
PayWord and MicroMint:
Two Simple Micropayment Schemes

Ronald L. Rivest 1 and Adi Shamir 2

1 MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, Mass.
02139, rivest @theory.lcs.mit.edu

2 Weizmann Institute of Science, Applied Mathematics Department, Rehovot, Israel,
shamir@theory.lcs.mit.edu

1 I n t r o d u c t i o n

~Ve present two simple micropayment schemes, "PayWord" and :'MicroMint,"
for making small purchases over the Internet. We were inspired to work on this
problem by DEC's "Millicent" scheme[10]. Surveys of some electronic payment
schemes can be found in Hallam-Baker [6], Schneier[16], and Wayner[18].

Our main goal is to minimize the number of public-key operations required
per payment, using hash operations instead whenever possible. As a rough guide,
hash functions are about 100 times faster than RSA signature verification, and
about 10,000 times faster than RSA signature generation: on a typical worksta-
tion, one can sign two messages per second, verify 200 signatures per second,
and compute 20,000 hash function values per second.

To support micropayments, exceptional efficiency is required, otherwise the
cost of the mechanism will exceed the value of the payments. As a consequence,
our micropayment schemes are light-weight compared to full macropayment
schemes. We "don't sweat the small stuff": a user who loses a micropayment
is similar to someone who loses a nickel in a candy machine. Similarly, candy
machines aren't built with expensive mechanisms for detecting forged coins, and
yet they work well in practice, and the overall level of abuse is low. Large-scale
and/or persistent fraud must be detected and eliminated, but if the scheme de-
livers a volume of payments to the right parties that is roughly correct, we're
happy.

In our schemes the players are brokers, users, and vendors. Brokers authorize
users to make micropayments to vendors, and redeem the payments collected
by the vendors. While user-vendor relationships are transient, broker-user and
broker-vendor relationships are long-term. In a typical transaction a vendor sells
access to a World-Wide Web page for one cent. Since a user may access only a few
pages before moving on, standard credit-card arrangements incur unacceptably
high overheads.

The first scheme, "PayWord," is a credit-based scheme, based on chains of
"paywords" (hash values). Similar chains have been previously proposed for dif-
ferent purposes: by Lamport [9] and Haller (in S/Key) for access control [7],
and by Winternitz [11] as a one-time signature scheme. The application of this

Y0

idea for micropayments has also been independently discovered by Anderson et
al. [2] and by Pederson [14], as we learned after distributing the initial draft of
this paper. We discuss these related proposals further in Section 5. The user
authenticates a complete chain to the vendor with a single public-key signature,
and then successively reveals each payword in the chain to the vendor to make
micropayments. The incremental cost of a payment is thus one hash function
computation per party. PayWord is optimized for sequences of micropayments,
but is secure and flexible enough to support larger variable-value payments as
well.

The second scheme, "MicroMint," was designed to eliminate public-key op-
erations altogether. It has lower security but higher speed. It introduces a new
paradigm of representing coins by k-way hash-function collisicms. Just as for a
real mint, a broker's "economy of scale" allows him to produce large quantities
of such coins at very low cost per coin, while small-scale forgery at tempts can
only produce coins at a cost exceeding their value.

2 Genera l i t i e s and N o t a t i o n

We use public-key cryptography (e.g. RSA with a short public exponent). The
public keys of the broker B, user U, and vendor V are denoted PKB, PKu,
and PKv, respectively; their secret keys are denoted SKB, SKu, and S K y .
A message M with its digital signature produced by secret key SK is denoted
{M}sK. This signature can be verified using the corresponding public key PK.

We let h denote a cryptographically strong hash function, such as MD5115]
or SHAll3]. The output (nominally 128 or 160 bits) may be truncated to shorter
lengths as described later. The important property of h is its one-wayness and
collision-resistance; a very large search should be required to find a single input
producing a given output, or to find two inputs producing the same output. The
input length may, in some cases, be equal to the output length.

3 P a y W o r d

PayWord is credit-based. The user establishes an account with a broker, who
issues her a digitally-signed PayWord Certificate containing the broker's name,
the user's name and IP-address, the user's public key, the expiration date, and
other information. The certificate has to be renewed by the broker (e.g. monthly),
who will do so if the user's account is in good standing. This certificate authorizes
the user to make Payword chains, and assures vendors that the user's paywords
are redeemable by the broker. We assume in this paper that each payword is
worth exactly one cent (this could be varied).

In our typical application, when U clicks on a link to a vendor V's non-free
web page, his browser determines whether this is the first request to V that
day. For a first request, U computes and signs a "commitment" to a new user-
specific and vendor-specific chain of paywords wl, w2, . . . , w~. The user creates

71

the payword chain in reverse order by picking the last payword w= at random,
and then computing

~i = h(wi+i)

for i = n - 1, n - 2, . . . , 0. Here w0 is the root of the payword chain, and is not
a payword itself. The commitment contains the root w0, but not any payword
wi for i > 0. Then U provides this commitment and her certificate to V, who
verifies their signatures.

The i-th payment (for i = 1, 2 , . . .) from U to V consists of the pair (w~, i),
which the vendor can verify using wi-1. Each such payment requires no calcu-
lations by U, and only a single hash operation by V.

At the end of each day, V reports to B the last (highest-indexed) payment
(wt, l) received from each user that day, together with each corresponding com-
mitment . B charges U's account 1 cents and pays l cents into V's account. (The
broker might also charge subscription and/or transaction fees, which we ignore
here.)

