
Diversity-Based Inference of Finite Automata

(Extended Abstract)

Ronald L. Rivest Robert E. Schapire

MIT Laboratory for Computer Science
Cambridge, MA 02139

Abstract
We present a new procedure for inferring the structure of a finite­
state automaton (FSA) from its input/output behavior, using
access to the automaton to perfonn experiments.

Our procedure uses a new representation Cor FSA's, based
on the notion of equivalence between te.',. We call the num­
ber of such equivalence classes the diver.i'1/ of the automaton;
the diversity may be as small as the logarithm of the number of
states of the automaton. The size of our representation of the
FSA, and the running time of our procedure (in some case prov­
ablr' in others conjecturally) is polynomial in the diversity and
In('i)' where f is a given upper bound on the probability that
our procedure returns an incorrect result. (Since our procedure
uses randomization to perform experiments, there is a certain
controllable chance that it will return an erroneous result.)

We also present some evidence for the practical efficiency of
our approach. For example, our procedure is able to infer the
structure of an automaton based on Rubik's Cube (which has ap­
proximately 1019 states) in about 2 minutes on a DEC MicroVax.
This automaton is many orders ofmagnitude larger than possible
with previous techniques, which would require time proportional
at least to the number of global states. (Note that in this exam­
ple, only a small fraction (10-14) of the global states were even
visited.)

1 Introduction

We address the problem of inferring a description
of a deterministic finite-state automaton from its in­
put/output behavior. (Kohavi [10] gives an excellent
introduction to the theory of finite-state automata, as
do Hartmanis and Stearns [9].)

This problem has a long history; the following works
were particularly inspirational. Angluin and Smith [5]
give an excellent overview of the entire field of induc­
tive inference. Gold [8] gives an algorithm for inferring
a machine from a sample of its input/ouput behavior.
Angluin [3] elaborates this algorithm to show how to

*This paper prepared with support from NSF grant
DCR-8607494, ARO Grant DAAL03-86-K-0171, and a grant
from the Siemens Corporation. Authors' net addresses:
rivestCtheory.lcs.mit.edu, rs@theory.lcs.mit.edu.

0272-5428/87/0000/0078$01,.00 © 1987 IEEE 78

infer an automaton using active experimentation with
the automaton, and a "teacher" who can provide coun­
terexamples to incorrect conjectures. Angluin [4] and
Gold [7] prove that finding an automaton of n states or
less agreeing with a given sample of input/output pairs
is NP-complete. Here the concern is with the num­
ber of states in the inferred automaton, and that the
data is given - the inference algorithm does not have
access to the automaton. Angluin [2] shows how to
infer a special-class of finite-state automata, called "k­
reversible" automata, from a sample of input/output
behavior.

Our motivation is the "artificial intelligence" prob­
lem of identifying an environment by experimentation.
We imagine a robot wandering around in an unknown
environment, whose characteristics must be discovered.
Such an environment need not be deterministic, or even
finite-state, so the approach suggested here is only a
beginning ,on the more general problem. For a fasci­
nating discussion of the· problem Qf inferring an en­
vironment from experience, the reader is encouraged
to read Drescher [6], whose approach is based on the
principles of Piaget.

In line with our motivation, our inference procedure
experiments with the automaton to gather informa­
tion.

A unique and valuable feature of our procedure is
that it does not need to have the automaton "reset"
to some start state or "backed-up" to a previous state;
the data-gathering is one continuous experiment (as in
real life).

Our procedure is practical; its time and memory
requirements are quite reasonable. For example, our
procedure does not· need to store the entire observed
input/output history.

We give some preliminary experimental results at
the end of this paper.

2 Definitions 2.2 Tests

2.1 Automata and Environments

Our definition of a finite-state automaton is a gener­
alization of the usual Moore automaton. [10]. (Our
approach generalizes to handle Mealy automata; how­
ever, we find Moore automata more natural.)

A test is an element of AP, that is, an action followed
by a predicate. We let T denote the set of tests AP.
We say that a test t =ap succeeds at state q if qt =
q(ap) = qap = (qa)p is true. Otherwise we say that t
fails at q. The length lal of a test ais the number of
basic actions and predicates it contains.

