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We show how to learn from examples (Valiant style) any concept representable
as a boolean function or circuit, with the help of a teacher who breaks the concept
into subconcepts and teaches one subconcept per lesson. Each subconcept corre-
sponds to a gate in the boolean circuit. The learner learns each subconcept from
examples which have been randomly drawn according to an arbitrary probability
distribution, and labeled as positive or negative instances of the subconcept by the
teacher. The learning procedure runs in time polynomial in the size of the circuit.
The learner outputs not the unknown boolean circuit, but rather a program that,
for any input, either produces the same answer as the unknown boolean circuit, or
else says “l don’t know.” Thus the output of this learning procedure is reliable.
Furthermore, with high probability the output program is nearly always useful in
that it says “I don’t know” very rarely. A key technique is to maintain a hierarchy
of explicit “version spaces.” Our main contribution is thus a learning procedure
whose output is reliable and nearly always useful; this has not been previously
accomplished within Valiant’s model of learnability. @ 1994 Academic Press, Inc.

1. INTRODUCTION

The field of inductive inference has been greatly broadened by Valiant’s
seminal paper [23] on “probably approximately correct” identification. He
gave an excellent definition of what it means to learn—in a reasonable
amount of time—a concept (for instance, a boolean function) from
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examples. Moreover, in that paper, and in a number of subsequent papers
(e.g., [6, 10, 18]), algorithms were given showing how to efficiently learn
various different concept classes.

Thus the good news is that we now have one crisp definition of concept
learning, and a number of algorithms for efliciently learning various classes
of concepts. The bad news is that Valiant presents strong evidence [23]
that learning arbitrary polynomial-size circuits is computationally intrac-
table, and Pitt and Valiant [18] show that learning certain particular
interesting classes of boolean functions, such as boolean threshold for-
mulas, is NP-complete, at least if we restrict the learner’s hypothesis
set. Recently there have been more results on concept classes that we
cannot learn within the pac-learning model (given various cryptographic
assumptions generally believed to be true) [12, 19].

The largest concept class that an optimist might reasonably hope to be
able to learn efficiently in some model of concept learning is the set of all
concepts that can be represented by polynomial-size circuits. For any larger
class, just deciding whether a given instance is a positive or negative
instance of a particular concept may be computationally intractable. The
infeasibility of learning the class of concepts defined by polynomial-size cir-
cuits in the pac-learning model (given certain cryptographic assumptions)
was shown in Valiant’s original pac-learning paper [23] using crypto-
graphic tools from Goldreich ez al. {5].

In this paper we examine a model of learning with a more powerful
teacher than the teacher of the pac-learning model, thus allowing us to
learn this “largest reasonable” concept class.

1.1. Hierarchical Learning

The way we escape the infeasibility of learning arbitrary concepts is by
first learning relevant subconcepts of the target concept, and then learning
the target concept itself.

Learning by first learning relevant subconcepts has been a useful tech-
nique elsewhere in the field of learning:

» Cognitive psychologists believe that one way humans learn is by
first organizing simple knowledge into “chunks,” and then using these
chunks as subconcepts in later learning [16].

« In the artificial intelligence community, the builders of the Soar
computer learning system have built a system that saves useful “chunks” of
knowledge acquired in the current learning task for use as subconcepts in
furture learning tasks [ 14, 15]. Also, the SIERRA system learns how to do
arithmetic in a manner broadly similar to what we suggest; it learns “one
subprocedure per lesson” [24].
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» Within the framework of theoretical inductive inference, Angluin
et al. [2] recently showed how to learn certain otherwise unlearnable
recursive functions by first learning relevant subconcepts.

1.2. Review of Valiant Model

Before we discuss our results, we first give a brief review of Valiant’s
learnability model. For a more lengthy discussion of the model and recent
results obtained using it, we refer the reader to the excellent survey
article [111].

We will say that an algorithm learns from examples if it can, in a feasible
(polynomial) amount of time, find (with high probability) a rule that is
highly accurate. Now we must define what we mean by such terms as “find
a rule,” “with high probability,” and “highly accurate.”

Fix an instance space X. Formally a concept ¢ for instance space X is
some subset of X. If instance x € X is contained in concept c, then we say
that x is a positive instance of ¢; otherwise we say that x is a negative
instance of concept ¢. (We are slightly sloppy throughout and refer to
concepts interchangeably both as subsets of the instance space and as
{0, 1}-valued functions defined on the instance space. In particular, we will
write ¢{x)=1 if x is a positive instance, and ¢(x)=0 if x is a negative
instance.)

Let € be a set of concepts, or concept class, over X. Formally, € < 2*.
If X is the set of inhabitants of the U.S., concepts would include both the
rather simple concept males, and the doubtless more complicated concept,
people whose marginal federal income tax rate is 31%. An example
of a concept class would be TAX BRACKETS, which would include the
concepts people paying no income tax and people whose marginal tax rate
is 31%.

We call the concept ¢, € ¥ that our algorithm is trying to learn the rarget
concept. The target concept may be any concept whatsoever in the concept
class. We think of it as being arbitrarily chosen by some outside teacher or
supervisor.

The length of concept ¢, denoted |c|, is the number of bits it takes to
write down ¢ in some agreed-upon encoding scheme. For example, if our
instance space is {0, 1}", possible representations for concepts include truth
tables, boolean formulas, and boolean circuits. (Haussler [7] gives a good
discussion of issues concerning coice of representation of concepts.) The
length of an instance is defined similarly. Since we want to analyze the
computational efficiency of learning algorithms, we must analyze their
asymptotic resource consumption. Therefore we will parameterize our
instance space, writing X =J>_, X,, where all instances in X, have length
bounded by some polynomial function of n. Any one concept ce®€ is
required to be completely contained in X, for some n, and we define %,
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to be {ce¥|c<=X,}. In this paper we will assume that for ce¥,, |c| is
bounded by a polynomial in n, although this restriction is not necessary.