A fundamental design goat of PayWord is to minimize communication (par-
ticularly on-line communication) with the broker. We imagine that there will be
only a few nationwide brokers; to prevent them from becoming a bottleneck, it
is important that their computational burden be both reasonable and "off-line."
PayWord is an "off-line" scheme: V does not need to interact with B when U first
contacts V, nor does V need to interact with B as each payment is made. Note
that B does not even receive every payword spent, but only the last payword
spent by each user each day at each vendor.

PayWord is thus extremely efficient when a user makes repeated requests
from the same vendor, but is quite effective in any case. The public-key opera-
tions required by V are only signature verifications, which are relatively efficient.
We note that Shamir's probabilistic signature screening techniques[17] can be
used here to reduce the computational load on the vendor even further. Another
application where PayWord is well-suited is the purchase of pay-per-view movies;
the user can pay a few cents for each minute of viewing time.

This completes our overview; we now give some technical details.

3.1 U s e r - B r o k e r r e l a t i o n s h i p a n d ce r t i f i c a t e s

User U begins a relationship with broker B by requesting an account and a Pay-
Word Certificate. She gives B over a secure authenticated channel: her credit-
card number, her public key PKu, and her "delivery address" Au. Her aggre-
gated PayWord charges will be charged to her credit-card account. Her delivery
address is her Internet /email or her U.S. mail address; her certificate will only
authorize payments by U for purchases to be delivered to Au.

The user's certificate has an expiration date E. Certificates might expire
monthly, for example. Users who don' t pay their bills won't be issued new cer-
tificates.

The broker may also give other (possibly user-specific) information Iu in
the certificate, such as: a certificate serial number, credit limits to be applied

72

per vendor, information on how to contact the broker, broker/vendor terms and
conditions, etc.

The user's certificate C~ thus has the form:

Cu = {B, U, Au, PKu, E, I v}sK,

The PayWord certificate is a statement by B to any vendor that B will
redeem authentic paywords produced by U turned in before the given expiration
date (plus a day's grace).

PayWord is not intended to provide user anonymity. Although certificates
could contain user account numbers instead of user names, the inclusion of Au
effectively destroys U's anonymity. However, some privacy is provided, since
there is no record kept as to which documents were purchased.

If U loses her secret key she should report it at once to B. Her liability
should be limited in such cases, as it is for credit-card loss. However, if she does
so repeatedly the broker may refuse her further service. The broker may also
keep a "hot list" of certificates whose users have reported lost keys, or which are
otherwise problematic.

As an alternative to hot-lists, one can use hash-chains in a different manner as
proposed by Mieali [12] to provide daily authentication of the user's certificate.
The user's certificate would additionally contain the root w~ of a hash chain of
length 31. On day j - 1 of the month, the broker will send the user (e.g. via
email) the value w~ if and only if the user's account is still in good standing.
Vendors will then demand of each user the appropriate w ~ Value before accepting
payment.

3.2 User-Vendor relationships and payments

User-vendor relationships are transient. A user may visit a web site, purchase
ten pages, and then move on elsewhere.

C o m m i t m e n t s
When U is about to contact a new vendor V, she computes a fresh payword

chain wl, . . . , w, with root w0. Here n is chosen at the user's convenience; it
could be ten or ten thousand. She then computes her commitment for that chain:

M = {I~ Cu, wo, D, IM}SKv- .

Here V iden~ifies the vendor, Cu is U's certificate, w0 is the root of the payword
chain, D is the current date, and IM is any additional information that may be
desired (such as the length n of the payword chain). M is signed by U and given
to V. (Since this signature is necessarily "on-line," as it contains the vendor's
name, the user might consider using an "on-line/off-line" signature scheme[5].)

This commitment authorizes B to pay V for any of the paywords wl, . . . , w,~
that V redeems with B before date D (plus a day's grace). Note that paywords
are vendor-specific and user-specific; they are of no value to another vendor.

Note that U must sign a commitment for each vendor she pays. tf she rapidly
switches between vendors, the cost of doing so may become noticeable. However,

73

this is PayWord's only significant computational requirement, and the security it
provides makes PayWord usable even for larger "macropayments" (e.g. software
selling at $19.99).

The vendor verifies U's signature on M and the broker's signature on C~
(contained within M), and checks expiration dates.

The vendor V should cache verified commitments until they expire at the
end of the day. Otherwise, if he redeemed (and forgot) paywords received before
~he expiration date of the commitment, U could cheat V by replaying earlier
commitments and paywords. (Actually, to defeat this attack, V need store only
a short hash of each commitment he has reported to B already today.)

The user should preferably also cache her commitment until she believes that
she is finished ordering information from V, or until the commitment expires.
She can always generate a fresh commitment if she re-visits a vendor whose
commitment she has deleted.

Payments
The user and vendor need to agree on the amount to be paid. In our ex-

emplary application, the price of a web page is typically one cent, but could
be some other amount. A web page should presumably be free if the user has
already purchased it that day, and is just requesting it again because it was
flushed from his cache of pages.

A payment P from U to V consists of a payword and its index:

P = (wl, i) .

The payment is short: only twenLy or thirty bytes long. (The first payment to V
that day would normally accompany U's corresponding commitment; later pay-
ments are just the payword and its index, unless the previous chain is exhausted
and a new chain must be committed to.) The payment is not signed by U, since
it is self-authenticating (using the commitment).

The user spends her paywords in order: wl first, then w2, and so on. If each
payword is worth one cent, and each web page costs one cent, then she discloses
wi to V when she orders her i-th web page from V that day.

This leads to the PayWord payment policy: for each commitment a vendor
V is paid l cents, where (wt,l) is the corresponding payment received with the
largest index. This means that V needs to store only one payment from each
user: the one with the highest index. Once a user spends wi, she can not spend
wj for j < i. The broker can confirm the value to be paid for w~ by determining
how many applications of h are required to map wt into wo.