We say that E is reduced if
Definition 1 A finite-state automaton E is a 5-tuple
(Q, B, P, 6, 1) where (Vq E Q)(Vr E Q)(q #; r => (3t E T)qt #; rt) (3)

The following theorem demonstrates that the diver­
sity of a finite-state automaton is always finite, but is
only loosely related to the size (i.e. number of states)
of the automaton.

2.3 Equivalence of Tests and Diversity

A central notion in our development is that of test
equivalence.

We say that tests tl and t2 are equivalent, written
t1 == t2, if

that is, from any state the two tests yield the same
result.

The equivalence relation on tests partitions the set T
of tests into equivalence classes. The equivalence class
containing a test t will be denoted [t].

The diversity of the environment E, denoted D(E),
is the number of equivalence classes of tests of E:

We assume henceforth that £ is reduced.
It will be convenient to define a total order on the

set of tests. We say that test t1 is smaller than test
t2, written t l < t2, if It 11 < It21, or, in the case that
Itll =It21, iftl (considered as a string in AP = B* P)
lexicographically precedes t2 using an assumed fixed
ordering of the symbols in Band P.

(5)

(4)(Vq E Q)(qtl =qt2);

D(E) = I{[t] It E T}I·

• Q is a finite nonempty set of states.

• B is a finite nonempty set of input symbols, also
called basic actions.

• P is a finite nonempty set of predicate symbols,
also called sensations.

• 6 is a function from Q x B into Q; 6 is called the
next-state function.

• '1 is a function from Q x Pinto {true, false}.

When P only contains a single predicate (e.g. ac­
cept), we have the standard definition of a Moore au­
tomaton. We allow multiple predicates to correspond
to the notion of a robot having multiple sensations in
a given state of the environment.

We assume henceforth that we are dealing with a
particular finite-state automaton E = (Q, B, P, 6, ,..),
which we call the environment of the learning proce­
dure.

We say that E is a permutation environment if for
each b E B, the function 6(., b) is a permutation of Q.

We let A = B* denote the set of all sequences of zero
or more basic actions in the environment E; A is the
set of actions possible in the environment &, including

. the null action A.
If q is a state in Q, and a =6162 ... bn is an action

in A, we let qa =qb1b2 ••• bn denote the state resulting
from applying action a to state q:

(The basic actions are performed in the order
b1 , b2 , ••• , bn .) Similarly, if q is a state and p is a pred­
icate, we let qp ="Y(q,p) denote the result of applying
predicate p to state q.

We say that e is strongly connected if

(Vq E Q)(Vr E Q)(3a E A)qa =r. (2)

We do not assume that £ isstrongly~connected unless
explicitly stated.

Theorem 1 For any reduced finite-state automaton
&=(Q,B,P,6,'1),

Ig(lQD ~ D(E) ~ 21Q1 •

Proof: The first inequality IQI ~ 2D (£) follows since
a state is uniquely identified by the set of (equivalence
classes of) tests which are true at that state, since e is
reduced. The second inequality follows since the equiv­
alence class that a test belongs to is uniquely defined
by the set of states at which' that test succeeds. II

79

Theorem 2 The lower and upper bounds on D(E)
given in the~rem 1 are best possible.

Proof: For the lower bound, consider an environment
where the states are n-bit words, and there is a pred­
icate Pi which tests whether the i-th bit is one, for
1 :5 i :5 n. The set B consists of 8 single action,
which is the identity operation (no state change). Then
D(E) =n but IQI = 2n

.

For the upper bound, consider an environment con­
sisting of n states numbered 0 ·through n - 1, which
has a single predicate p which succeeds only at state O.
For each subset X of the states, there is an action bx
which moves state z to state 0 if xE X, or· to state 1
otherwise. Thus, the test bx p is true iff we are in one
of the states in X. Hence, D(t) =21Q1 .