We assume that our learning algorithm has available to it a black box
called EXAMPLES, and that each call to the black box returns a labeled
example, (x, c,(x)), where xe X is an instance, and ¢, is the target
concept. Furthermore, the EXAMPLES box generates the instances x
according to some fixed but arbitrary probability distriution P on X. We
make no assumptions whatsoever about the nature of P, and our learner
is not told what P is.

First we define formally what it means for a concept to be an accurate
approximation of target concept c,, and then we define pac learning itself.

DerFniTION.  Fix an instance space X and a probability distribution P
on X. We say that concept ¢, is an e-approximation of concept ¢, if and
only if

Y P)<e (1)

c1{x) # co(x)

DeFmNITION. Let € be a class of concepts on domain X={J , X,.
Algorithm A probably approximately correctly learns ( pac learns) € if and
only if for every positive n, for every c €%, for every probability distribu-
tion on X, and for every positive € and 4, Algorithm A, given only ¢, §, and
access to EXAMPLES(c), meets the following two criteria.

Learning Criterion. Algorithm A outputs some representation of a
concept ¢’ such that

Pr[¢’ is an g-approximation of c]J = 1—9, (2)

where the probability is taken over the output of EXAMPLES and any
coin tosses 4 may make.

Efficiency Criterion. The running time of A4 is bounded by some
polynomial function of 1/¢, 1/8, and n.

We say that a concept class € is pac learnable if there exists some
algorithm that pac learns %.

Discussion of the Definition. Intuitively, we are saying that the learner
is supposed to do the following:
1. Ask Nature for a random set of examples of the target concept.
2. Run in polynomial time.

3. Output a formula that with high probability agrees with the target
concept on a randomly chosen instance.
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We think of Nature as providing examples to the learner according to
the (unknown) probability that the examples occur in Nature. Though the
learner does not know this probability distribution, he does know that his
formula needs to closely approximate the target concept only with respect
to this probability distribution.

Intuitively, there may be some extremely bizarre but low probability
examples that occur in Nature, and it would be unreasonable to demand
that the learner’s output formula classify them correctly. Hence we require
only approximate correctness. Moreover, with some very low but nonzero
probability, the examples the learner receives from Nature might all be
really bizarre. Therefore we cannot require the learner to always output an
approximately correct formula; we only require that the learner do so with
high probability.

1.3. A Variation on the Valiant Model

We introduce here a new definition of learning which is very similar to
but more stringent than pac learning. In pac learning, the learner is
required to output a description of some subset of the instance space (the
learner’s “best guess” at the positive instances) in some fixed representa-
tion, such as a boolean circuit or a formula in DNF. Our learner is instead
supposed to give a (polynomial time) program taking instances as input,
and having three possible outputs: 1, 0, and I don’t know.”

DEerFINITION.  We call learning Algorithm A reliable if the program out-
put by A4 says 1 only on positive instances, and says 0 only on negative
instances of the target concept.

Of course, given that definition of reliable, it is very easy to design
a reliable learning algorithm: Have the learning algorithm look at no
examples, and output the program which just gives the useless answer
“I don’t know” on all instances. Informally we call a learning algorithm
useful if the program it outputs says “I don’t know” on at most a fraction
¢ of all instances, where ¢ is an input to the learning algorithm. Formally,
we make the following definition, analogous to pac learning:

DEFINITION.  Let 6 be a class of concepts on domain X=J_, X,,. We
say Algorithm A reliably and probably usefully learns € if and only if for
every positive n, for every c € €, for every probability distribution P on X,
and for every positive ¢ and é, Algorithm A, given only ¢, 6 and access to
EXAMPLES(c), halts in time polynomial in n, 1/¢, and 1/6, and outputs
a program Q that satisfies the following conditions.

1. For every xe X, either Q(x)="1 don’t know” or Q(x}=c,(x).
(A is reliable.)
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2. With probability at least 1 —§,

Y P(x)<e.

Q(x)=1dont know
(A is probably useful.)

The above definition is similar to the definition of pac learning, in that
both definitions require the learner to find some concept that probably
agrees with the target concept with high probability. Our new definition is
stronger than pac learning in that we require, in addition, that the output
of learner must never misclassify an instance. It must somehow “know
enough” to say “I don’t know,” rather than to misclassify.

In this paper we present an algorithm that reliably and probably usefully
learns the concept class of all functions that can be represented by polyno-
mial-size circuits.

2. How 1O LEARN: SKETCH

The original definition of pac learning has many desirable features. Not
least among them is that efficient algorithms for pac learning a number of
interesting concept classes are now known. Of course, we do not always
know a priori that the concept we want to learn is going to be in 3CNF
or 7DNF or some other given class. We would like to have an algorithm
that can pac learn regardless of what class the target concept is drawn
from. More precisely, we would like to have an algorithm that could pac
learn the class of all boolean functions that can be represented by polyno-
mial-size boolean circuits (which includes any function that can be
represented by a polynomial-size boolean formula).

DeFmNITION.  Let f be a boolean function defined on {0, 1}”. We say
that boolean circuit C computes f if f(x)=1 just in case C(x)=1. The
circuit size complexity of f is defined to be the size of the smallest circuit
computing f. For a boolean function g with domain {0, 1}*, the circuit
size complexity of g is a function 4: N — N such that %(n)=circuit size
complexity of g, (where g, is g restricted to the domain {0, 1}").

DEFINITION. A boolean function is a member of the class PC if its
circuit size complexity is bounded above by some polynomial.

Unfortunately, the goal of pac learning the class PC is unlikely to be
attainable. As Valiant explains [23], assuming that one-way functions exist
(an assumption which we feel is likely to be correct), the class PC is not
pac learnable.

643/114/1-7
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Thus we are driven to look for some way of learning arbitrary boolean
circuits. Our solution is to learn in a hierarchical manner. First we pac
learn some important subconcepts of the target concept, and then we pac
learn the final concept as a function of these subconcepts.

To be more precise, our method is as follows. We learn our first subcon-
cept knowing that it must be some simple boolean function of the instance
attributes. We learn each following subconcept knowing that it must be
some simple boolean function of the instance attributes and previously
learned subconcepts. Ultimately we learn the original target concept as
some simple boolean function of the instance attributes and all of the
previously learned subconcepts.