PayWord supports variable-size payments in a simple and natural manner. If
U skips paywords, and gives w7 after giving w~, she is giving V a nickel instead
of a penny. When U skips paywords, during verification V need only apply h a
number of times proportional to the value of the payment made.

A payment does not specify what item it is payment for. The vendor may
cheat U by sending him nothing, or the wrong item, in return. The user bears
the risk of losing the payment, just as if he had put a penny in the mail. Vendors
who so cheat their customers will be shunned. This risk can be moved to V, if

74

V specifies payment after the document has been delivered. If U doesn't pay,
V can notify B and/or refuse U further service. For micropayments, users and
vendors might find either approach workable.

3.3 V e n d o r - B r o k e r r e l a t i onsh ip s a n d r e d e m p t i o n

A vendor V needn't have a prior relationship with B, but does need to obtain
PKB in an authenticated manner, so he can authenticate certificates signed by
B. He also needs to establish a way for B to pay V for paywords redeemed.
(Brokers pay vendors by means outside the PayWord system.)

At the end of each day (or other suitable period), V sends B a redemption
message giving, for each of B's users who have paid V that day (1) the com-
mitment Co- received from U, (2) the last payment P = (w~, t) received from
U.

The broker then needs to (1) verify each commitment received (he only needs
to verify user signatures, since he can recognize his own certificates), including
checking of dates, etc., and (2) verify each payment (w~,l) (this requires l hash
function applications). We assume that B normally honors all valid redemption
requests.

Since hash function computations are cheap, and signature verifications ~re
only moderately expensive, B's computational burden should be reasonable,
particularly since it is more-o>less proportional to the payment volume he is
supporting; B can charge transaction or subscription fees adequate to cover his
computation costs. We also note that B never needs to respond in real-time; he
can batch up his computations and perform them off-line overnight.

3.4 Eff ic iency

We summarize PayWord's computational and storage requirements:

- The broker needs to sign each user certificate, verify each user commitment,
and perform one hash function application per payment. (All these computa-
tions are off-line.) The broker stores copies of user certificates and maintains
accounts for users and vendors.

- The user needs to verify his certificates, sign each of his commitments, and
perform one hash function application per payword committed to. (Only
signing commitments is an on-line computation.) He needs to store his secret
key SKu, his active commitments, the corresponding payword chains, and
his current position in each chain.

- The vendor verifies all certificates and commitments received, and performs
one hash function application per payword received or skipped over. (All his
computations are on-line.) The vendor needs to store all commitments and
the last payment received per commitment each day.

75

3.5 Variat ions and Extens ions

In one variation, h(.) is replaced by h~(.) = h(s, .), where s is a "salt" (random
value) specified in the commitment. Salting may enable the use of faster hash
functions or hash functions with a shorter output length (perhaps as short as
64-80 bits).

The value of each payword might be fixed at one cent, or might be specified in
Cu or M. In a variation, M might authenticate several chains, whose paywords
have different values (for penny paywords, nickel paywords, etc.).

The user name may also need to be specified in a payment if it is not clear
from context. If U has more than one payword chain authorized for V, then the
payment should specify which is relevant.

Paywords could be sold on a debit basis, rather than a credit basis, but only
if the user interacts with the broker to produce each commitment: the certificate
could require that the broker, rather than the user, sign each commitment. The
broker can automatically refund the user for unused paywords, once the vendor
has redeemed the paywords given to him.

In some cases, for macropayments, it might be useful to have the "commit-
ment" act like an electronic credit card order or check without, paywords being
used at all. The commitment would specify the vendor and the amount to be
paid.

The broker may specify in user certificates other terms and conditions to
limit his risk. For example, B may limit the amount that U can spend per day
at any vendor. Or, B may refuse payment if U's name is on B's "hot list" at
the beginning of the day. (Vendors can down-load B's hot-list each morning.)
Or, B may refuse to pay if U's total expenditures over all vendors exceeds a
specified limit per day. This protects B from extensive liability if SKu is stolen
and abused. (Although again, since Cu only authorizes delivery to Au, risk is
reduced.) In these cases vendors share the risk with B.

Instead of using payword chains, another method we considered for improving
efficiency was to have V probabilistically select payments for redemption. We
couldn't make this idea work out, and leave this approach as an open problem.

4 M i c r o M i n t

MieroMint is designed to provide reasonable security at very low cost, and is
optimized for unrelated low-value payments. MicroMint uses no public-key op-
erations at all.

MicroMint "coins" are produced by a broker, who sells them to users. Users
give these coins to vendors as payments. Vendors return coins to the broker in
return for payment by other means.

A coin is a bit-string whose validity can be easily checked by anyone, but
which is hard to produce. This is similar to the requirements for a public-key
signature, whose complexity makes it an overkill for a transaction whose value
is one cent. (PayWord uses signatures, but not on every transaction.)

76

MicroMint has the property that generating many coins is very much cheaper,
per coin generated, than generating few coins. A large initial investment is re-
quired to generate the first coin, but then generating additional coins can be
made progressively cheaper. This is similar to the economics for a regular mint:
which invests in a lot of expensive machinery to make coins economically. (It
makes no sense for a forger to produce coins in a way that costs more per coin
produced than its value.)

The broker will typically issue new coins at the beginning of each month;
the validity of these coins will expire at the end of the month. Unused coins are
returned to the broker at the end of each month, and new coins can be purchased
at the beginning of each month. Vendors can return the coins they collect to the
broker at their convenience (e.g. at the end of each day).

We now describe the "basic" variant of MicroMint. Many extensions and
variations are possible on this theme; we describe some of them in section 4.2.