The upper bound can be nearly aCllieved with an
environment which has only a constant number ofac­
tions. We omit its description here.1I

We propose that the notion of diversity is more suit­
able than that of size for many natural applications.
To support this viewpoint, we will demonstrate that
there exists a natural encoding 0/ a finite-state automa­
ton, whose size is polynomial in the diversity of the au­
tomaton. Furthermore, it is straightforward to use this
representation to simulate the behavior of the automa­
ton.

2.4 Canonical and Square Tests

We say that test t is canonical if it is the smallest test
in its equivalence class [t]. The canonical test in [t] is
denoted (t). We let C denote the set of canonical tests.
(By definition, lei =D(E).)

Theorem 3 Let!' be any action in A and let t be any
test in T. If t is a non-canonical test, then 80 is at.
Equivalently, if at is canonical, then so is t.

Proof: Note that if t == (t), then at == a(t). II
. Let 6 be any basic action in B, and let t be any test
In T. We say that the test 6t is square if 6t is non­
canonical but t is canonical. We let S denote the set
of square tests. Note that if a test t is canonical, then
for any b E B, the test bt is either canonical or square,
and that lSI :5 IBfD(&).

We can consider arranging the elements of T into a
forest consisting of 'PI infinite trees, where

1. The roots of the trees are the predicates in P.

2. The node corresponding ta-a testthas one child
cor-r.esponding· to;6f for-eaeh " in B.

In a drawing ofsuch a forest, there will be a line one can
draw such that all tests above the line are canonical,
and those tests w4ich are below the line but whose
parents are above the line are square.

2.5 The Simulation Theorem

Theorem 4 To simulateE it suffices to know:

1. The set Co/canonical tests.

2. The value qt of each canonical test t at the current
state q.

9. For each square test s in 5, the corresponding
canonical test· (8).

Proof: Suppose the automaton moves from state q to
state qb, for some b E B. We need to compute (qb)t =
q(bt) for each canonical test t. However, the test bt is
either canonical or square, so that in either case the
canonical test u = (bt) is known. By assumption, we
know qu; this is the desired value of (qb)t. II

2.6 The Update Graph

As another means of representing the test classes, we
may build a graph in which each vertex is an equiv­
alence class, and an edge labeled. b E B is directed
from test class [t] to [t'l iff· t == bt'.We call this the
update graph ,of the environment. The update graph
may alternatively be derived from the forest of tests
described in Section 2.4 by directing each tree edge
up, and merging each square test with its equivalent
canonical test.

We associate with each vertex [t] the value of t at
the current state q. When action b is executed, the
value of each vertex is passed to each of its b-children
yielding the new ,value of each test in state qb.

Neal Young and Dana Angluin have pointed out the
following relationship between the update graph of an
environment with a single predicate, and the original
automaton: Let qo be the starting state, and P the sole
predicate. Let L be the language accepted by our au­
tomaton, i.e., the set of action sequences a such that
qoap is true. We define U to be the environment'8 up­
date graph with all of the edges reversed in direction,
and each vertex [t] assigned the value qat. That is U
~s viewed as a DFA in which the accepting states ~e
Just those states [t] for which t succeeds at qo. Finally,
let vertex (P] be this DFA's starting state. Young and
Angluin observed that the language accepted by U is
-exactly tbe reverse, ()f, L. A .. prooffullows from the def-

---inition ofU-andthefact \JlDa)p == qO\4p).

-80

Figure 1: The 5 x 5 Grid World

3 Tw-o Example Environments

The motivation for the introduction of the notion of
diversity was the realization that many interesting
"robot environments" can be modelled as finite au­
tomata which, although they have a large number of
states, have low diversity. In this section, we make this
point explicit by describing two particular small "robot
environments" .

3.1 n X n Grid World

Consider a robot on an n x n square grid (with
"wraparound" , so that it is topologically a torus). See
Figure 1. The robot is on one of the squares and is fac­
ing in one of the four possible directions. Each square
is either red, green, or blue. The robot can sense the
color of the square it is facing. (This corresponds to
the predicates of our previous development.)

