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Many electronic payment schemes have been pro-
posed in recent years to address the problem of se-
cure transactions over open networks. Micropayment
schemes are a special kind of payment schemes for
applications in which each payment is very small.
To support micropayments, exceptional eff i ciency is
required; otherwise, the cost of the mechanism will
exceed the value of the payments.

PayWord and Micr oMint a re two simple micro -
payment schemes. In both schemes, the players are
brokers, users and vendors. Brokers authorize users to
make micropayments to vendors and redeem the pay-
ments collected by the vendors (See Figure 1). Bro-

ker-user and br oker-vendor r elationships are long-
term, while user-vendor r elationships are transient.

Our micropayment schemes might be considered light-
weight when compared with full payment schemes in
the sense that our security goal is to keep honest
people honest (a similar situation exists with newspa-
per vending machines): exceptionally small-scale fraud
and abuse cannot be totally prevented. In return, how-
ever, we try to achieve the following efficiency goals:

• Minimize the number of public-key operations
by using hash operations whenever possible.
(Roughly, hash functions are about 100 times
faster than RSA signature verification and about
10,000 faster than RSA signature generation.)

• Minimize communication (particularly on-line
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communication) with brokers. Since there may
be only a few nationwide brokers, it is important
that their computational burden be both reason-
able and “off-line.”

• Make the communication per transaction effi-
cient, especially for repeated small purchases.

PayWord is a credit-based scheme and is optimized
for sequences of micropayments. It is also secure and
flexible enough to support larger variable-value pay-
ments as well. Micr oMint intr oduces a new para-
digm for electronic coins and is designed to eliminate
public-key operations altogether. It has lower secu-
rity but higher efficiency.

PayWord
Roughly speaking, PayW ord consists of the follow-
ing components:

1. A user establishes an account with a br oker, who
issues the user a digitally-signed certificate. This
authorizes the user to make payword chains,
which are chains of hash values.

2. Before contacting a vendor, the user creates a
vendor -specific payword chain off -line.

3. The user authenticates the complete chain to the
vendor with a single public-key signature, and
then successively reveals each payword in the
chain to make each micropayment.

4. The vendor redeems the paywords received from
the user with the original broker.

Payword Chains
In the construction of a payword chain, we will use a
one-way hash function, such as MD5 [6]. The hash
function h has the property that, given a hash value
y, it is hard to find an input x, such that y=h(x).

Figure 1.
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A user creates a payword chain {w 0, w1, w2, ...., wn} by
picking the final payword w n at random and com-
puting paywords according to w i = h(w i+1). The fi rst
payword w 0 is called the “root” of the chain. Given
w0 it is hard for anyone other than the user to figure
out the rest of the paywords in the chain. By reveal-
ing w 0, however, the user is “committed” to the
payword chain she just created.

User-Br oker relationship
A user begins a relationship with a broker by request-
ing an account and a PayWord Certificate. The user
first gives the broker over a secure authenticated
channel: her credit-card number, her public key PK U,

and her “delivery address” (e.g., IP-address). The bro-
ker then issues the user a digitally signed certificate
which authorizes her to make payword chains until
a given expiration date, and authorizes the delivery
of goods only to the specified delivery addre ss.

The user’s certificate C U thus has the following form:

CU = {broker,  user, user’s delivery address,

PKU, expiration-date, other- info}  SKB
,

where { } SKB 
denotes that the contents of { } are signed

with the broker’s private key SK B. The PayWord cer-
ti ficate C U is a statement by the broker to any ven-
dor that authentic paywords pr oduced by the user
and used before the expiration date will be redeemed.

User-V endor r elationship
User -vendor r elationships are transient. A user might
visit a web site, purchase ten pages, and then move
on elsewhere. When the user is about to contact a
new vendor, she computes a fresh payword chain {w 0,

w1, w2, ...., wn}. Here n is chosen at the user’s conve-
nience; it could be ten or ten thousand. She then
computes her commitment for that chain:

M  = {vendor,  C U, w 0, current-date, other- info} SKU.

The commitment M , which is signed with the user’s
private key SK U, authorizes the broker to pay the ven-
dor for any of the paywords w 1, w2, ...., wn redeemed
on the curr ent date. Paywords are  vendor- specific and
user- speci fic;  they are of no value to another vendor.
Upon receiving the commitment M , the vendor veri-
fies the user’s signature on M  and the br oker’s signa-
ture on C U (contained within M ), and checks the

expiration dates. After the commitment, payment
from a user to a vendor consists of a payword and its
index: (w i,i). The payment is not signed by the user.

