A New Approach to Unsupervised Learning
in Deterministic Environments

RONALD L. RIVEST (rivest@theory.lcs.mit.edu)
ROBERT E. SCHAPIRE ' (rs@theory.lcs.mit.edu)
MIT Laboratory for Computer Science, Cambridge, Mass. 02139

Abstract

We present a new approach to the problem of inferring the structure of a deterministic finite-state
environment by experimentation. The learner is presumed to have no a prior: knowledge of the
environment other than knowing how to perform the set of basic actions and knowing what elementary
sensations are possible. The actions affect the state of the environment and the sensations of the
learner according to deterministic rules that are to be learned. The goal of the learner is to construct
a perfect model of his environment — one that enables him to predict perfectly the result of any
proposed sequence of actions.

Our approach is based on the notion of a “test”: a sequence of actions followed by a predicted
sensation. The value (true or false) of a test at the current state can be easily determined by executing
it. We define two tests to be “equivalent” if they have the same value at any global state. Our
procedure uses systematic experimentation to discover the equivalence relation on tests determined by
the environment, and produces a set of “canonical” tests.

The equivalence classes produced correspond in many cases to a natural decomposition of the
structure of the environment; one may say that our procedure discovers the appropriate set of “hidden
state variables” useful for describing the environment.

Our procedure has been implemented, and appears to be remarkably effective in practice. For
example, it has successfully inferred in a few minutes each the structure of Rubik’s Cube (over 10'°
global states) and a simple “grid world” environment (over 10! global states); these examples are
many orders of magnitude larger than what was possible with previous techniques.

1. Introduction

1.1 Unsupervised Learning of Environments

We address the learning problem faced by a robot in an unknown environment.
The robot and the environment form an interacting system (see Figure 1): the actions
chosen by the robot are inputs to the environment, causing it to change state, and
the state of the environment determines the sensations experienced by the robot.

A newly created robot may have little built-in knowledge of its environment. (To
coin a term, we use “newbot” to denote a newly created robot with little or no
experience and knowledge about its environment; the term robot is generic.) In our
case we assume that a newbot knows how to perform basic actions and can experience
elementary sensations, but no more.

At each point in time the environment is in some (global) state; we denote the set
of all possible such states by Q. In this paper we assume that Q is finite.

We also assume that the set B of basic actions is a finite, relatively small set.

Unsupervised Learning 9

Actions

Robot . Environment
Sensations

Figure 1: The Robot-Environment System

If the robot performs a basic action a € B the environment makes a transition
from its current state q to a new state ¢’ = 6(g,a); here é is the (deterministic)
transition function for the environment.

For convenience, we define the set A to be the set of all actions; where an action
is defined to be a sequence of zero or more basic actions. We similarly extend the
interpretation of § so that &(g,a) is the environmental state resulting from executing
the action a (i.e., executing the basic actions of a in sequence).

We assume that the robot has a finite set S of senses. Think of a sense as a
sense modality, such as vision, hearing, touch, etc. Each sense has a corresponding
sensor which “reads” or “senses” the value of that sense. We call the values returned
by the sensor “sensations”. We let V' denote the set of all possible sensations, and
assume that different sensors can not return the same sensation. As an example, one
sensation might be “a tone of 1000 hertz”; another might be “a temperature of 68
degrees”. These would be returned by audio and temperature sensors, respectively.
(Note that if we wish to model the perception of several tones of different frequencies
simultaneously, we would call each such tone a “sense”, which returned a sensation
of “present” or “absent”.) In what follows we will regard each sensation as a bi-
nary predicate of the current environment, although in practice (as in some of our
implementation examples) the more general notion of a sense may be useful.

Abstractly, the situation a newbot faces is exemplified in Figure 2; the newbot
has one button to push for each basic action a € B, and one light for each sensation
v € V. At each moment a subset of the lights will be on, indicating which sensations
obtain in the current global state.

The goal of the newbot is to learn enough about his environment to build a perfect
model of it. We say that a robot has a perfect model of its environment if it can
predict perfectly what sensations would result from any desired sequence of basic
actions. Having a perfect model is clearly useful for planning, although we do not
address planning in this paper.