The following actions are available to the robot: It
can paint the square it faces red, green, or blue. The
robot can turn left or right by 90 degrees, or step for­
ward one square in the direction it is facing. Stepping
ahead has the curious side effect of causing the square
it previously occupied to be painted the color of the
square it has just moved to, so moving around causes
the coloring to get scrambled up.

This environment is a finite-state automaton which,
even after reducing by factoring out some obvious sym­
metries, has an exponentially large (3n 2

-1) number of
states.

Howeyer, the diversity of this environment is only
0(n2). The state of this environment is completely
characterized by knowing the color of each square (us-

81

ing a robot-relative coordinate system). It is not hard
to devise a set of O(n 2) tests whose results give all
the desired information. (For example, the square be­
hind the robot is red if and only if the test "turn-left
turn-left see-red" is true.)

Given this information, it is easy to see how to pre­
dict the state of the environment after a given sequence
of actions. In fact, it becomes clear that this is the
"natural" representation of this environment, and that
the intuitiv~ representation and simulation procedure
-one would use for this environment are captured almost
exactly by the diversity-based representation and sim­
ulation procedure given in the previous section.

We note that because of the "paint" operations, this
environment is not a permutation environment.

3.2 n-bit Register World

In this environment, the robot is able to read the left­
most bit of an n-bit register. Its actions allow it to
rotate the register left or right (with wraparound) or
to flip the.bit it sees.

Clearly, this automaton consists of 2n global states,
but its diversity is only O(n) since there is one test for
each bit, and one for the complement of each bit. We
note that the register world is a permutation automa­
ton.

Figure 2 shows the canonical and square tests of the
three-bit register world arranged in the sort of forest
described in Section 2.4. The update graph of this
environment is depicted in Figure 3. The name "I" in
the figures refers to the predicate which returns true
if the leftmost bit is a 1, and "L", "R" and "F" refer
to the actions which rotate left and right, and which
flip the leftmost bit. In the current state, the register
contains the values 101. The borders of the tests which
are true in the current state have been darkened.

4 Our Inference Procedure

The inference procedure tries to identify the sets C and
S of canonical and square tests, and for each square test
s e S it tries to identify the corresponding canonical
test (s).

4.1 An Inference Procedure Using an
Oracle for Inequivalence

We begin by supposing that we have an oracle available
that can tell us whether two tests 8 and t are inequiv­
alent. This is the framework for our final algorithm,

Figure 2: Forest of Tests for 3-bit Regist~r .World

where we can experiment with the automaton to dis­
prove conjectured equivalences. For each square test 8,

the program computes x(s) = (8).
Then our algorithm would be as given in Figure 4.

Here the program variables Sand C represent the cur­
rent set of candidates for square and canonical tests.
The program variable R is the set of tests which require
being tested for being canonical; we assume that all the
predicates in P are canonical.

We see that the running time of this algorithm re­
quires a number of inequivalence tests not greater than

101 ·(101 + lSI) ~ 2IBID(E)2 (6)

4.2 Determining if Two Tests are
Equivalent

We now turn our attention to the problem of deter­
mining whether or not two tests are inequivalent. The
inference procedure can pr0t!e that tests 8 and c are in­
equivalent if we can find a state q such that qs =F qc; a
single counterexample to the conjecture 8 == c suffices.

We wish to experiment with the available automaton
E in order to prove s ~ c. There are two problems we
face:

• (Accessibility of Counterexamples) It may be dif­
ficult or impossible to get the automaton into a
state q where qa ¥= qc, even if such states exist.
(The automaton may not even be connected.)

• (Irreversibility of Actions) Even if we can get the
automaton into such a state q, once we run test s

82

we are in general unable to "back up" so as to be
able to run test c.

Let us define two tests to be compatible if the action
sequence of one is a prefix of the action sequence of the
other. We note that irreversibility of actions is not a
problem'when testing the equivalence of two compat­
ible tests since they can be executed simultaneously.
In particular, a predicate is compatible with all other
tests.

We present solutions to these difficulties for the spe­
cial class of permutation environments, and then dis­
cuss progress toward a solution in tl1,e general case.