Consider, for instance, the concept of one’s dependents, as defined by the
IRS:!

dependent = (SupportFromMe > 1/2) A T1FiledJointReturn
A [(Income < 1900 A (MyChild v MyParent})
v (MyChild A (Age <19 v IsInCollege))]. (3)

One can readily imagine such a complicated definition being too hard to
learn from examples. On the other hand, if we first teach some simple sub-
concepts such as “MyChild v MyParent,” and “Age <19 v IsInCollege,”
and next teach some harder subconcepts as functions of those, and then
finally the dependent concept as a function of all previously learned sub-
concepts, then the learning task becomes easier.

Moreover, because we break the target concept into very simple subcon-
cepts, we can develop a learning protocol that has one very nice feature
absent from ordinary pac learning—our learner knows when it is confused.
{Formally, we achieve reliable and probably useful learning.) Continuing
with the above example, we probably do not need to force our learner/
taxpayer to learn the concept dependent perfectly. It is acceptable if the
learner is unable to correctly classify certain unusual, very low probability
instances such as, say, the case of “your underage great-great-great-
granddaughter when all intervening generations are deceased.” The
probability of such an instance occurring is extremely low. Nevertheless, it
would be desirable, if one ever did encounter such an “ever so great”
grandchild, to be able to say, “I don’t know if she is an instance of a
dependent,” rather than to misclassify her.

Our learner can, if desired, do precisely that—output a short fast progam
taking instances as its input and having the three outputs, 1 (dependent),
0 (not a dependent), and “I don’t know.” This program is guaranteed to

! This is, in fact, a great oversimplification of the IRS definition.
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Input variables: FiledJointReturn, SupportFromMe>1/2, MyChild, MyParent,
Age<19, IsInCollege, Income<1900.
Output: dependent = ys.

vi = (SupportFromMe > 1/2) A ~FiledJointReturn

y2 = MyChild v MyParent
ya = Age <19V IsInCollege
y¢ = Income < 1900 A y;

ys = MyChild Ay,

Y = YaVuys

¥1. = niAys

FiG. 1. A straight line program for dependent.

be correct whenever it gives a 1 or 0 classification, and moreover, with
probability at least 1 — ¢ it says “I don’t know” for at most a fraction ¢
of all instances. In short, it meets our definition of reliable and probably
useful learning.

2.1. Notation

Before showing how to break our target concept, c,, into pieces, we
must first specify the problem more precisely. We assume that ¢, is
represented as a straight-line program of size s. Let the inputs to ¢, be
Xy, .. X, and call the output y,. The ith line of the program for ¢, for
1<i<s is of the form

Yi=Z;,1°Z4 2, 4)

where - is one of the two boolean operators v and A, and every z; , is
either an input literal x; or its complement X; for some j, 1 <j<n, or else
y, or y, for some previously computed y; (ie., j<i).?

We will use EB(L) (standing for “Easy Boolean”) to denote the set of all
boolean formula that are the conjuction or disjunction of two variables,
either or both of which may be negated, chosen from the set L. We will
often write simply EB when the set L is clear from context.

Figure 1 shows a straight line program for the dependent concept defined
in Eq. (3) above. The expression for every y; comes from the class EB(V)),
where V, is defined to be the set of variables {x, .., X,, Vi s ¥i_1 -

2.2. An Easy but Trivial Way to Learn
As a first attempt to develop a protocol for learning an arbitrary target
concept ¢, piece by piece, we might try the following: Have the teacher

2 Note that straight line programs are equivalent to topologically sorted circuits, with lines
being equivalent to the gates of the circuit.
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supply not only examples, but also the pieces—the values y, of all the rele-
vant subconcepts. In particular, let the y; be rearranged in some arbitrary
order, y;, .., y;. Now, each time the learner requests an example, he gets
more than just a labeled example drawn according to P. The learner
receives x, ---X, # y,, .., y,, (and its label). Given all this help, the learning
algorithm can easily determine which of the other variables a given variable
depends on, and so can easily learnc,,.

This solution is not very satisfying, however, since it requires that the
learner receive a large amount of “extra help” with each example. In
essence, every time our learner is given an example while learning
dependent, he would have to be told whether it is a child in college, whether
it is a relative, and so on. Instead, our approach is to first teach the learner
about y, for a while, assume the learner has learned y,, then move on to
¥,, never to return to y,, and so on, y; by ;.

2.3. High Level View of Our Solution

The learning proceeds as follows: As in regular pac learning, there is one
fixed probability distribution, P, on examples throughout; the teacher is
not allowed to help the student by altering the probability distribution.

There are s rounds. The teacher moves from round i to round i + 1 when
the learner requests that he do so. In round i, the learner learns an
approximation to y,.

When our learner requests an example during round i, the teacher gives
the learner a pair, (x,---x,, /), where x,---x, is drawn according to P,
and / specifies whether x, ---x,, is a positive or negative instance of y;. In
other words, in round i, / gives the truth value of y,(x, ---x,) (rather than
the truth value of ¢ (x,--- x,)).

During each round i, the learner tries to (&', d')-learn y, where
g =¢/p,(n,s), 8 =3p,(n, s), and p, and p, are polynomials to be specified
below. This learning task at first glance appears to be extremely simple,
because y; must be a simple conjunction or disjunction of two variables
from the set V; (and perhaps their negations). The catch is that while the
learner gets the true values for x, ---x, he only gets his computed values
for yy, .y vio .

For instance, it might be that the true formula for y; is y, A y,.
However, the values of y, and y, are not inputs to the learning algorithm.
Suppose the learner has pac learned formulas y, and j, for y, and y,. It
may well be that the learner calls EXAMPLES and gets back a particular
X;--+x, and the information that y;(x, ---x,) is true, but both p,(x,---x,,)
and y,(x,---x,) are false even though y,(x, --x,) and y,(x,---x,) are
both true.

Our job is to show how this learning can be done in such a manner that
at the end, when we have some method of computing y, in terms of x, --- x,,,
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the value computed for y,(x, ---x,) e-approximates the target concept with
probability at least 1 —4.