Hash Function Collisions
MieroMint coins are represented by hash function collisions, for some speci-

fied one-way hash function h mapping m-bit strings x to n-bit strings y. We say
that x is a pro-image of y if h(x) = y. A pair of distinct m-bit strings (xs, x2) is
called a (2-way) collision if h(x~) = h(x2) = y, for some n-bit string y.

If h acts ':randomly," the only way to produce even one acceptable 2-way
collision is to hash about ~ = 2 ~/2 x-values and search for repeated outputs.
This is essentially the "birthday paradox." (We ignore small constants in our
analyses.)

Hashing c times as many x-values as are needed to produce the first collision
results in approximately c 2 as many collisions, for 1 < e < 2 ~/2, so produc-
ing collisions can be done increasingly efficiently, per coin generated, once the
threshold for finding collisions has been passed.

Coins as k-way collisions
A problem with 2-way collisions is that choosing a value of n small enough to

make the broker's work feasible results in a situation where coins can be forged
a bit too easily by an a.dversary. To raise the threshold further against would-be
forgers, we propose using k-way collisions instead of 2-way collisions.

A k-way collision is a set of k distinct a-values xl, x,., . . . , xk that have
the same hash value y. The number of x-values that must be examined before
one expects to see the first k-way collision is then approximately 2 "(k-1)/k. If
one examines e time~ this many ~-values, for 1 <_ e < 2 n/k, one expects to
see about c k k-way collisions. Choosing k > 2 has the dual effect of delaying
the threshold where the first collision is seen, and also accelerating the rate of
collision generation, once the threshold is passed.

We thus let a k-way collision (x l , . . . , x k) represent a coin. The validity of
this coin can be ea.sily verified by anyone by checking that the xi's are distinct
and that

h(x~) = h(x~) = h(xk) = y

for some n-string y.

77

Minting coins
The process of computing h(x) = y is analogous to tossing a bail (x) at

r andom into one of 2 ~ bins; the bin that ball x ends up in is t h e one with
index y. A coin is thus a set of k balls that have been tossed into the same bin.
Gett ing k balls into the same bin requires tossing a substantial number of balls
altogether, since balls can not be "aimed" at a particular bin. To mint coins,
the broker will create 2 n bins, toss approximately k2 ~ balls, and create one coin
from each bin that now contains at least k balls. With this choice of parameters
each ball has a chance of roughly 1/2 of being part of a coin.

Whenever one of the 2 ~ bins has k or more balls in it, k of those balls can be
extracted to form a coin. Note that if a bin has more than k balls in it, the broker
can in principle extract k-subsets in multiple ways to produce several coins.
However, an adversary who obtains two different coins from the same bin could
combine them to produce muttiple new coins. Therefore, we recommend that
a MicroMint broker should produce at most one coin from each bin. Following
this rule also simplifies the Broker's task of detecting multiply-spent coins, since
he needs to allocate a table of only 2 n bits to indicate whether a coin with a
particular n-bit hash value has already been redeemed.

A small problem in this basic picture, however, is that computat ion is much
cheaper than storage. The number of balls that can be tossed into bins in a
month-long computat ion far exceeds both the number of balls that can be mem-
orized on a reasonable number of hard disks and the number of coins that the
broker might realistically need to mint. One could a t t empt to balance the com-
putat ion and memory requirements by utilizing a very slow hash algorithm, such
as DES iterated many times. Unfortunately, this approach also slows down the
verification process.

A better approach, which we adopt, is to make most balls unusable for the
purpose of minting coins. To do so, we say that a ball is "good" if the high-order
bits of the hash value y have a value z specified by the broker. More precisely,
let n = t + u for some specified nonnegative integers t and u. If the high-order
t bits of y are equal to the specified value z then the value g is called "good,
" and the low-order u bits of y determine the index of the bin into which the
(good) ball x is tossed. (General x values are referred to merely as "balls," and
those that are not good can be thought of as having been conceptually tossed
into nonexistent virtual bins that are "out of range.")

A proper choice of t enables us to balance the computat ional and storage
requirements of the broker, without slowing down the verification process. It
slows down the generation process by a factor of 2 t, while limiting the storage
requirements of the broker to a small multiple of the number of coins to be
generated. The broker thus tosses approximately k2 '~ balls, memorizes about k2 ~
good balls that he tosses into the 2 ~ bins, and generates from them approximately
(1/2) - T ' valid coins.

Remark: We note that with s tandard hash functions, such as MD5 and DES,
the number of ouput bits produced may exceed the number n of bits specified in
the broker 's parameters . A suitable hash function for the broker can be obtained

78

by discarding all but the low-order n bits of the standard hash function output.
This discarding of bits other than the low-order n bits is a different process than
that of specifying a particular value for the high-order t bits out of the n that
was described above.

A d e t a i l e d scenar io
Here is a detailed sketch of how a typical broker might proceed to choose

parameters for his minting operating for a given month. The calculations are
approximate (values are typically rounded to the nearest power of two), but
instructive; they can be easily modified for other assumptions.

The broker wilt invest in substantial hardware that gives him a computational
advantage over would-be forgers, and run this hardware continuously for a month
to compute coins valid for the next month. This hardware is likely to include
many special-purpose chips for computing h efficiently.

We suppose that the broker wishes to have a net profit of 81 million per
month (approximately 227 cents/inonth). He charges a brokerage fee of 10%.
That is, for every coin worth one cent that he sells, he only gives the vendor
0.9 cents when it is redeemed. Thus, the broker needs to sell one billion, coins
per month (approximately 23o coins/month) to collect his $1M fee. If an average
user buys 2500 ($25.00) coins per month, he will need to have a customer base
of 500,000 customers.