4.3 Determining Test Equivalence in
Permutation Environments

Assume then that E is a permutation environment. In
this case the irreversibility of actions is not a problem.
It is easy to show that each action permutes not only
the global states, but the set of test equivalence classes
as well. Thus, the set of permutations on T generated
by the basic actions forms a group, and so each action
sequence has an inverse. Therefore, for any test t =
ap, we have P = a-1t, and so there is always at least
one predicate/action sequence pair (Pt, at) for which
Pt = att. We call such a pair a forced compatibility
pair (Fe.pair) for t.

The Fe-pair allows us to effectively force a test to
be compatible with any other test. Suppose that one
Fe-pair (Pc, ac) is known for each canonical c e c, and
that t is some other test. Then c == t if and only if

F

Figure 3: Update Graph of 3-bit Register World

F

act == ace == Pc. Thus we can check e's equivalence to t
by comparing the tests aet and Pc .. The values of these
two tests can be determined simultaneously simply by
executing them since they are compatible.

We can guarantee that we always have an FC-pair
for each known canonical by modifying slightly the con­
trol mechanism of the algorithm. Here is the strategy:
Each time a canonical be, b E B, e e C, is added to
the set of canonicals, rather than extracting the small­
est test in a, immediately work to determine if this
canonical's b-child, bbe, is square or canonical. To see
that this works, assume inductively that an FC-pair is
known for each canonical in C, and that be is added to
c. Because an FC-pair is known for all the members of
the original set of canonicals, we can compare bbc with
each for equivalence. Moreover, we need not compare
bbe with be since e ~ be (because both are canonical)
implies be ~ bbe. Thus, we can determine whether bbe
is square or canonical. If it is canonical, we continue
in this fashion, generating a series of canonicals of the
form bi c until eventually one of these, bn c, turns out
to be equivalent to one of the starting canonicals c!.
By assumption, an FC-pair, (Pc" ac')' is known for c',
and thus an FC-pair is now known for all of the new
canonicals since ac,bn-i(bic) == ac'c' == Pc'.

(This strategy will cause some of the members of C
not to be the smallest in their equivalence classes dur­
ing the execution of the algorithm. This and other de­
tails can be overcome without considerable difficulty.)

Turning now to the problem of the accessibility of
counterexamples, we find that for permutation envi-

83

ronments this is again not a problem. We show that a
random walk of sufficient length gives us an adequate
probability of ending in a state where two inequivalent
tests have different values.

Theorem 5 Let t and t' be two inequivalent tests of a
permutation environment e of diversity D. We take a
random walk o/length uniformly and randomly chosen
between 1 and 2IBID2(D - 1)2. Then the probability
that the values of t and t' differ at the state where we
complete this walk is at least 4IBID'~D-lri.

Proof: Let G be the group generated by the set of
permutations of the test classes effected by the basic
actions. Let H be the set of h e G such that ht == t
and ht' == t'. Then H is a subgroup of G.

For any 9 e G, the left coset gH is exactly the set
of permutations g' for which g't == gt and g't' == gt'.
Thus [G : H] is limited by the number of distinct pairs
([gt], [gt']), and so [G : H] S D(D - 1).

Let 1t be the graph of left cosets of H, in which an
edge labeled b E B is directed from vertex 9H to g'H
if bgH = g'H. Then indegree equals outdegree at each
vertex, and 1t is an Eulerian digraph.

Since t ~ t', there must be a permutation 9 which
takes the robot from its current state to a state in
which the values of t and t' differ. By the preceding
argument, any permutation in gH will have this effect.