In fact, as we said above, we do something stronger. Our learner not
merely pac learns, but reliably and probably usefully learns.

A Key Technigue. The key technique we use is to have the learner
maintain a list of all possible candidates for a given y,. For each subcon-
cept y; we explicitly maintain the entire version space [17] for y,, as a list
F; of possible candidate functions. The list F; will be constructed in such a
way that it always contains the true formula for y,.

The reason the learner can maintain this list is that the set of all the
possible candidates for any particular y; is of polynomial size. Recall that
the target function c, is specified by a staight line program. Let K be the
total number of possible distinct lines of the form z, ; -z, ,,

K=8(n+;_1>+2. (5)

(There are n+s—1 choices for the two literals in the last line, either of
which may be negated. Also, - can take on two values. The additive factor
of 2 comes from the additional possibilities true and false.) The important
thing to notice is that K is polynomial in n and s, the size of (the represen-
tation of) the target concept.

Remark. 1If instead of EB we use some other polynomial-size concept
class, we get a different value for the constant K specified in equation (5),
but our geneal technique still works.

We exploit the technique of maintaining the list F; of all the possibilities
for y, as follows. We say that an example, (x,---x,,/), is “good” if for
every previously learned y;, 1<j<i, all the formulas in the list F; for y;
take on the same truth value on x,---x,. Our algorithm has three
fundamental parts:

1. In round i we get various examples of y,. Since one of the formulas
in the list F; is the correct one, in every good example all the y/'s are com-
puted correctly. We begin by filtering our examples to obtain a set of good
examples.

2. Given good examples, we can be certain of the values of the y;'s,
so we can proceed to learn y, as a function of the attributes x, ---x,,
Yis o Vi ge

3. Finally, we need to specify the algorithm that we output at the end
of round s.
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3. DETAILED SPECIFICATION OF OUR LEARNING PrOTOCOL

We assume to begin with that the learner is given the size s of the
straight line program. This assumption maikes the presentation simpler
and clearer. We show later that the learner need not be given s.

3.1. Learning y;

During round i, the learner attempts to learn y; as a function of the input
literals and previous y; and y,. The formula for y, is in the class EB(V)),
and there are at most K candidates for the formula for y,.

Given access to labeled examples, it is easy to (g &)-pac learn any
concept y,; that is one of at most K concepts by using the method of
Blumer et al. [4]:

THEOREM 1. Let € be a finite concept class. For any 0<¢, 6 <1, let

m=§(ln %] +1n (g)) (6)

For any target concept c, €€ and probability distribution P on the domain,
with probability at least 1 — & any concept c€ € that is consistent with m
labeled instances of c, chosen according to P is an e-approximation of c,,.

In the case at hand, it is easy to just check all K possibilities for con-
sistency in polynomial time, since K is small enough. Of course, Blumer et
al’s proof of the correctness of this algorithm depends on the assumption
that the instances output by EXAMPLES are fully specified.

We could use that algorithm to &', §’ learn y,, since we always get the
correct values of the instance attributes when we request a labeled example
in round 1 of our learning. In fact, we use something much like that algo-
rithm, except that we check all the possible formulas for y,, and “output”
the set of all the formulas that are consistent with all examples. (Learning
y, is merely an internal subroutine used in the first stage of a multi-stage
learning protocol; we do not really output anything at this point.)

The idea of using a set of possibilities for y, here is that if the set of
guaranteed to contain the correct function, then when all functions in the
set agree, we know we have the correct value of y,. Otherwise we know we
“don’t know” y,.

DEFINITION. Let F= {f,, .., f,} be a set of boolean formulas defined in
terms of the varables x,, .., x,. We say F is coherent on an instance
XX i filxy-oox,)=falxy - x,) = o = filx - x,).

Let F, the set of formulas we learned for y,. Note that for an arbitrary
example, x, --- x,,, if F, is coherent on x| - - - x,, then the common value of the
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Procedure CoherentSetLearner (hereinafter CSL)

Inputs: t; Fy,...,Fi_, (previously learned formula sets for yi,...,yi-1), K, ¢,
and 4.
Qutput: F;, a set of formulas for y;, or “Fail.”

Procedure:

Pick m according to equation (6), using K for |C|.

Call GetSample(m, ), returning a result R.

If GetSample did not return “Fail”
then output F; «— {f € EB(V)| f is consistent with all m filtered examples in R} .
else output “Fail.”

Subroutine GetSample(m,7)

Repeat until either m “filtered” examples are obtained, or 2m attempts are made:
Obtain an example, z = z; - - - z,, by calling EXAMPLES.
Forje—1ltoi—1do

If F; is coherent for zy -+ -y, 1 -+ ¥
then y; is assigned the common value
else exit the For ; loop.
If every F;, 1 < j <1i—1, was coherent on z
then consider z to be successfully “filtered,” and save it.
else discard z.

If m filtered examples were obtained
then return those m filtered examples
else return “Fail”.

FiG. 2. Procedure CSL.

formulas must be the true value for y,(x,---x,). The reason is that we
know that the true formula for y, is contained in F,.

Thus, in order to learn an arbitrary y;, we are led to use Procedure
CoherentSet-Learner (or CSL hereafter), which is specified in Fig. 2. The
key thing to notice in Procedure CSL is that once an example has been
successfully “filtered” (in Subroutine GetSample) then—for that example—
we know not only the values of the instance attributes x, --- x,, but also
the values of y,, ..., ¥;,_;.

To make formal statements about Procedure CSL, we need to extend the
definition of coherence to sequences of sets of formulas.

DeriNITION.  Let F, ..., F; be a collection of sets of boolean formulas,
where all the formulas in set F, specify functions of n+i—1 boolean
variables x,, ..., X,, ¥, .., ¥;_; for some n. The collection is coherent on an
instance x,---x, if F, is coherent on x,-.-x,, and F, is coherent on
X,---X,y;, and so on through F; being coherent on x,---x,y,--- y;,_,,
where y; is the common value of the formulas in the set F,.
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Algorithm Reliable Learner

Inputs: n,¢€,6, s, teacher for gate by gate learning of unknown concept c..
QOutput: Program to classify instances.