We would like to point out one realistic feature of our model: there is typically no

Unsupervised Learning 3

Sensations

a1l a2 a3 a4d
Actions

Figure 2: The Buttons and Lights Model

“reset” or “undo” buttons available to the robot — the actions of the robot have a
cumulative effect on the global state.

Also, there is no teacher. The robot is engaged in unsupervised learning.

Finally, we note that while the robot may indeed converge on a perfect model of
its environment, it might never be certain that its model is perfect — the fact that the
model has been predicting perfectly for a while is no guarantee that it will continue
to do so. Of course, this is the standard problem with induction.

1.2 An Example: The Little Prince’s Planet

As a concrete example, consider a newbot just delivered to the “Little Prince”
(Saint-Exupery, 1943) on his home planet (an asteroid, really). This planet has a
rose and a volcano, which the newbot can see when he is next to them; the available
sense values are v = “See Volcano” and r = “See Rose”. The planet is very small —
it takes only four steps to go all the way around it. The basic actions available to
the newbot are £ = “Step Forward”, b = “Step Backward”, and t = “Turn Around”.
See Figure 3. In the state shown, the robot has no sensations, but he will see the
volcano if he takes a step forward, and will see the rose if he takes a step backwards
(or turns around and takes a step forwards). There are eight (global) states: the robot
can be facing clockwise or counterclockwise, and can be in one of four positions. By
symmetry of the North and South Poles, however, there are only four states in a
reduced sense.

1.3 Previous work

Our learning problem can be viewed as the problem of inferring a finite automaton

Unsupervised Learning 4

‘7
’

N

/7
Y
AN

s

LS
AYANENENEN
NS ’
III\I /\I\I\I >
AT S S8 8%e
~ ~ § 7 s 4 4
7

’

~
N\
N
AN
AN

S
‘7

‘N
7z 7
AY
7z 7
Ay

N
Y
Ay
~
AN

’

A4
N

N
Y
N
Y

N
LS
N\

N
,
~
s’ 2
N

’

¢ 7
N
N\

‘.

Y
Ay
~

’
s ¢ s
Y

Y
P AN

’

Figure 3: The Little Prince’s Planet

from its input/output behavior. Angluin and Smith (1983) give an excellent overview
of the field of inductive inference, including a discussion of this problem. The following
previous works were particularly inspirational to us.

e Gold (1972) gives an algorithm for inferring a machine from a sample of its
input/ouput behavior. Angluin (1986) elaborates this algorithm to show how
to infer an automaton using active experimentation with the automaton, and a
“teacher” who can provide counterexamples to incorrect conjectures.

 Angluin (1978) and Gold (1978) prove that finding an automaton of n states
or less agreeing with a given sample of input/output pairs is NP-complete.
(We note that the concern here is with the number of states in the inferred
automaton, and that the data is given — the inference algorithm does not have
access to the automaton).

® Angluin (1982) shows how to infer a special-class of finite-state automata, called
“k-reversible” automata, from a sample of its input/output behavior.

2. Our Inference Procedures

2.1 Tests

The notion of a test is essential to the development of our work: a testis an element
of T = AV = B*V; that is, a (possibly empty) sequence of actions a € A followed by
a (predicted) sensation v € V. We say that a test ¢ = av holds or is true at a given
state ¢ if sensation v obtains in the state ga reached by executing action (sequence)

Unsupervised Learning 5

a € A starting in state g. We denote the value (true or false) of test ¢ in state ¢ as
qt.
For example, for the state shown in Figure 3, the test £v is true: if the robot steps

forward he will see the volcano. Similarly, the test btffv is true, while the tests r,
bbtv, and bv are false.

(In some of our procedures, we generalize the notion of a “test” to include sequences of
the form AS: a sequence a € A of actions followed by a sense s € S. In this case the value of a
test ¢ = as at a given state ¢ (which we denote gt) is not true or false, but rather the element
of V that the selected sensor s yields in the state ga. This “extended test” variation does not
affect our theory very much, but does provide some practical benefits in certain cases.)

There are an infinity of tests in T' = AV; to say that the robot has a perfect
model of its environment is to say that it knows the value of each test in 7' — that
is, it knows what sensations would result from any sequence of actions. How can this
knowledge be obtained and represented?