The robot takes a random walk r = b1b2 ••• bn , each
bi a basic action, and succeeds in distinguishing t and
t' ifr E gH, or equivalently, ifrH =gB. We note
that rH = 61b2 ••• 6ra H = 61(62 ••• (6ra - 1(6ra N» ...),

Input:
P - set of predicates
B - set of basic actions
Oracle for testing ifs ~. c .for any tests s
and c

Output:
C - set of canonical tests
S - set of square tests
X : S --+ C such that X(s) = (s)

Procedure:
C=P;
R= S = BP;
while R is non-empty do

Extract the smallest test s from R;
Let V =c;
for each test c in V,

if 8 ~ c, then remove c from V;
if Ivi = 0 then (s is canonical)

Remove 8 from S, and add it to C;
for each b E B, add 68 to Sand R;

else (Ivl = 1.)
Set X(s) =C, where V = {c};

endif
end

Figure 4: An Inference Algorithm Using an Oracle for
Inequivalence of Tests.

and therefore, because we are only concerned with t
and t', we may view the robot's random walk as a
(backwards) random walk on 1t: The robot begins at
H and follows the edges 6n bn - 1 ••• 61 ; if it arrives at
gH, then it succeeds in proving that t .~ t'.

The expected number of steps to reach vertex gH
starting from H is bounded by the product of the
number of edges and the maximum distance between
any two vertices (see [1]). In our case this product is
bounded by E = IBID2(D _1)2. So the probability of
having visited gH in 2E steps is at least one-.half. If
we stop after a random number of steps we therefore
have a probability of at least tE of being at gH when
we stop.•

Using this result, we can show the following theorem:

Theorem 6 Let e bea permatatioa environment with
diversity D. Given' £ > 0, our algorithm will infer
the structure of E in time O(IBI3DIO .log(IB~D2» with
probability of error less than f.

P:..-oof: The preceding theorem states that the prob­
ability of distinguishing two inequivalent tests, hav­
ing taken an appropriate random walk, is at least ~.

84

Thus, the probability of failing tQ do so after n trials
is no greater than (1- iiJ)n _.This error is bounded by
a parameter 6 when

log 6n> .. . I.
- log(l- 48)

As many as 1 = O(IBID2) inequivalence tests may
be made in the course of inferring the automaton. The
probability, then, of successfully distinguishing all of
the inequivalent pairs of tests is at least (1 - 6)1. Our
goal is to make this probability more than 1 - f. We
have been given £ and choose 6 ~ 1. Then

1 - £ ~ 1 - 16 ~(1 - 6)1

as desired.
Finally, if we choose n 2:: 4Elog~, then our probabil­

ity of error on an individual experiment is sufficiently
small since

EI
1 log ~ . . log,j . log 6

4 og - > 4B = 1 > I ·
f - log4E_l log(l- ·m) - log(1- :m)

Here, we have ~d the fact that log z ~ z - 1 fOl

all z. (In particular, if z < 1 then log z ~ z - 1 =>
)0; f ::; 1':'" Above, we have applied this formula with

z = 1- is.)
Hence, our procedure requires 1 inequivalenee tests.

Each of these requires up to 4E log f experiments, each
of which can involve a random walk of length 2E. (The
time to run the actual experiment, or to determine
which experiment is to be performed next. is negligi­
ble.) We thus arrive. at the running time stated in the
theorem. II

We strongly believe that these bounds can be ·tight­
ened significantly. Empirically, we ,have found that
much shorter random walks and far fewer experi­
ments are sufficient. In addition, we believe a re­
cent unpublished result due to Gilbert Strang woukl
allow us to improve our running time bound to
O(IBI2[)S · log(IBlfD:l ».

As a final remark, we note that Angluin, addressing
the problem of inferring regular languages in [2], also
identified a subclass of permutation automata,which
she called "zero-reversible," as worthy of special atten­
tion.

4.4 Determining Test Equivalence in
General

We discuss now the general case in which £ is not nec­
essarily a permutation environment. We don't at the

Figure 5: The Rubik's Cube World

moment know how to handle in a rigorous manner the
first difficulty of finding a state in which two inequiva­
lent tests can be distinguished, even if we assume that
£ is strongly connected. Nonetheless, in practice this
may often not be a concern; if two tests 8 and c are in­
equivalent then there are usually many easily reached
states q such that qs :/: qc.

We now propose a cute technique for handling the
irreversibility of actions in general. environments.