The broker chooses k = 4; a coin will be a good 4-way collision.
To create 230 coins, the broker chooses u = 31, so that he creates an array

of 231 (approximately two billion) bins, each of which can hold up to 4 x-values
that hash to an n-bit value that is the concantenation of a fixed t-bit pat tern z
and the u-bit index of the bin.

The broker will toss an average of 4 bails into each bin. That is, the broker will
generate 4 - 23* = 2 aa (approximately" eight billion) x-values that produce good
:y-values. When he does so, the probability that a bin then contains 4 or more x-
values (and thus can yield a coin) is about 1/2. (Using a Poisson approximation,
it. can be calculated that the correct value is approximately 0.56.) Since each of
the 2 al bins produces a coin with probability 1/2, the number of coins produced
is 2 a~ as desired.

In order to maximize his advantage over an adversary who wishes to forge
coins, the broker invests in special-purpose hardware that allows him to compute
hash values very quickly. This will allow him to choose a relatively large value
of t , so that good hash values are relatively rare. This increases the work factor
for an adversary (and for the broker) by a factor of 2 t. The broker chooses his
hash function h as the low-order n bits of the encryption of some fixed value v0
with key x under the Data Encryption Standard (DES):

h(x) = [DU&(v0)],...,, .

The broker purchases a number of field-programmable gate array (FPGA)
chips, each of which is capable of hashing approximately 225 (approximately 30
million) x-vMues per second. (See [3].) Each such chip costs about $200; we es-
t imate that the broker's actual cost per chip might be closer to $400 per chip

79

when engineering, support, and associated hardware are also considered. The
broker purchases 2 s (= 256) of these chips, which costs him about $100,000.
These chips can collectively hash 2 aa (approximately 8.6 billion) values per sec-
ond. Since there are roughly 2 ~1 (two million) seconds in a month, they can hash
about 254 (approximately 18 million billion) values per month.

Based on these estimates the broker chooses n = 52 and t = 21 and runs his
minting operation for one month. Of the k2 ~ = 254 hash values computed, only
one in 221 will be good, so that approximately 2 a3 good x-values are found, as
necessary to produce 2 a~ coins.

Storing a good (x, h(x)) pair takes less than 16 bytes. The total storage
required for all good pairs is less than 2 a7 bytes (128 Gigabytes). Using standard
magnetic hard disk technology costing approximately $300 per Gigabyte, the
total cost for storage is less than $40,000. The total cost for the broker's hardware
is thus less than $150,000, which is less than 15% of the first month's profit.

Rather than actually writing each pair into a randomly-accessible bin, the
broker can write the 233 good pairs sequentially to the disk array, and then sort
them into increasing order by y value, to determine which are in the same bin.
With a reasonable sorting algorithm, the sorting time should be under one day.

Se l l ing coins
Towards the end of each month, the broker begins selling coins to users for the

next month. At the beginning of each month, B reveals the new validity criterion
for coins to be used that month. Such sales can either be on a debit basis or
a credit basis, since B will be able to recognize coins when they are returned
to him for redemption. In a typical purchase, a user might buy $25.00 worth
of coins (2500 coins), and charge the purchase to his credit card. The broker
keeps a record of which coins each user bought. Unused coins are returned to
the broker at the end of each month.

Making payments
Each time a user purchases a web page, he gives the vendor a previously

unspent coin (xl, x2, . . . , xk). (This might be handled automatica.lly by the user's
web browser when the user clicks on a link that has a declared fee.) The vendor
verifies that it is indeed a good k-way collision by computing h(xi) for 1 <
i _< k, and checking that the values are equal and good. Note that while the
broker's minting process was intentionally slowed down by a factor of 2 ~, the
vendor's task of verifying a coin remains extremely efficient, requiring only k
hash computations and a few comparisons (in our proposed scenario, k = 4).

Redemptions
The vendor returns the coins lie has collected to the broker at the end of each

day. The broker checks each coin to see if it has been previously returned, and if
not, pays the vendor one cent (minus his brokerage fee) for each coin. We propose
that if the broker receives a specific coin more than once, he does not pay more
than once. Which vendor gets paid can be decided arbitrarily or randomly by
the broker. This may penalize vendors, but eliminates any financial motivation a
vendor might have had to cheat by redistributing coins he has collected to other
vendors.

80

4.1 S e c u r i t y P r o p e r t i e s

We distinguish between small-scale attacks and large-scale attacks. We believe
that users and vendors will have little motivation to cheat in order to gain only
a few cents; even if they do, the consequences are of no great concern. This is
similar to the way ordinary change is handled: many people don't even bother
to count their change following a purchase. Our security mechanisms are thus
primarily designed to discourage large-scale attacks, such as massive forgery or
persistent double-spending.

F o r g e r y
Small-scale forgery is too expensive to be of interest to an adversary: with

the recommended choice of/~ = 4, n = 54, and u = 31, the generation of the first
forged coin requires about 245 hash operations. Since a standard work-station
can perform only 214 hash operations per second, a typical user will need 231
seconds (about. 80 years) to generate just one forged coin on his workstation.

Large-scale forgery can be detected and countered as follows:

- All forged coins automatically become invalid at the end of the month.
- Forged coins can not be generated until after the broker announces the new

monthly coin validity criterion at the beginning of the month.
- The use of hidden predicates (described below) gives a finer t ime resolution

for rejecting forged coins without affecting the validity of legal coins already
in circulation.

- The broker can detect the presence of a forger by noting when he receives
coins correspondings to bins that he did not produce coins from. This works
well in our scenario since only about half of the bins produce coins. To
implement this the broker need only work with a bit-array ha.xring one bit
per bin.

- The broker can at any time declare the current period to be over, recall
all coins for the current period, and issue new coins using a new validation
procedure.