2.2 Equivalence of Tests

We say that tests ¢ and t' are equivalent, denoted ¢t = ¢/, if they yield the same
result from any state: (Vg € Q)(qt = gt’).

We observe that if the number |Q| of global states is finite, then the number of
equivalence classes of tests is also finite. This number, which we call the diversity of
the environment and denote by D, is at most 29!, and may be as small as log,(|Q|).
(Proofs omitted; see Rivest and Schapire, 1987.) We have discovered that for many
“natural” environments the diversity is actually much smaller than the number of
states. Our aim is thus to design representations and procedures whose cost is poly-
nomial in the diversity, rather than the size of the environment.

For the environment of asteriod B-612 (ref. Figure 3) there are four equivalence
classes of tests:

e v=tv=~ffr=fbv=~Fftfv=...
e r=tr=ffv=~fbr=£ftfr=...
o fv=tfr=br=tbv=...
e fr=tfv=>bv=tbr=....
We can thus select as “canonical” the tests
1. v: do you see a volcano?,
2. r: do you see a rose?,

3. fv: if you step forward will you see a volcano?, and

4. fr: if you step forward will you see a rose?.

Unsupervised Learning 6

bfv=v | | ffv=r | | tiv=fr bfr=r | | ffr=v

Figure 4: The Forest of Tests

Any other test will be equivalent to one of these; thus, knowing the values of these
four tests is sufficient to predict the value of any other test. Knowing the values of _
these tests determines what the global state is, as far as possible (in this world none
of the available tests allow you to tell if you are at the North or the South Pole).

Although this example is very simple, we see that the equivalence classes corre-
spond to the natural state decomposition; it is important to know if you are at the
rose or at the volcano, and (if not) whether you are facing the rose or the volcano.

A nice feature of this approach is that it allows the robot to create a model which
consists of independent parts, which are independently testable. (This is reminiscent of
Shapiro’s (1981) work.) In our case, the independent parts are elementary statements
of equivalence between two specified tests.

Let < denote the ordering relation between tests defined as follows: we say ¢ < ¢
if ¢ is shorter than ¢’ or if they are of the same length but ¢ precedes ¢’ in the usual
alphabetic ordering (using some standard ordering of the symbols in B and V).

Let (t) denote the least (in the sense of <) test in the equivalence class containing
test ¢; we say that (¢) is the “canonical” test in its class. For example, (ffr) = v.

Using this ordering of tests and definition of canonical, it is easy to prove that if
t is canonical, then so is any non-empty suffix of ¢. Putting it another way, if ¢ is
non-canonical then so is zt, for any sequence of actions ¢ € A. (Note that if ¢ = (¢)
then zt = z(t).)

If t = at’ is non-canonical (where a € B), but ¢’ is canonical, we say that ¢ is square;
square tests are the minimal non-canonical tests. Each square test will be equivalent
to some canonical test; discovering the set of canonical tests and the square-canonical
equivalences is the goal of our inference procedure.

It is convenient to draw the set of canonical and square tests in the form of a
forest, as illustrated in Figure 4. There are as many trees as elementary sensations

Unsupervised Learning | 7

Figure 5: The Update Graph

(each sensation is the root of a tree), and the children of a test ¢ are tests of the form
at for a € B. The square tests form the leaves of the tree, and arrows (omitted from
the figure) may connect a leaf ¢ with its canonical form (¢).

As another means of representing the test classes, we may build a graph, as in
Figure 5, in which each vertex is a canonical test, and an edge labeled a € B is
directed from (t) to (t') if ¢ = at’. We call this the update graph of the environment.
The update graph may alternatively be derived from the forest of tests described
above by directing each tree edge up, and merging each square test with its equivalent
canonical test.

We associate with each vertex (t) its value in the current state . When action
a is executed, the value of each vertex is passed along each outgoing edge labeled a
yielding the new value of each test in state ga.

Similarly, in the forest of tests, we again associate with each test its current value.
Under action a, the new value of each canonical test is received from below along
branch a, while each square is assigned the new value of its equivalent canonical.

In both Figures 4 and 5, the borders of the square and canonical tests which are
true in the current state depicted in Figure 3 have been darkened.