Procedure:
K —8("") +2
d —¢/sK;
& — 6/2s;
For i+ 1to s do
F, — CSL(:, Fy,....Fic1, K, €,8);
If F; = “Fail” then exit For i loop;
Output the standard program to classify instances specified in Figure 4.

Fic. 3. Algorithm Reliable Learner.

3.2. Learning the Target Concept

Procedure CSL “learns” the individual y,, but we need another program
to achieve the overall goal of learning the target concept, because we need
a program whose output is a program to classify instances. That program,
which we call "Reliable Learner,” is specified in the algorithm in Fig. 3.

THEOREM 2. Algorithm Reliable Learner reliably and usefully learns gate
by gate any concept in PC.

Before proving Theorem?2, we first introduce a lemma from probability
theory that we will need for this proof, as well as for later proofs.

LemMMa | (Hoeffding’s Inequality). Let X,, X,, .., X,, be independent
0-1 random variables, each with probability p of being 1. Let S=37 X,. Let
r, a, and B be positive constants with § < p<a. Then

Pr[SZ pm+rm]<e~2mr2 o
Pr[$S= am]<3‘2"1(a~p)2 )
Pr[SSﬂm]<e~2m(pfﬁ)2. (9)

Proof. See Hoeflding [8]. |

Hoeffding’s Inequality says that if we run m Bernoulli trials each with
probability of success p, then the chance of getting a number of successes
different from pm by a constant fraction of m is exponentially small.
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Proof of Theorem 2. Fix a target concept ¢, € PC that is a function of
n variables, and some straight line program for ¢, of size s. It will suffice
to prove the theorem to show, for any 0 <¢, é <1, that

1. with probability at least 1 — 4,

« no call to CSL ever returns “Fail,” and,

« with probability at least 1 —¢ the collection of sets F,, .., F, is
coherent on a randomly drawn instance, x, --- x, and,

2. if that collection of sets is coherent on x, ---x,, then y (x,---x,)
(making the appropriate substitutions for intermediate y;) correctly
classifies x, --- x,,.

Our instance space, X, is {0, 1}". Let X,(F,, .., F;_;) be all instances
x€ X such that the collection F,,.., F,_; is coherent on x. The set
X (F,, .., F;_,) contains exactly those instances that might be successfully
filtered and saved by the call to GetSample within CSL(i).

For fe F,, define

err;(f)= {xeXi(Fl""’ F,»,,)[f(x)#y,-(x)}.

The set err;(f) consists of those instances that might be seen as training
instances for y; that f misclassifies.
Let us call fe F, accurate if

&€

Plerr,(f) <—,

where P is the unknown probability distribution on the instance space. We

will classify every F, in one of three ways: fail, inaccurate, or accurate. An

F; which is not fail is called accurate if every fe F; is accurate, and

inaccurate otherwise. Finally, let us say that CSL(i)*> wins if its output is
an accurate F,.

To begin with, note that F, can never be fail. If thus follows from

Theorem 1 that
Pr{F, is inaccurate] < §/2s. (10)

Hence the probability that F, is accurate is at least 1 — /2s.

There are two reasons that CSL(2) could output “Fail.” The first is that
F, could be inaccurate. We ignore ths possibility, because what we
ultimately want to calculate is

Pr[F, and F, are accurate ]

= Pr[ F, is accurate] Pr[ F, is accurate | F, is accurate].

> We will use CSL(i) as shorthand for CSL(i, F,, ..., Fi_, K, ¢, 8).

643/114/1-8
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Thus we need only worry about the case where CSL(2) outputs “Fail” but
F, is accurate.
If F, is accurate, then

Pr[one fixed fe F, disagrees with y, on a random x] < 5{ (11)

Pr[any fe F, disagrees with y, on a random x] < E, (12)
)

since there are at most K formulas in F,. Hence, the probability (given that
F, is accurate) that F, is not coherent for a random instance is at most g/s.
We can use Hoeffding’s Inequality (Lemma 1, Inequality (9) above) to
show that the probability of F, not being coherent on m or more instances
out of 2m randomly drawn instances is at most

e 4m(1/2 — c/sjz.

Now choosing m according to Eq. (6) and substituting ¢/sK for ¢ and K for

€|, we get
— (sK/e)(1 — 2&/s)?
Camy2 e [ 28
e = —
0

<2sK>~sK
$ _—
6

which for our purposes is vanishingly small.*

This means that to determine whether F, is accurate we need only deter-
mine whether the output F, is accurate given that the sample determining
F, was filtered by an accurate F,. This probability is at least 1 — §/2s, and
the reason is almost the same as the reason that the probability that F, is
accurate is at least 1 —4/2s. If CSL(2) does not fail, then the probability
that F, is inaccurate is again at most 6/2s. The difference i1s that now the
probability distribution on instances is not P but the conditional proba-
bility distribution P’ defined by P'(x)=P(x|xe X,). However, since
P'(x) = P(x) for all x in the sample used to pick the formulas in F,, this
difference can only cause the probability that F, is accurate to be larger.

Let & be the event that CSL(i) wins. The argument for an arbitrary call
to CSL(i) is similar to that for CSL(2), and it shows that

Pr[CSL(i) outputs “Fail” | & A --- A &_,] e~ 4mW2-emn?

4To get this inequality, we need to assume that ¢ < 1/5, if s can be as small as 1. Hence,
throughout, our algorithms should really use the value min(1/5, ¢) where the value ¢ is specified.



A MODEL OF CONCEPT LEARNING 103

and that assuming CSL(7/) does not output “Fail,”

Pr[F;is not accurate| &, A --- A é’},l]szi. (13)
5
Thus we have that
—sK
PrL&I6 A - A&,J>1—<-2‘5—+<2STK> ) (14)
s

Now we compute the probability that all calls to CSL win. Then

Pri&i A& A - AE]=Pr[&]-Pr[&( 6] - P& & A - A&, ]

>(1-(3+(5) 7))
= 2s é
>1-34, (15)

since (25K/8) X < 6/2s.