- The broker can simultaneously generate coins for several future months in a
longer computation, as described below; this makes it harder for a forger to
catch up with the broker.

Theft of coins
If theft of coins is .judged to be a problem during initial distribution to users

or during redemption by vendors, it is easy to transmit coins in encrypted form
during these operations. User/broker and vendor/broker relationships are rela-
tively stable, and long-term encryption keys can be arranged between them.

To protect coins as they are being transferred over the Internet from user to
vendor, one can of course use public-key techniques to provide secure communica-
tion. However, in keeping with our desire to minimize or eliminate public-key op-
erations, we propose below another mechanism, which makes coins user-specific.
This does not require public-key cryptography, and makes it harder to re-use
stolen coins.

81

Another concern is that two vendors may collude so that both a t t empt to
redeem the same coins. The recommended solution is that a broker redeem a coin
at most once, as discussed earlier. Since this may penalize honest vendors who
receive stolen coins, we can make coins vendor-specific as well as user-specific,
as described below.

Double -spending
Since the MicroMint scheme is not anonymous, the broker can detect a

doubly-spent coin, and can identify which vendors he received the two instances
from. He also knows which user the coin was issued to. With the vendors' honest
cooperation, he can also identify which users spent each instance of that coin.
Based on all this information, the broker can keep track of how many doubly-
spent coins are asssociated with each user and vendor. A large-scale cheater
(either user or vendor) can be identified by the large number of duplicate coins
associated with his purchases or redemptions; the broker can then drop a large-
scale cheater from the system. A small-scale cheater may be hard to identify,
but, due to the low value of individual coins, it is not so impor tant if he escapes
identification.

MicroMint does not provide any mechanism for preventing purely malicious
framing (with no financial benefit to the framer). We believe that the known
mechanisms for protecting against such behavior are too cumbersome for a
light-weight micropayment scheme. Since MicroMint does not use real digital
signatures, it may be hard to legally prove who is guilty of duplicating coins.
Thus, a broker will not be able to pursue a cheater in court, but can always drop
a suspected cheater from the system.

4.2 Variations

U s e r - s p e c l f i c coins
We describe two proposals for making coins that are user-specific in a way

that can be easily checked by vendors. Such coins, if stolen, are of no value to
most other users. This greatly reduces the motivation for theft of coins.

In the first proposal, the broker splits the users into "groups," and gives
each user coins whose validity depends on the identity of the group. For ex-
ample, the broker can give user U coins that satisfy the additional condition
h'(xl, x2 , . . . , xk) = h'(U), where hash function h' produces short (e.g. 16-bit)
output values that indicate U's group. A vendor can easily cheek this condition,
and reject a coin that is not tendered by a member of the correct group.

The problem with this approach is that if the groups are too large, then a
thief can easily find users of the appropriate group who might be willing to buy
stolen coins. On the other hand, if the groups are too small (e.g. by placing each
user is in his own group), the broker may be forced to precompute a large excess
of coins, just to ensure that he has a large enough supply to satisfy each user's
unpredictable needs.

In the second proposal, we generalize the notion of a "collision" to more
complicated combinatorial structures. Formally, a coin (x l , . . . , xk) will be valid

82

for a user U if the images Yl = h(x l) , Y2 = h(x2), . . . , yk = h(xk) satisfy the
condition

Yi+l - - Yi = di (mod 2 u)

f o r i = 1, 2 , . . . , k - 1 , where

(dl, d2 , . . . , dk-1) .= h*(U)

for a suitable auxiliary hash function h t. (The original proposal for representing
coins as collisions can be viewed as the special case where all the distances di's
between the f bins are zero.)

To mint coins of this form, the broker fills up most of his bins by randomly
tossing bails into them, except that now it is not necessary to have more than
one ball per bin. We emphasize that this pre-computat ion is not. user-specific,
and the broker does not need to have any prior knowledge of the number of coins
that will be requested by each user, since each good ball can be used in a coin
for any user. After this lengthy pre-computation, the broker can quickly create
a coin for any user U by

Comput ing (d , , . . . , d~-l) = h' (U) .
- Picking a random bin index Yl. (This bin should have been previously unused

as a Yl for another coin, so that Yl can be used as the "identity" of the coin
when the broker uses a bit-array to determine which coins have already been
redeemed.)

- Comput ing yi+i = yi + di (mod 2 ~) for i = 1, 2 k - 1,
- Taking a ball Xl out of bin Yl, and taking a copy of one ball out of each bin

Y2, . . . , Yk. (If any bin Yi is empty, start over with a new Yl-) Note that balls
may be re-used in this scheme.

- Producing the ordered k-tuple (x l , . . . , xk) as the output coin.

A convenient feature of this scheme is that it is easy to produce a large num-
ber of coins for a given user even when the broker's storage device is a magnetic
disk with a relatively slow seek time. The idea is based on the observation that
if the Yl values for successive coins are consecutive, then so also will be the y~
values for each i, 1 < i <_ k. Therefore, a request for 2500 new coins with k = 4
requires only four disk seeks, rather than 10,000 seeks: at 10 milliseconds per
seek, this reduces the total seek t ime from 100 seconds to only 40 milliseconds.

Note that in principle coins produced for different users could re-use the
same ball x~. Conceivably, someone could forge a new coin by combining pieces
of other coins he has seen. However, he is unlikely to achieve much success by
this route unless he sees balls from a significant fraction of all the bins. For
example, suppose that there are 2 al bins, of which the forger has seen a fraction
2 - l ~ (i.e., he has collected 22* balls from coins spent by other users). Then the
expected number of coins he can piece together from these bails that satisfy the
condition of being a good coin for himself is only 23 ' (2-s~ 3 = 2. (Even if he
had 1000 customers for these coins, he would expect to make only 2000 coins
total, or two coins per customer on the average.) Thus, we are not too concerned
about this sort of "cut-and-paste" forgery.