The user spends her paywords in order: w 1 fi rst, then
w2, and so on. If each payword is worth one cent and
each web page costs one cent, then she discloses w i

to the vendor when she orders her i -th web page from
the vendor that day. This leads to the PayWord pay-
ment policy: For each commitment a vendor is paid l
cents, where (wl,l) is the corresponding payment received
with the largest index. This means that the vendor
needs to store only one payment from each user: the
one with the highest index. The broker can confirm
the value to be paid for w l by determining how many
applications of h are required to map w l into w 0.

Vendor-Br oker relationship
A vendor needn’t have a prior r elationship with a
broker, but does need to obtain the public key of the
broker in an authenticated manner, so he can au-
thenticate certificates signed by the broker. He also
needs to establish a way for the broker to pay him
redeemed paywords.

At the end of each day (or other suitable period),
the vendor sends the broker a redemption message
giving, for each of the broker’s users who have paid
the vendor that day, the commitment C U and the
last payment P=(w l ,l ). The broker needs to first
verify each commitment received by checking the
user’s signatures (since he can recognize his own cer-
tificates), and then verify each payment (w l ,l ) by
computing the hash function l times. The broker will
normally honor all valid redemption requests.

Security
In a typical scenario for PayW ord, each payword rep-
resents a very small amount of money, such as one
cent. After the commitment, the paywords do not
need to be signed by the user, since the paywords are
self-authenticating using the commitment. Such a
feature may allow each payword to represent a larger
amount of money (e.g., software selling at $19.99).
Hence, the level of security and flexibility of Pay-
W ord makes it possible to support certain “macro -
payment” as well.

In PayW ord, the contents of a payment does not
specify what item it is payment for. A vendor may
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cheat a user by sending her nothing, or the wrong
item, in return. The user bears the risk of losing the
payment, just as if she had put a penny in the mail.
Vendors who so cheat their customers will be
shunned. This risk can be moved to the vendor,  if
he specifies payment after the document has been
deliver ed. If the user doesn’t pay, the vendor can no-
tify the broker and/or refuse the user further service.
For micropayments, users and vendors might find ei-
ther approach workable.

Efficiency
PayWord is designed to minimize the on-line com-
munication with brokers: the vendor does not need
to interact with the broker when a user first contacts
the vendor, nor is any interaction with the br oker
required as each payment is made. In PayW ord, the
communication per transition is also very efficient:
after the commitment, each payword is only 20 to
30 bytes long. Moreover,  the broker does not even
receive every payword spent, but only the l ast
payword spent by each user each day at each vendor.
PayWord is thus extr emely ef ficient when a user
makes r epeated r equests from the same vendor,  but
is quite effective in any case.

PayWord’s computational and storage re quir ements
are summarized below:

• The broker needs to sign each user certificate,
verify each user commitment, and perform one
hash function application per payment. (All these
computations are off-line.) The broker stores cop-
ies of user certificates and maintains accounts for
users and vendors.

• The user needs to verify her certificates, sign each
of her commitments, and perform one hash func-
tion application per payword committed to. (Only
signing commitments is an on-line computation.)
She needs to store her private key, her active com-
mitments, the corresponding payword chains, and
her current position in each chain.

• The vendor verifies all certificates and commit-
ments received, and performs one hash function
application per payword received or skipped over.
(All these computations are on-line.) The ven-
dor needs to store all commitments and the last
payment received per commitment each day.

MicroMint
Micr oMint intr oduces a new paradigm for repr esent-
ing electronic coins by “hash function collisions.” In
fact, it uses hash functions only without public-key
cryptography. Micr oMint has the pr operty that gen-
erating many coins is much cheaper, per coin gener-
ated, than generating few coins. A large initial in-
vestment is required to generate the first coin, but
then generating additional coins can be made pro-
gressively cheaper. This is similar to the economics
for a regular mint, which invests in a lot of expen-
sive machinery to make coins economically.