Thus the probability that all calls to CSL win is at least 1 — 4. By defini-
tion, if all calls to CSL win, then no call outputs “Fail,” and all the F; are
accurate. Now we must show that if evey F; is accurate, then the total
probability weight assigned by P to instances x for which some F; is not
coherent is at most &.

We showed above in inequality (12) that the probability weight P
assigns to instances on which F, is not coherent (given that F, is accurate)
is at most ¢/s. Similar reasoning shows that the probability weight P
assigns to instances in X,(F|, .., F;_) for which F; is not coherent is at
most &/s. (As was the case for the examples for F,, the examples for F; are
not drawn from distribution P, but from a distribution that may put more
weight than P does on the examples we care about. Thus the error
measured by P can be ar most ¢/s.) Hence total probability weight assigned
to instances for which some F, is not coherent is at most s(gfs)=¢ as
desired. |

Thus we have as simple program (see Fig. 4) that with probability 1 —¢
classifies most examples correctly, and “knows,” because it found some
incoherent F,, when it is given one of the rare examples it cannot classify.

On the other hand, if we really want to simply pac learn, and output a
boolean circuit, we can do that as well by doing the following: Pick any
formula for y, from F, to obtain a gate computing y,. Use this gate
wherever y, is called for later. In the same manner, pick any formula from
F, to be a gate for computing y,. Continue in this fashion until we finally
have a circuit for y, taking only variables x, --- x, as inputs.



104 RIVEST AND SLOAN

Program to classify instances
Input: instance zy-- - z,.

Output: 1, 0, or “I don’t know.”
Note: This program depends on the global variables Fi,..., F;.

For j «— 1to s do

If F; = “Fail”
then halt and output “I don’t know.”
else
If F; is coherent on zy -+ Zn,¥1,...,¥j-1

then y,; « common value of the functions in F;.
else halt and output “I don’t know.”

Output y,.

F16. 4. Program to classify instances.

COROLLARY 1. The output program of Reliable Learner can be converted
to a boolean circuit, resulting in pac learning.

3.3. Removing the Circuit Size as an Input

This section shows that we can still use Procedure CSL as a subroutine
for learning reliably and probably usefully even if the size of the target
concept is not known by the learner.

The idea of the previous method is that when we know s we can spread
out our tolerance ¢ by ¢/s per line for a total of &, and we can similarly
spread out 8. Now, not knowing s, we allocate 6¢/n%i? for line i, for a total
of

e

i 6¢ <
3.2
i1 1

:g,

*® 1
L

i

and we can similarly allocate 8. (This idea of spreading error out like 1/i?
goes back at least to Angluin [17].) Of course that is merely the intuition;
the details are specified in the description of Algorithm Reliable Learner 2
(Fig. 5), which we now prove to be correct.

THEOREM 3. Algorithm Reliable Learner 2 reliably and usefully learns
gate by gate any concept in PC.

Proof. We simply give the changes that need to be made to the proof
of Theorem 2. We now define fe F,; to be accurate only if

6¢
P(x)<—.
xeé%.m ) Kn*i®
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Algorithm Reliable Learner 2

Inputs: n,e, 8, teacher for gate by gate learning of unknown concept c,.
Qutput: Program to classify instances.

Procedure:
For i« 1to s do
K «— 8(n+;—l) +2
€ — 6e/ Knhi?; § « 35/n%%;
F, « CSL(:, /A,...,Fi1,K,€,8;
If F; = “Fail” then exit For i loop;
Output the standard program specified in Figure 4.

FiG. 5. Algorithm Reliable Learner 2.

We continue to say that F; is accurate if every fe F; is accurate, and
that CSL(i) wins if its output is an accurate F; as opposed to either an
inaccurate F, or “Fail.”

Equation (10) becomes

. 36
Pr[ F, is not accurate ] <;z‘- (16)

Its generalization, Eq. (13), now states that assuming that the call to
CSL({) does not output “Fail,” we have

36
Pr[ F;is inaccurate | CSL(1), ..., CSL(i — 1) win] SE'Z_' (17)

The chance that a call to CSL(i) outputs “Fail” if all the F; for
1<j<i—1 are accurate is still exponentially vanishing. Thus Eq. (14)
becomes, again letting &; be the event that CSL(i) wins,

P68 A --- Aé';»Alle—(fiJr(“z"z)_”). (18)

ni? \ 38
Equation (15) now becomes

Pl A&y A - A6 ]=Pr[&8] -Pr(&[&]---Prl& (& A - A& ]
5 35 712[2 — Ki? s
= — — —
10+ (5) )
I 66
1 — —_
> i§1 nZiZ

>1-46.
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The argument for the parameter ¢ is similar to the argument for the
parameter 6. |

4, NOISE

The previous section showed how to reliably and probably usefully learn
any concept in PC. However, the algorithm given there requires that the
examples given by the teacher be completely free of noise. This section
shows how that algorithm can be modified to tolerate noise in the data,
albeit with a slight degradation in the learning.

From perfect data we saw that we could achieve

Guaranteed reliable and [Pr[useful]>1-4].
In the presence of noise we achieve
Pr[Reliable and useful]>=1—34.

Note that for the purpose of applications, this degradation is not as bad as
it seems at first. All our algorithms have sample complexity and running
time polynomial in log(1/4), so we can afford to make é very smail

We begin with a discussion of various ways of modeling noisy data, and
then move on to algorithms to cope with noisy data.

4.1. Models of Noise

We consider two different sorts of noise: one in which instances may be
incorrectly labeled (e.g.: a positive instance labeled “—"), and one in which
data may be completely corrupted. In general it is possible to tolerate
much higher levels of classification noise [3, 9, 227 than arbitrary noise,
and that is also the case here.