2.3 Simulation and Prediction

The following theorem states that to have a “perfect” model (in the sense of being
able to correctly predict the results of any sequence of actions), it suffices to know
the canonical tests, their current values, and the relationship between the square tests
and the canonical tests.

Theorem 1 To simulate an environment it suffices to know:

1. The set of canonical tests.

Unsupervised Learning 8

2. The value gt of each canonical test t at the current state q.

3. For each square test s in S, the test (s).

Proof: Suppose a transition is made from state g to state ga, for some a € B. We
need to compute (ga)t = g(at) for each canonical test t. However, the test at is either
canonical or square, so that in either case the canonical test u = (at) is known. By
assumption, we know qu; this is the desired value of (ga)t. ®

2.4 A Simple Inference Procedure

The simplest version of our inference procedure can be described as follows, using
a subroutine (not described here) for determining if two tests are equivalent:

1. Begin with W (the set of tests to be examined) equal to V (the set of elementary
sensations), and C (the set of tests known to be canonical) and SQ (the set of
tests known to be square) equal to the empty set.

2. If W is empty, stop. Otherwise remove from W the least test ¢ (under the
ordering <).

3. If t is equivalent to any test u € C, place t in SQ, record that (t) = u, and
return to step 2.

4. Otherwise, add t to C, for each a € B place the test at in W, and return to
step 2.

When this program terminates, it has gathered all of the information needed for
the simulation theorem; it has a “perfect” model.

We claim that the number of equivalence tests performed by this algorithm in
step 3 is polynomial in the diversity D of the environment. More specifically, it is at
most D - (D + D - |B|). (Note that C' can contain at most D tests, and no more than
D canonical and D - |B| square tests can be added and extracted from W; as each
test is removed from W, it may be compared in step 3 to all the tests in C.)

2.5 Determining Equivalence of Tests

Now for the final step: how can we tell if two tests are equivalent? The key
difficulty here is that we have no “undo” operator, so that we can’t check whether
gt = gt’ by executing test ¢, backing up to state ¢, and then executing test t’. We need
to know whether gt is true or false without actually ezecuting it, so we can execute
.

To do this, we repeatedly execute the test ¢ until the results become periodic
and predictable. Then we can execute ¢’ from a state ¢ where we know ¢t without
executing test ¢. (It is not too difficult to prove using the update graph that the
period of the results of test ¢ is at most the diversity D of the environment.)

Unsupervised Learning 9

If we discover that gt # gt', we conclude that ¢ # #/; otherwise we repeat the
procedure until we are confident that ¢t = #'. The end result is a conclusion that
either ¢t = ¢/ or t # t/. (The repetitions make use of randomization to increase our
confidence — for example, a random walk may be taken between each execution of
the procedure, hopefully to bring the environment into a random starting state from
which the procedure will have a chance of distinguishing ¢ and #/, if inequivalent.
Additionally, a random sequence z may be chosen, and the tests zt and zt' compared
for equivalence in the manner described above; with a lucky choice of z, it may be
relatively easy to show zt # zt’, which implies ¢ # ¢'.)

(A fine point: in order to be sure that the algorithm has discovered the correct period for
t, it must either be given an upper bound on the diversity D of the environment, or it must
repeatedly try out increasingly larger upper bounds, say 2,4,8,....)

2.6 Extensions and Variations

By exploiting a few simple observations, the efficiency of this basic algorithm can
be improved by two orders of magnitude.

The first observation is that the values of some pairs of tests can be compared
directly without any need of repeating one test until its values become periodic. We
call such pairs compatible and say that two tests ¢t = av and ' = a’v’ are compatible
if a is a prefix of a’ or @’ is a prefix of a. In the Little Prince example, the test
fv is compatible with £br because we can in a single sequence of actions and senses
determine the values of both. In particular, we can move forward, test if we are at
the volcano (this gives us the value of £v), and then move back and test if we are
seeing the rose (this gives the value of fbr).

Some experiments comparing two incompatible tests can be transformed into ones
in which the tests are compatible, using knowledge already attained. Suppose the
Little Prince has learned that ffffr = r and that he now wishes to compare fr to tv.
Their equivalence would imply that ffftv = £ffffr = r. Thus, if the easy experiment
of the compatibles r and £ffftv turns out negative, the Little Prince may conclude
that fr # tv.