In a typical setting, a broker produces coins that are
valid for a given period (e.g., a month). The br oker
needs to invest in substantial hardware that gives
him a computational advantage over would-be forg-
ers, and run this hardware continuously for a month
to compute coins valid for the next month. New
coins are issued to users at the beginning of each
month. Users give valid coins to vendors as payment,
and vendors return coins collected to the broker at
their convenience (e.g., at the end of each day).

MicroMint coins as hash function collisions
MicroMint coins are represented by hash function
collisions, for some specified one-way hash function
h mapping m - bi t strings x t o n- bi t strings y.  A k- way
collision (k • 2) i s a set of k distinct x-values (x 1, x 2,
..., x k) that have the same hash value y.

W e fi rst give a brief review of the computation time
for finding hash function collision. Assume h acts
“randomly,” then the only way to pr oduce even a
single k -way collision is to hash about 2 n(k-1)/ k x-val-
ues and search for repeated outputs. (The case for 2-
way collisions is essentially the “birthday paradox.”)
However, if one examines c times this many x- val-
ues, for 1 < c < 2n/k, one expects to see about c k k-way
collisions. Hence, producing collisions can be done
increasingly efficiently, per coin generated, once the
first collision has been passed. Note that increasing
k has the dual effect of delaying the threshold at
which the first collision is seen, and also accelerat-
ing the rate of collision generation once the thresh-
old is passed.

W e thus let a k-way collision (x 1, x 2, ..., x k) represent
a coin. This coin can be easily verified by checking
that the x i’s are distinct and that
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h(x 1) = h(x 2) = ... = h(x k) = y

for some n- bi t string y.  Note that each coin is a bit-
string whose validity can be easily checked by any-
one, but which is hard to pr oduce. This is similar to
the requirements for a public-key signature, but the
complexity of the signature makes it an overkill for a
transaction whose value is only one cent.

The process of minting coins
The process of computing h(x)=y is analogous to toss-
ing a ball x at random into one of 2 n bins; the bin
which ball x ends up in is the one with index y.  A
coin is thus a set of k balls that have been tossed into
the same bin. Getting k balls into the same bin re-
quires tossing a substantial number of balls alto-
gether, since balls can not be “aimed”. To mint coins,
the broker will create 2n bins, toss approximately k2 n

balls, and create one coin from each bin that now
contains at least k  balls. In this way each ball has a
chance of roughly 1/2 of being part of a coin.

A small pr oblem in this basic picture, however,  is
that computation is much cheaper than storage. The
number of balls that can be tossed into bins in a long
computation far exceeds the number of balls that
can be memorized on a reasonable number of hard
disks. We thus propose to make most balls unusable
as part of a coin, in a manner that depends on the
hash value y.  To do so, we say that a ball x is “good”
if the high-order t  bits of the hash value y  have a
value z  specified by the br oker. More precisely, let
n = t + u. If the high-order t  b i ts of y are equal to z,
then y  is called “good,” and the low-order u bi ts of y
deter mine the index of the bin in which the (good)
ball x is tossed.

A proper choice of t  enables us to balance the com-
putational and storage r equir ements of the br oker.
This slows down the generation process by a factor of
2t, without slowing down the verification process. The
broker thus tosses approximately k2 n balls, memorizes
about k2 u good balls that he tosses into 2 u bins, and
generates from them about (1/2) ∞ 2u valid coins.

A typical scenario
Here is a sketch of how a typical broker might
choose the parameters (k , u, t, n) and make invest-
ment in hardware. We suppose that the br oker
wishes to have a net profit of $1 million per month,

and he charges a 10% brokerage fee to vendors for
redemption. Thus, the broker needs to sell one bil-
lion coins (approximately 2 30) per month to collect
his $1 million fee. (This requires a customer base of
500,000 if an average user buys 2,500 coins for $25
per month.)

The br oker first chooses k  = 4; a coin will be a good
4-way hash collision. He then chooses u = 31 (i .e.,
creates 231 bins), since this will allow him to create
about (1/2) ∞ 231 = 230 coins.

The broker chooses his hash function h(x) as the
encryption of some fixed value v with key x  under
DES, which can be implemented by so-called field-
programmable gate array chips. Each chip costs about
$400 and computes 2 25 values per second. Buying 2 8

of these chips costs the broker $100,000 and allows
him to compute about 2 54 values per month. Since
k = 4, the broker chooses n = 52 and t = 21. Storing
all good pairs (x, h(x)) requires less than 237 bytes,
and costs less than $40,000 using standard magnetic
hard disk technology. Hence, the total cost for the
broker’s hardware is less than $150,000, which is less
than 15% of the first month’s pro fit.