Formally we model noise by imagining that the good oracle EXAM-
PLES is replaced by some other oracle which sometimes gives “bad” data.
The “desired,” noiseless output of one of these oracles would thus be a
correctly labeled point (x, /), where x is drawn according to P. In all cases
we will assume that the oracle is given a correctly labeled (x, /) where x is
drawn according to P, and that with probability 1 — v for some v < 1/2, the
oracle must return this noiseless example. Now we describe what happens
in the probability v noisy case for each oracle.

+ The oracle MAL, returns an example (%, /) about which no assump-
tions whatsoever may be made. In particular, this example may be
maliciously selected by an adversary who has infinite computing power, and
has knowledge of ¢, P, v, and the internal state of the algorithm calling this
oracle. This oracle is meant to model the situation where the learner usually
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gets a correct example, but some small fraction v of the time the learner

gets noisy examples and the nature of the noise is unknown or unpredict-
able.

o The random misclassification oracle RMC, returns (x,7) (ie., x
with the wrong label). In this model the only source of noise is random
misclassification.

-

« The malicious misclassification oracle MMC (x, /) where / is a label
about which no assumptions whatsoever may be made. As with MAL, we
assume an omnipotent, omniscient adversary; but in this case the adversary
only gets to choose the label of the example. This oracle is meant to model
a situation where the only source of noise is misclassification, but the
nature of the misclassification is unknown or unpredictable.

For some learning from noisy data, it is necessary to give the learning
algorithms an upper bound, v,, on the noise rate, though not the actual
noise rate itself.

4.2. Classification Noise

We begin by showing how to modify Procedure CSL to tolerate noise
coming from RMC,, and then go on to argue that this modification in fact
tolerates noise coming from MMC,. Call this new procedure CSL2.

In the case of classification noise, the learner receives one additional
input, vy, an upper bound on the noise rate. The learner knows that all the
examples come from RMC, for some fixed 0 < v <v,. Of course the learner
is now allowed time polynomial in 1/(1 —2v,) in addition to the other
parameters [3].

There are two differences between Procedure CSL and Procedure CSL2.
The first is that the value of m is changed to

8 3sK

The second difference between CSL and CSL2 is that the formulas for F,
are chosen in a different way once a sample of m “good” examples have
been obtained. In Procedure CSL2, for every condidate formula ffor y,, we
calculate d,, the number of disagreements between f and the labels of the
teacher for the sample. Clearly 0 < d,< m. In Procedure CSL we simply set
F; to be the set of all f such that d,=0. We knew there would be at least
one such f, because in the noise-free case, d,=0. Now that there is
classification noise, however, there may not be any f for which d, is equal
to 0.
Now instead we find a formula f, such that 4, is minimal, and set

F={fld,<d, +2t}, (20)
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Procedure CSL2

Inputs: i; Fy,..., F;_1 (previously learned {ormula sets); v, m, and €.
Qutput: F;, a set of formulas for y;, or “Fail.”

Procedure:
Call GetSample(m,i); (Specified above in Figure 2.)
If GetSample returned “Fail”
then output “Fail”
else t « (1 — 2u,)m/4;
for every f € EB(V;) compute mistake number dy;
Set dmin — min {d;};
Fi 0
for every f € EB(V})
If dy < dmin + 2t then put f in F;.

F1G. 6. Procedure CSL2.

where

&1 =2v,)m

t
4sK

We formally specify CSL2 in Fig. 6. (Also, we have slightly altered the
parameter passing, so we specify Algorithm Noisy Learner to call CSL2
in Fig. 7, although it is only slightly different from Algorithm Reliable

Learner.)

Algorithm Noisy Learner

Inputs: vy, n,¢€, 8, s, teacher for gate by gate learning of unknown concept c..
Output: Program to classify instances.

Procedure:
K80 +2
¢ —¢/sK;
Set m according to equation (19);
Fori —1tosdo
F; — CSL2(i, F,. .., Fir, v, m, €);
If F; = “Fail” then exit For i loop;
Output the standard program specified in Figure 4.

FiG. 7. Algorithm Noisy Learner.
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THEOREM 4. Given inputs 0<v,<1/2, n, O<eg, 6<1, s, and with
examples from RMC, for some v < v, Algorithm Noisy Learner produces an
output that, with probability at least 1 — 6, is reliable and classifies at most
probability weight ¢ of instances “I don’t know.”

Proof. We want to show that the proof of Theorem 2 still goes through,
with slight modifications. We proved two key facts about each F; in that
proof. The first was that the true formula for y; was guaranteed to be in F,.
The second was that with high probability each F; was accurate, where
accurate was defined to mean that every formula in F; agreed with y, with
probability at least 1 —¢/s. Let us say that an F; is “very good” if it has
both of those two propertiecs. We now show that with high probability
every F,; is very good. (Because of the noise, we can no longer hope to
guarantee that the true formula for y, is in F,.) In particular we show that

Pr[y;e F,and F;is accurate| F,, .., F,_, areall verygood] 2 1—-4/s. (21)

Assume now that F,, F,, .., F;_, are all very good. That means that
we have the full set of correct attribute bits in the m examples we use to
determine F; (although, of course, some of the labels may be wrong).

Note that £'(1 —2v,) is the expected gap between the disagreement rate
for the true formula for y, and the disagreement rate for any formula that
is not an &'-approximation of the true formula. Thus if we were to make F,
the set of all f such that d,<E[d, +2¢], then we would have that with
high probability, F; is very good. Now E[d, ] = vm, but unfortunately we
do not know the value v.

Nevertheless, to prove that Eq. (21) holds it suffices to show that the
sum of the probability of the negation of each of the following three events
is at most J/s.

1. No formula has a number of disagreements less than E[d,,]—t.

2. For the true formula y, we have d,, <E[d,, ]+

3. Every (¢/sK)-bad formula has more than E[d, ] + 3¢ disagreements
with the sample.

If both of the first two events occur, then we have that d, <d, +2t, so
y: is placed in F;. In such a case we also have that d, <E[d, ]+¢, and
thus that d, <E[d, ]+t Together with the occurrence of event 3 this
guarantees that no (g/sK)-bad formuia is put in F,.