For the special class of permutation environments, the equivalence of the derived
compatible pair of tests is not only necessary but sufficient to the equivalence of
the original incompatible pair. Conceptually, these are environments in which no
information is ever lost: every action can be reversed by some other fixed sequence of
actions. The Little Prince’s planet is an example of a permutation environment, as
is the Rubik’s Cube example described below. Thus, it is never necessary to test for
periodicity for this class of environments.

We have been able to prove that our algorithm is correct with high probability
for this special case, and have determined the number of experiments and the sort of
randomization needed to conclude the equivalence of two tests with arbitrarily strong
confidence. More precisely, we have proved that, given an error tolerance parameter

Unsupervised Learning 10

€ > 0, and a permutation environment with diversity D and basic actions B, our
algorithm correctly infers a perfect model of the environment with probability at
least 1 — € in time polynomial in D, |B| and log(2) (Rivest and Schapire, 1987).

In many instances, whole sets of tests can be compared against each other in a
single experiment. Suppose as above that the Little Prince has learned that fr has
period four and that the test bv does as well. He knows that the tests r, fr, ffr
and fffr are distinct, as are v, bv, bbv and bbbv. To compare each test in the first
set against each in the other would require sixteen experiments. To compare one
such pair £f"r and b™v, the Little Prince could derive and test the compatible pair r
and £*"b®v as described above. The important observation is that all of these pairs
can be tested with a single experiment, namely the sequence of actions and senses
rfrfrirf vbvbvbv. The reader can verify that all sixteen experiments are contained in
this one, a tremendous savings for the newbot. (This technique generalizes to tests
involving action sequences of length greater than one.)

Unlike the original algorithm, for these variations the conclusions drawn from an
experiment depend on knowledge derived from other tests. Thus, our assertion that
two tests can be compared in an experiment independent of all others has been com-
promised, in return for enhanced efficiency. The price we pay is a greater vulnerablility
to error: one mistake can snowball into an avalanche of wrong conclusions.

3. Experimental Results

We present in this section three of the other toy environments we have used to
test our algorithm, and how our implementations performed in each instance.

In the Grid World (Figure 6), the newbot finds himself on a 5 x 5 grid with wrap-
around, each tile of which is colored either red, green or blue. The newbot can see
only the color of the tile he is facing, so he has one sensation for each of the colors.
His basic actions allow him to paint the square he is facing any of the three colors,
to turn left or right, or to step ahead one tile. Stepping ahead causes the color of the
tile he moves to to replace that of the one he previously occupied. Because there is
no way of recovering the color overwritten by one of the painting actions, the Grid
World is not a permutation environment.

In the second micro-world, the newbot can fiddle with the controls of a car radio
(see Figure 7) and can detect what kind of music is being played. There are three
distinctive stations which define V: rock, classical, and news. The newbot can use the
auto-tune to dial the next station to the left or right (with wrap-around), or can select
one of the two programmed stations, or can set one of these two program buttons to
the current station.

The last environment is based on “Rubik’s Cube” (see Figure 8). The newbot is
allowed to see only three of the fifty-four tiles: a corner tile, an edge tile and a center
tile, all on the front face. Each of these three senses can indicate any one of six colors.

Unsupervised Learning 11

AN
AN
\\\\\\

N

3o

Figure 6: The 5 x 5 Grid World

X 5 X _ 5 X 5
/%\ f%\ fé\

classical rock news

0 98.7 select station | 1 2 O

@ <[> auto-tune set station | 1 || 2 @

Figure 7: The Car Radio World

The newbot may rotate the front face, and may turn the whole cube about the z and
y axes. (By reorienting the cube he can thus turn and view any of the six faces.)

Table 1 summarizes how our procedures handled these environments. The most
complicated environment (Rubik’s Cube) took approximately two minutes of CPU
time to master — we consider this very encouraging.