83

Vendor-specific coins
To further reduce the likelihood that coins will be stolen, the user can give

coins to vendors in such a way that each coin can be redeemed only by a small
fl'action of the vendors. This technique makes a stolen coin less desirable, since it
is unlikely to be accepted by a vendor other than the one where it was originally
spent. The additional check of validity can be carried out both by the vendor
and by the broker. (Having vendor-specific coins is also a major feature of the
Millicent [10] scheme.)

The obvious difficulty is that neither the broker nor the user can predict
ahead of t ime which vendors the user will patronize, and it is unreasonable to
force the user to purchase in advance coins specific for each possible vendor.
Millicent adopts the alternative strategy whereby the user must contact the
broker in real-t ime whenever the user needs coins for a new vendor. (He also
needs to contact the broker to return excess unused coins that are specific to that
vendor.) We can overcome these problems with an extension of the user-specific
scheme described above, in which the user purchases a block of "successive"
MicroMint coins.

Intuitively, the idea is the following. Choose a value v (e.g. 1024) less than u.
Let a u-bit bin-index y be divided into a u - v-bit upper part y' and a v-bit lower
par t y ' . We consider that y' specifies a "superbin" index and that y" specifies a
bin within that superbin. A user now purchases balls in bulk and makes his own
coins. He purchases balls by the superbin, obtaining 2 ~ bails per superbin with
one ball in each bin of the superbin. He buy k superbins of balls for 2" cents. A
coin f rom user U is valid for redemption by vendor V if:

and

where

and

Y~+I = y ~ + d ~ (m o d 2 " - ~) f o r i = l , . . . , k - 1 ,

" " " (m o d 2 ~) fo r i 1, k 1. Y i + l = Y i q - d i = . . . , - .

h ' (u) (4 , , ' = . . d ~ _ l)

h " (V) = (4 ' , " . . . , d k _ l) .

The broker chooses the next available superbin as the first superbin to give the
user; the other superbins are then uniquely determined by the differences {d~}
defined by the user's identity and the choice of the first superbin. Analogously,
to make a coin for a particular vendor the user chooses a ball fl'om the next
bin from his first superbin, and must use balls from bins in the other superbins
that are then uniquely determined by the differences {d~'} defined by the vendor's
identity and the choice of the first bin. Note that balls from the first superbin are
used only once, to permit detection of double-spending, whereas balls from the
other superbins may appear more than once (in coins paid to different vendors),
or not at all. It may be difficult for a broker to create superbins that are perfectly
full even if he throws more balls. He might sell superbins that are almost full,

84

but then a user may have diff• producing some coins for some vendors. To
compensate, the broker can reduce the price by one cent for each empty bin sold.

S i m u l t a n e o u s l y g e n e r a t i n g bal ls fo r m u l t i p l e m o n t h s

Our major line of defense against large-scale forgery is the fact that the
broker can compute coins in advanc% whereas a forgery at tempt can only be
started once the new validity condition for the current month is announced.
We now describe a technique whereby computing the balls for a single month's
coins takes eight months, but the broker doesn't fall behind because he can
generate balls for eight future months concurrently. The forger wilt thus have
the dual problems of starting late and being too slow, even if he uses the same
computational resources as the reM broker.

In this method, the broker changes the monthly validity criterion, not by
changing the hash function h, but by announcing each month a new value z
such that ball x is good when the high-order t bits of h(x) are equal to z. The
broker randomly and secretly chooses in advance the values z that will be used
for each of the next eight months. Tossing a ball still means performing one hash
function computation, but the tossed ball is potentially ~!good" for any of the
next eight months, and it, is trivial for the broker to determine if this is the case.
In contrast, the forger only knows the current value of z, and can not afford to
memorize all the balls he tosses, since memory is relatively expensive and only
a tiny fraction (e.g., 2 -21 in our running example) of the bails are considered
"good" at any given month.

We now describe a convenient way of carrying out this calcule~tion. Assume
that at the beginning of the month j, the broker has all of the balls needed for
month j , 7/8 of the balls needed for month j + 1, 6/8 of the balls needed for
month j + 2, ..., and 1/8 of the balls needed in for month j + 7. During month
j , the broker tosses balls by randomly picking x values, calculating y = h(x),
and checking whether the top-most t bits of y are equal to any of the z values
to be used in months j + 1, . . . , j + 8. To slow the rate at which he generates
good balls for each upcoming month, he increases n and t each by three. After
the month-long computation, we expect him to have all the coins he needs for
month j + 1, 7/8 of the coins he needs for month j + 2, and so on; this is the
desired "steady-state" situation. 'The broker needs four times as much storage
to hold the balls generated for future months, but balls for fllture months can
be temporarily stored on inexpensive magnetic tapes because he doesn't need to
respond quickly to user requests for those coins yet.

Hidden Predicates
The "hidden predicate" technique for defeating forgers works as follows. We

choose rn > n, and require each m-bit pre-image to satisfy a number of hidden
predicates. The hidden predicates should be such that generating pre-images
satisfying the predicates is easy (if you know the predicate). To generate an
xi, one can pick its last n bits randomly, and define the j - th bit of xi, for
j = r n - n , . . . , 1, to be the j - th hidden predicate applied to bits j + 1 , . . . , m of
xi. The hidden predicates must be balanced and difficult to learn from random
examples. Suggestions of hard-to-learn predicates exist, in the learning-theory

85

literature. For example the par i ty /major i ty functions of Blum et at.[4] (which
are the exclusive-or of some of the input bits together with the majority function
on a disjoint set of input bits) are interesting, although slightly more complicated
functions may be appropriate in this application when word lengths are short.
With rn - n = 32, the broker can have one hidden predicate for each day of the
month. He could reveal a new predicate each day, and ask vendors to check that
the coins they receive satisfy these predicates (otherwise the coins will not be
accepted by the broker). This would not affect the validity of legitimate coins
already in circulation, but makes forgery extremely difficult, since the would-
be forger would have to discard much of his precomputation work as each new
predicate is revealed. We feel that such techniques are strongly advisable in
MicroMint.
O t h e r E x t e n s i o n s

Peter Wayner (private communication) has suggested a variation on Mi-
croMint in which coins of different values are distinguished by publicly-known
predicates on the x-values.