We need to figure out how to get & into a state q
where we know the value of the test qc, even though
we haven't. run test c yet, so that we can run test s
instead.

Let c = ap; here a is the action part of test c and p
is the predicate.

Suppose we run action a repeatedly. Eventually the
predicate p will exhibit periodic behavior. Once we
know that this periodic behavior has been established,
and once we know the period m of this behavior, then
we can figure out the value of qc for the current state
q without having to run the test c.

We have to address the problem that for general
finite-state automata, it is well known that the even­
tual period can be as large as the size of the automaton.
This would be a serious problem for our proposed ap­
proach, since the size can be an exponential function
of the diversity. However, the following theorem shows
that the period is no larger than the diversity.

Theorem 7 If we n£ft action a repeatedly, then the

85

behavior oj predicate p will exhibit transient behavior
for no more than D(&) steps, and then will settle down
into periodic behavior with period at most D(£).

Proof: This follows easily from our simulation the­
orem (theorem 4), since any action has the effect of
giving a new value to each canonical test which is an
old value of one of the canonical tests.•

To complete the description of our inference proce­
dure, we suppose that an upper bound Dm(JZ] is avail­
able on the diversity D(E) of the automaton being in­
ferred. (If no such bound is available, the algorithm
can be executed repeatedly with D,n(JZ] =1,2,4,8,)

To run the algorithm of Figure 4, we need a way
to test sand c =ap for inequivalence. The following
procedure is suggested by the previous theorem:

• Run action a for Dm(JZ] steps. (This is to eliminate
transient behavior of p.)

• Run action a for 2Dm(JZ] steps, keeping track of qp
for each state q reached.

>. Use the information gathered in the previous step
to determine the period. of predicate p under ac­
tion a. Use this information to determine whether
qc is true or false in the current state q (without
running test c).

• Run test 8 to determine qs.

• If qc :f: q" return "IIEQUIVALEIT". Otherwise,
return "POSSIBLY EQUIVALEIT".

As it stands, this is a one-sided test: a report
of IIEQUIVALEIT is certainly correct, but a report
of POSSIBLY· EQUIV.A.LEIT is not sufficient to conclude
that 8 == c with any high degree of certainty.

The test should be re-run a number of times before
concluding that 8 == c. To make the trials as indepen­
dent as possible, we may:

• Take a "random walk in E" between each trial,
by executing some randomly chosen sequence of
actions.

• Repeatedly execute an action ab instead of just
a in each trial, where b is an arbitrarily chosen
action in A.

These heuristics may not help to find a counterexam­
ple in all cases; but are reasonably effective in practice.
(We hope to prove the effectiveness of these techniques
as we did in the permutation environment case.)

For efficiency, we are in many instances able to
force compatibilities as in the permutation environ­
ment case, and can often compare many tests against

Diver- Global Ver- Experi-
Environment sity States IBI IPI sion Time Moves Senses ments

Little Prince 4 4 3 2 P 0.1 303 102 51
M 0.2 900 622 50

Car Radio 9 27 6 3 M 3.7 27,695 9,557 1,146
Grid World 27 ~ 1011 6 3 M 90.4 583,195 123,371 9,403
Rubik's 54 ~ 10.lV 3 18 P 126.3 58,311 4,592 2,296

Cube M 401.3 188,405 79,008 2,874
32-bit 64 ~ lOW 3 1 P 29.8 270,771; 10,914 5,457

Register M 18.3 52,4.36 29,884 300

Table 1: Experimental Results

many other tests in single experiments. These heuris­
tics lead to many-fold improvements of our running
times.

5 Experimental Results

Consider the following permutation environment based
on "Rubik's Cube" (Figure 5). The robot is allowed to
see only three of the fifty-four tiles: a corner tile, an
edge tile and a center tile, all on the front face. Each
of these three senses can indicate anyone of six colors.
The robot may rotate the front face, and may turn the
whole cube about the z and 'II axes. (By reorienting the
cube he can thus turn and view any of the six faces.)