Rubik’s Cube and the Little Prince worlds were explored with an implementation
(version “P”) which exploits the special properties of permutation environments, but
which only compares one pair of tests at a time. All worlds were explored as well
by version “M”, which tries to compare many tests against many other tests in a
single experiment. The run times given are in seconds. The last three columns give
the number of basic actions taken by the robot, the number of sense values asked
for, and the number of experiments performed. (An experiment is defined loosely as
a sequence of actions and senses from which the robot deduces a conclusion about

Unsupervised Learning 12

Tx
<>> whole cube

whole cube

N O front face only
&

Figure 8: The Rubik’s Cube World

Diver- | Global Ver- Experi-

Environment || sity | States | |[B| | |[V]| | sion | Time | Moves | Senses | ments
Little Prince 4 4 3 2 P 0.1 303 102 51
M 0.2 900 622 50

Car Radio 9 27 6 3 M 3.7 | 27,695 9,557 1,146
Grid World 27 [=101 | 6 3 M 90.4 | 583,195 | 123,371 9,403
Rubik’s 54 ~101°] 3 18 P 126.3 | 58,311 4,592 2,296
Cube M | 401.3 | 188,405 | 79,008 2,874

Table 1: Experimental Results

equivalence between tests. Information about several tests may be obtained in a
single experiment, and the same sequence of actions and senses may be repeated
several times, each repetition counting as one experiment.) Except for the Little
Prince world, we take a test to be of the form AS as described in Section 2.1. These
implementations were done in C on a DEC MicroVax II workstation.

4. Conclusions and Open Problems

We have presented a new technique for inferring a deterministic finite-state envi-
ronment by experimentation. This technique can be highly effective when the envi-
ronment is very regular.

One outstanding and rather unique characteristic of our technique is its ability to

Unsupervised Learning 13

create “hidden state variables” in order to describe the environment. Each equivalence
class of tests forms such a “hidden state variable”, and our method in many cases will
identify just the right set of such variables for the most economical description of the
environment.

However, the work presented here is merely a first step, and it has many significant
limitations. The following ones are probably most significant; further research is
needed to see how best to overcome these difficulties.

o Anisotropy: Consider a 5 x 6 Grid World instead of the 5 x 5 Grid world. The
hidden state variable indicating which axis the robot is oriented along is not an
equivalence class of tests, and this world is not well handled with our technique.

o Actions with probabilistic effects: Consider a “spin” action in the Grid World,
which leaves the robot facing in a random direction.

o Actions with conditional effects: Consider a Grid World with boundaries, so
that the “step ahead” action has no effect if the robot is facing and up against
the boundary.

o Dependence on global state variables: An “on-off” switch in the Car Radio
World is not handled very well. (This is essentially the same as the “anisotropy”
problem.)

o Difficult to reach states: If a long complicated sequence of actions is required to
get the environment into a state needed to learn something, then our method
of “random walks” is unlikely to work efficiently, and the careful planning of
experiments is required. (We have some work in progress in this regard.)

Acknowledgements

This paper prepared with support from NSF grant DCR-8607494, ARO Grant
DAALO03-86-K-0171, and a grant from the Siemens Corporation.

References

Angluin, D. (1978). On the complexity of minimum inference of regular sets. Infor-
mation and Control, 39, 337-350.

Angluin, D. (1982). Inference of reversible languages. Journal of the ACM, 29(3),
741-765.

Angluin, D. (1986). Learning regular sets from queries and counter-ezamples (Tech-
incal Report YALEU/DCS/TR-464). New Haven, CT: Yale University, Depart-

ment of Computer Science.

Angluin, D., & Smith, C. H. (1983). Inductive inference: theory and methods. Com-
puting Surveys, 15(3), 237-269.

Unsupervised Learning 14

Gold, E. M. (1972). System identification via state characterization. Automatica, 8,
621-636.

Gold, E. M. (1978). Complexity of automaton identification from given data. Infor-
mation and Control, 37, 302-320.

Rivest, R. L., and R. E. Schapire (1987). Diversity-based inference of finite automata.
Proceedings 28-th IEEE Foundations of Computer Science Conference. To ap-
pear.

de Saint-Exupery, A. (1943). The Little Prince. New York, NY: Harcourt, Brace &
World.

Shapiro, E. Y. (1981). Inductive inference of theories from facts (Research Report
192). New Haven, CT: Yale University, Department of Computer Science.