5 R e l a t i o n s h i p t o O t h e r M i c r o p a y m e n t S c h e m e s

In this section we compare our proposals to the Millicent[10], NetBill [1], Net-
Card [2], and Pederson [14] micropayment schemes.

NetBill offers a number of advanced features (such as electronic purchase
orders and encryption of purchased information), but it is relative expensive:
digital signatures are heavily used and the NetBill server is involved in each
payment.

Millicent uses hash functions extensively, but the broker must be on-line
whenever the user wishes to interact with a new vendor. The user buys vendor-
specific scrip from the broker. For applications such as web browsing, where new
user-vendor relationships are continually being created, Millicent can place a
heavy real-time burden on the broker. Compared to Millicent, both PayWord
and MicroMint enable the user to generate vendor-specific "scrip" without any
interaction with the broker, and without the overhead required in returning
unused vendor-specific scrip. Also, PayWord is a credit rather than debit scheme.

Anderson, Manifavas, and Sutherland [2] have developed a micropayment
system, "NetCard," which is very similar to PayWord in that it uses chains of
hash values with a digitally signed root. (The way hash chains are created differs
in a minor way.) However, in their proposal, it is the bank rather than the user
who prepares the chain and signs the root, which adds to the overall burden of
the bank. This approach prevents the user from creating new chains, although
a NetCard user could spend a single chain many times. Compared to PayWord,
NetCard is debit-based, rather than credit-based. We have heard that a patent
has been applied for on the NetCard system.

Torben Pedersen outlines a mieropayment proposal[14] that is also based on
hash chains. His motivating application was for incremental payment of tele-
phone charges. His paper does not provide much detail on many points (e.g.

86

whether the system is credit or debit-based, how to handle exceptions, whether
chains are vendor-specific, and other auxiliary security-related matters) . The
CAFE project has filed for a patent on what we believe is an elaboration of
Pedersen's idea. (The details off the CAFE scheme are not available to us.)

Similarly following Pedersen's exposition, the iKP developers Hauser, Steiner,
and Waidner have independently adopted a similar approach [8].

6 C o n c l u s i o n s and D i s c u s s i o n

We have presented two new micropayment schemes which are exceptionally eco-
nomical in terms of the number of public-key operations employed. Furthermore,
both schemes are @ l i n e from the broker's point of view.

R e f e r e n c e s

i. The NetBill Electronic Commerce Project, 1995.
http ://www. ini. cmu/NETBILL/home, html.

2. Ross Anderson, t-larry Manifavas, and Chris Sutherland. A practical electronic
cash system, 1995. Available from author: Ross. Anderson@cl. cam. ac.uk.

3. Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu Shi-
momura, Eric Thompson, and Michael Wiener. Minimal key lengths for sym-
metric ciphers to provide adequate commercial security: A report by an ad hoc
group of cryptographers and computer scientists, Jmmary 1996. Available at
http : //www. bsa. org.

4. Avrim Bhim, Merrick Purst, Michael Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
Proc. CRYPTO 93, pages 278-291. Springer, 1994. Lecture Notes in Computer
Science No. 773.

5. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-fine digital signa-
tures. In G. Brassard, editor, Proc. CRYPTO 89, pages 263-277. Springer-Verlag,
1990. Lecture Notes in Computer Science No. 435.

6. Phillip Hallam-Baker. W3C payments resources, 1995.
http ://www. w3. org/hypert ext/WWW/Payment s/overview, html.

7. Nell M. Hailer. The S/KEY one-time password system. In ISOC, 1994.
8. Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-Payments based on

iKP, December 17, 1995. Available from authors, s t i 0zu r i ch , ibm.com.
9. Leslie Lamport. Password authentication with insecure communication. Commu-

nications of the A CM, 24(11):770-771, November 1981.
10. Mark S. Manasse. Millicent (electronic microcommerce), 1995.

http ://www. research, digital, com/SRC/pers onal/Mark3~anasse/uncommon/ucom, html.
I1. Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Proc.

CRYPTO 89, pages 218-238. Springer-Verlag, 1990. Lecture Notes in Computer
Science Noo 435.

12. Silvio Micali. Efficient certificate revocation. Technical Report TM-542b, MIT
Laboratory for Computer Science, March 22, 1996.

13. National Institute of Standards and Technology (NIST). F/PS Publication 180:
Secure Hash Standard (SHS), May 11, 1993.

87

14. Torben P. Pedersen. Electronic payments of small amounts. Technical Report
DAIMI PB-495, Aarhus University, Computer Science Department, ~rhus, Den-
mark, August 1995.

15. Ronald L. Rivest. The MD5 message-digest algorithm. Internet Request for Com-
rnents, April 1992. RFC 1321.

16. Bruce Schneier. Applied Cryptography (Second Edition). John Wiley & Sons, 1996.
17. Adi Shamir. Fast signature screening. CRYPTO '95 rump session talk; to appear

in RSA Laboratories' CryptoBytes.
18. Peter Wayner. Digital Cash: Commerce on the Net. Academic Press, 1996.

