exactly the
desired posterior. The method is efficient, but not as effi-
cient as the Gamma method—the running time is O(n)
rather than O(t). The distribution this procedure pro-
duces, aside from having support on sequences of inte-
gers rather than sequences of reals, is essentially indistin-
guishable from the corresponding Dirichlet distribution
with the same hyperparameters (see references from [7,
p. 196]).

A Pólya-Eggenberger distribution PE(ααα,n) is a dis-
tribution on [0..n]t determined by the following proce-
dure. (This is the most basic PE model.) Here ααα =
(α1,α2, . . . ,αt) is a sequence of t positive integers whose
sum is α .

• An urn is initialized to contain αk balls of color k,
for k = 1,2, . . . , t.

• For n times in a row, a ball is drawn at random from
the urn, then returned to the urn, along with a sec-
ond ball of the same color.

• Output XXX = (X1,X2, . . . ,Xt), where Xk is the number
of balls drawn of color k; the elements of XXX sum
to n.

This randomized procedure defines a probability distri-
bution on [0..n]t ; so PE(ααα,n)(XXX) denotes the probability
that the above PE procedure yields XXX .

Here is an equivalent description. Place in a row an
initialization sequence of α balls, with αk balls of each
color k. Next, for n times, place a new ball at the right
end of the row, where the new ball has the same color as
a randomly chosen ball to its left.

For example, if we have t = 3 colors A,B,C , with
ααα = 1113 = (1,1,1), we might obtain for n = 6

A B C | B A A C B A (8)

where “|” separates the initialization sequence of length
a = 3 from the n = 6 subsequent draws. We obtain color
counts XXX = (3,2,1).

This procedure has been thoroughly analyzed, and the
PE distributions are well understood [7, Ch. 4].

The most important (and surprising!) property of
the PE urn model is exchangeability: the probability of
drawing a given sequence of colors depends only on the
number drawn of each color, and not on the order in
which they are drawn—all permutations of a given se-
quence are equally likely [7, p. 97]. This is true even
though the draws are not independent.

The probability of a given distribution XXX of colors
drawn is:

PE(ααα,n)(XXX) =
n!

∏
t
k=1 Xi!

· ∏
t
k=1 α

[Xk]
k

α [n]
(9)

where
x[y] = x · (x+1) · · ·(x+ y−1)

is the “rising factorial” notation [7, p. 195].
An important special case is when ααα = 111t =

(1,1, . . . ,1); then we obtain a uniform distribution over
all possible sequences XXX of t nonnegative integers sum-
ming to n.

The expected number E(Xk) of balls drawn of color k
is (αk/α) · n. As the αk’s increase, the Xk concentrate
around their expected values.

Looking now to our inference problem, we see that
there is a duality between Pólya’s urn procedure, which
can grow an urn of initial size s to one of size n, and a
sampling procedure that can produce a sample of size s
from a population of size n.

Suppose from an urn of n balls with color counts nnn =
(n1,n2, . . . ,nt) we draw without replacement a sample SSS
of size s < n: SSS = (x1,x2, . . . ,xs). Let sss = tally(S) =
(s1,s2, . . . ,st).

We are now interested in the “inverse of sampling”—
inferring what we can about nnn from sss. Of course, there is
uncertainty, so it is natural (for a Bayesian!) to represent
this uncertainty as a (subjective) probability distribution
for nnn. Särndal [16, 17] studies this inference question,
but without reference to the Pólya-Eggenberger distribu-
tions.

Let PE(ααα,n|sss) denote the probability distribution
PE(ααα,n) conditioned on having the first s outputs have
tally sss.

Theorem 1 Given the above sampling process result-
ing in a sample with tally sss, and a prior distribution
PE(ααα,n), the posterior distribution on the original tally
nnn is PE(ααα,n|sss).

That is: drawing a sample from the original urn (dis-
carding n−s randomly drawn balls one by one until only
s are left) is nicely “inverted” (in a Bayesian sense) by
the following Pólya urn process (adding balls one by one
until you have added n− s balls):

1. start with α balls, with αk of each color k,
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AB | BB | AA (2A,2B) (1/4) · (2/5) = 1/10
AB | BB | AB (1A,3B) (1/4) · (3/5) = 3/20
AB | BB | BA (1A,3B) (3/4) · (1/5) = 3/20

AB︸︷︷︸
t

| BB︸︷︷︸
s

| BB︸︷︷︸
n−s︸ ︷︷ ︸

n

(0A,4B) (3/4) · (4/5) = 6/10

Figure 3: s= 2 balls are drawn without replacement from
an urn of n = 4 balls of t = 2 possible colors (A,B). Both
balls drawn are color B. The PE process gives probability
1/10 to the original tally (2A,2B), 3/10 to tally (1A,3B)
(arising in two ways), and 6/10 to (0A,4B). The table
shows the initial sequence A B, the sample B B, the re-
maining two balls, and the probability that the PE process
selects the two remaining balls to be as shown.

2. add the s balls (x1,x2, . . . ,xs) from the sample,

3. add n−s more balls xs+1,xs+2, . . . ,xn, each of which
has the color of a randomly selected ball already in
the urn at that time.

The output is XXX = tally((x1,x2, . . . ,xn)), which has dis-
tribution PE(α,n|sss). This procedure is efficient, taking
time O(n).

Graphically, following the style of the example (8),
and assuming ααα = 111t :

1 2 · · · t︸ ︷︷ ︸
t

|x1 x2 · · · xs︸ ︷︷ ︸
s

|xs+1 xs+2 · · · xn︸ ︷︷ ︸
n−s︸ ︷︷ ︸

n

; (10)

Proof: The exchangeability property yields the proof:
since any permutation of a sequence (x1,x2, . . . ,xn) is
equally likely according to prior PE(ααα,n), considering
sequences starting with the desired sample yields the de-
sired conditioning.

See Figure 3 for an example.
The key point is that it is easy to sample from the dis-

tribution PE(ααα,n|sss) by sampling the expression

sss+PE(ααα + sss,n− s) .

The sample can be viewed as “part of the prior” for the
remaining n− s elements, but the sample tally is also
added in as part of the final tally, since we want a dis-
tribution on length-n sequence tallies and not on length-
(n− s) sequence tallies.
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