For every formula f we have that E[d,]1>E[d,,]. Thus we get from
Hoeffding’s Inequality (Eq. (7)) that

Pr[f has de E[dy,] _ t] < e—Zm(s(l — 2wp)/4sK

)
<.
3Ks
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Thus the probability of event 1, that any f has a d, that is too small, is at
most d/3s.

A similar argument shows that the probability of event 2 is at most
6/3Ks, and that the probability of event 3 is at most §/3s.

Given this, the rest of the proof is completely analogous to the proof of
Theorem 2. |

THEOREM 5. Procedure CSL2 has the performance specified in Theorem 4
even if the examples come from MMC,.

Proof. We want to show that the condition specified by inequality (21)
still holds in this case. To do this, we use a proof technique from Sloan
[22]. The only difference between MMC, and RMC, is that there may be
some examples that were labeled incorrectly by RMC, that now the adver-
sary decides to label correctly. We show that in spite of any such change
of label, if y, was in F, when the examples came from RMC, then it still
is in F;, and that no ¢'-bad formula that was not placed in F, before is now.

The only way for y; not to be in F, is if some other formula has ms/2
fewer disagreements with the sample than y, has. Changing incorrect labeis
to correct labels cannot affect whether that is true. Changing an incorrect
label to a correct label may or may not decrease the number of dis-
agreements for any formula but y, by 1; such a change must decrease d,,
by 1.

The way we showed that no &'-bad formula was placed in F, was by
showing that every such formula had a number of disagreements at least
ms/2 greater than d,. Again, changing incorrect labels to correct labels
cannot eliminate such a gap. |

4.3. Malicious Noise

The strategy for learning in the presence of malicious noise is similar to
the strategy for learning in the presence of classification noise. We only
consider malicious noise rates v < ¢/4sK. Given a sample from MAL,, the
expected mistake rate of any concept that is not (g/sK)-bad must be at
most (¢/sK) — v. Therefore, there must be a gap g in expected mistake rates
between the target concept and any (¢/sK)-bad concept of at least

&
=—-2
£ sK v

> P
25K

since v < ¢/4sK.
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Procedure CSL3

Inputs: i; Fy,..., Fi_y (previously learned formula sets); K, ¢, and §.
Output: F;, a set of formulas for y,, or “Fail.”

Procedure:
Pick mpmaL according to equation (22).
Call GetSample(mmaL); (Specified in Figure 2.)
If GetSample returned “Fail”
then F; « “Fail”
else F; « {f € EB(V;) : mistake rate of f < ¢/2sK}.

FiG. 8. Procedure CSL3.

We exploit this gap by getting a sample of size

8s°K>  [3sK
mMAL=—-8—2-—1n ("6‘_), (22)

and putting into our set any rule with a disagreement rate less than v + g/2.
The precise algorithm, CSL3, is specified in Fig. 8. We specify Algorithm
Malicious Learner in Fig. 9.

THEOREM 6. Given inputs n, 0 <e, d< 1, s, and with examples of any
concept in PC from MAL, for some v < ¢/4sK (where K is from Eq. (5)), the
output of Algorithm Malicious Learner, with probability at least 1—9,
correctly classifies all but at most probability weight ¢ of instances.

Proof Sketch. The proof is similar to the proof of Theorem 4. We still
say the set £, is very good if y,e F; and if the set of instances for which any
fe F, disagrees with y; has probability weight at most &/s.

Algorithm Malicious Learner

Inputs: n, ¢, 8, s, access to MAL,.
Qutput: Program to classify instances.

Procedure:
K« 8("*’;") +2
Fori«— 1tosdo
1::' - CSL3(1, F], ey F‘,‘_l, 1\’, €, 15);
If F; = “Fail” then exit For 1 loop;
Output the standard program specified in Figure 4.

Fi6. 9. Algorithm Malicious Learner.
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Assume now that F,, F,, .., F;,_, are all very good, and that in CSL3(/)
the call to GetSample did not return “Fail.” In order to show that F; is
very good we need the following two events to occur.

1. The mistake rate of y; must be less than &/2sK.

2. Every (¢/sK)-bad formula fe EB(V;) must have a mistake rate of
at least &/25K.

Since the samples come from the malicious error oracle, we cannot
simply say that d,,, the mistake number of y;, is the sum of Bernoulli trials.
Nevertheless, the worst thing that the malicious error oracle can do to 4,
is add one to it every time it affects the examples. Thus, d,, has expectation
no greater than the sum of my,, Bernoulli random variables each with
probability ¢/4sK of being 1. As usual we use Hoeffding’s Inequality to
show that the probability of getting a value as high as 2(g/2sK) mya is at
most (§/2K).

The argument for the second event, an (¢/sK)-bad formula having too
low a mistake rate, is similar. J

5. SUMMARY AND CONCLUSIONS

In this paper, we have shown how to learn complicated concepts
subconcept by subconcept. The key technique is to maintain a list of all
possible condidates (the “version space™) for the subconcept, instead of
simply picking some one candidate. For the purposes of this paper, we
were concerned with the class EB, but our method is applicable to any
polynmial size class. We expect that this particular method will prove to
have other applications.

We believe this general approach is the philosophically sound way to do
inductive inference, since what distinguishes induction from deduction is
that in induction one can never be completely certain that one has learned
correctly. (Kugel [13] contains an interesting discussion of this point.) It
is always possible that one will see a counterexample to one’s current
favorite theory. This idea of maintaining a list of all the candidates for the
correct “answer” has recently borne fruit elsewhere in the field of inductive
inference as well, in a new model of recursion theoretic inductive inference
[20], and in a method for inference of simple assignment automata [21].

Another contribution of this paper has been to introduce the notion
of learning that is reliable and probably useful, and to give a learning
procedure that achieves such learning.

In fact, our learning procedure is in one sense not merely reliable, but
even better; because it has maintained candidate sets for all subconcepts, it
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need not simply output “I don’t know” on difficult instances. It has main-
tained enough information to be able to know which subconcept is causing
it to output “I don’t know.” Thus, in a learning environment where it is
appropriate to do so, our learning procedure can go back and request
more help from the teacher on that particular subconcept.
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