Selling coins, making payments, and redemption
At the beginning of each month, the broker either
reveals a new hash function h or changes the value z
for that month and sells coins to users. Such sales
can be on a debit basis or a credit basis, since the
broker can recognize coins when they are returned
to him for redemption. In a typical purchase, a user
might buy $25.00 worth of coins (2500 coins), and
charge the purchase to his credit card. The broker
keeps a record of which coins each user bought. Un-
used coins are returned to the broker at the end of
each month.

Each time a user purchases a web page, he gives the
vendor a previously unspent coin (x 1, x 2, ..., x k). The
vendor verifies that it is indeed a good k-way colli-
sion by computing k hash values. The vendor re-
turns the coins he has collected to the broker at the
end of each day. If the coin has not been pr eviously
returned, the broker pays the vendor one cent (mi-
nus any brokerage fee) for each coin. If a coin is
received more than once, the broker does not pay
more than once. Which vendor gets paid can be de-
cided arbitrarily or randomly by the br oker.
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Security analysis
W e believe that users and vendors will have little
motivation to cheat in order to gain only a few cents;
even if they do, the consequences are of no great
concern. Our security mechanisms are thus prima-
rily designed to discourage large-scale attacks, such
as massive forgery or persistent double-spending.

Forgery: Can an adversary forge MicroMint coins?
(Economically?) First, the computational difficulty
of minting coins makes small-scale forgery not re-
ally a concern. (For the parameter choice given
above, a forger would need to spend 80 years on a
standard workstation just to generate the first coin).
Second, large-scale forgers can be detected and
counter ed. In particular, coins “expire” monthly,
and the new hash function for each month is re-
vealed only at the beginning of that month. (The
broker works during May to make coins good for
June; forger only learns the hash function at the
beginning of June and so starts out way behind.)
Additional protection against forgery may be ob-
tained by restricting coins to satisfy “hidden predi-
cates” which are only announced if forgery is de-
tected by the br oker. For example, legitimate coins
may all satisfy condition that the low-order bit of x i

is equal to some complicated function of other bits.
Forger’s coins will typically not pass this additional
“verification condition”.

Double-spending: What if a user “double-spends” his
MicroMint coins? There is no “anonymity” in Micro-
Mint: the broker keeps track of whom each coin was
sold to and notes when it is r etur ned by vendor.
Small-scale double-spending is not a concern. A user
whose coins are consistently double-spent will be
caught and black-listed; he will not be sold any more
MicroMint coins.

Vendor fraud: What if a vendor gives copies of coins
received to an accomplice? Vendors who consistently
redeem coins that are also redeemed by other ven-
dors will be black-listed and refused further redemp-
tion service by the br oker. Users might cooperate
with the broker to identify bad vendors by identify-
ing where coins were first spent.

Theft of coins.  If theft of coins is judged to be a
problem during initial distribution to users or during
redemption by vendors, it is easy to transmit coins

in an encrypted form. Since user/broker and vendor/
broker relationships are relatively stable, long-term
encryption keys (e.g., DES keys) can be arranged.

To prevent theft of coins as they are being trans-
ferred from user to vendor, we can make coins user-
specific so that they are of no value to other users.
To produce such coins, we generalize the notion of a
“collision” to more complicated combinatorial struc-
tures which are related to the identity of a user and
can be easily checked during verification. The user-
specific coins can be further modified so that they
are vendor -specific as well,  making a stolen coin
even less desirable. Details of these extensions are in
the full version of the paper [7].

Conclusions
In this article we have presented two new micropay-
ment schemes which are exceptionally economical
in terms of the number of public-key operations em-
ployed. Furthermore, both schemes are off-line from
the point of view of the br oker. The area of
micropayments has attracted considerable attention
recently, and several resear chers have pr oposed re -
lated schemes (Millicent [4], NetBill [2], NetCard
[1], Pedersen’s tick payments [5], and a micropay-
ment scheme based on iKP [3], etc). More details
about our schemes and the relationships between the
various proposals are described and analyzed in the
full version of this extended abstract [7].
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