Table 1 summarizes how our procedures handled this
environment, the 5 x 5 grid world environment, the 32­
bit register environment, and two other comparatively
simple environments not described here. (Our last pa­
per [11] contains a more detailed description of our
experimental results, although none of, the proofs of
theoretical results contained in this paper.)

The most complicated environment (Rubik's Cube)
took less than two minutes of CPU time ,to master ­
we consider this very encouraging.

Rubik's Cube, the Little Prince and the 32-bit Regis­
ter worlds were explored with an implementation (ver­
sion "P") which exploits the special properties of per­
mutation environments, but which only compares one
pair of tests at a time. All worlds were explored as
well by version "M", which tries to compare"many tests
against many other tests in a single experiment. The
run times given are in seconds. The last three columns
give the number of basic actions taken by> the robot,
the number of sense values asked for, and the number
of experiments performed. (An experiment, is defined
loosely as a sequence of actions and senses from which
the robot deduces a conclusion about ·equivalence be.
tween tests. Information· about several tests may be

86

obtained in a single experiment, and the same sequence
of actions and senses may he repeated several times,
each repetition counting as one experiment. Also, we
have generalized the notion of a test here to allow the
function "1 to map Q x P into an arbitrary set of sen­
sations, not necessarily the set {true, false}.) These
implementations were done in C on a DEC MicroVax
II workstation.

6 Conclusions

We have presented a new representation for finite-state
systems (environments), and proposed a new proce­
dure for inferring a finite state environment from its
input/output behavior.

In the case of permutation environments, our pro­
cedure can infer the structure of the environment in
expected time polynomial in the diversity of the envi­
ronment, and In(t), where f is an arbitrary positive
upper bound given on the probability that our proce­
dure will return an incorrect result.

For general environments, our procedure appears to
work well in practice, although we don't have a proof
to this effect.

When the environment has lots of "structure", the
diversity will typically be many orders of magnitude
smaller than the number of global states of the envi­
ronment; in these cases our procedure can offer many
orders of magnitude improvement in running time over
previous methods.

Ackno"Wledge:rnents

We gratefully acknowledge helpful comments and
suggestions from Dana Angluin, Ravi Boppana,
Gilbert Strang, and Neil Young.

References

[1] Romas Aleliunas, Richard M. Karp, Richard J.
Lipton, Laszlo Lovasz, and Charles Rackoff. Ran­
dom walks, universal traversal sequences, and the
complexity of maze problems. In eOth Annual
Symposium on Foundation of Computer Science,
pages 218-223, San Juan, Puerto Rico, October
1979.

[2] Dana Angluin. Inference of reversible languages.
Journal 0/ the ACM, 29(3):741-765, July 1982.

[3] Dana Angluin. Learning Regular Sets from
queries and counter-ezamples. Technical Re­
port YALEU/DCS/TR-464, Yale University De­
partment of Computer Science, March 1986.

[4] Dana Angluin. On the complexity of minimum
inference ofregular sets. In/ormation and Control,
39:337-350, 1978.

[5] Dana Angluin and Carl H. Smith. Inductive in­
ference: theory and methods. Computing Surveys,
15(3):237-269, September 1983.

[6] Gary L. Drescher. Genetic AI - 'Iranslating Pi­
aget into Lisp. Technical Report 890, MIT Artifi­
cial Intelligence Laboratory, February 1986.

[7] E. Mark Gold. Complexity of automaton identifi­
cation from given data. Information and Control,
37:302-320, 1978.

[8] E. Mark Gold. System identification via state
characterization. Automatica, 8:621-636, 1972.

[9] J. Hartmanis and R. E. Stearns. Algebraic Struc­
ture Theory 0/ Sequential Machines. Prentice­
Hall, 1966.

[10] Zvi Kohavi. Switching and Finite Automata The­
ory. McGraw-Hill, second edition, 1978.

[11] Ronald L. Rivest and Robert E. Schapire. A new
approach to unsupervised learning in determinis­
tic environments. In Pat Langley, editor, Proceed­
ing of the Fourth International Workshop on Ma­
chine Learning, pages 364-375, Irvine, California,
June 1987.

87

