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Cryptographic assumptions 
 Computational cryptography depends 

on complexity-theoretic assumptions. 
 ∃ two types: 

–  Generic: OWF, TDP, P!=NP, ... 
–  Algebraic:  Factoring, RSA, DLP, DH, 

Strong RSA, ECDLP, GAP, WPFG, PFG, … 
 We’re interested in algebraic 

assumptions ( about groups ) 



Groups 
  Familiar algebraic structure in crypto. 
  Mathematical group G = (S,*): binary 

operation * defined on (finite) set S: 
associative, identity, inverses, perhaps 
abelian.  Example:  Zn

* (running example). 
  Computational group [G]  implements a 

mathematical group G. Each element x in G 
has one or more representations [x] in [G].  
E.g. [Zn

*] via least positive residues. 
  Black-box group: pretend [G] = G. 



Free Groups 
  Generators:  a1, a2, …, at 

  Symbols: generators and their inverses. 
  Elements of free group F(a1, a2, …, at) are 

reduced finite sequences of symbols---no 
symbol is next to its inverse.  
     ab-1a-1bc  is in  F(a,b,c) ;  abb-1  is not. 

  Group operation: concatenation & reduction.   
  Identity: empty sequence ε  (or 1). 



Free Group Properties 
  Free group is infinite. 
  In a free group, every element other than 

the identity has infinite order. 
  Free group has no nontrivial relationships. 
  Reasoning in a free group is relatively 

straightforward and simple; 
≈ “Dolev-Yao” for groups… 

  Every group is homomorphic image of a 
free group.   



Abelian Free Groups 
  There is also abelian free group  

             FA(a1, a2, …, at),   
which is isomorphic to   
             Z x Z x … x Z   (t  times). 

  Elements of FA(a1, a2, …, at)  have simple 
canonical form: 
             a1

e1a2
e2…at

et 

  We will often omit specifying abelian; most 
of our definitions have abelian and non-
abelian versions. 



Pseudo-Free Groups (Informal) 
  “A finite group is pseudo-free if it 

can not be efficiently distinguished 
from a free group.” 

 Notion first expressed, in simple 
form, in Susan Hohenberger’s M.S. 
thesis.   

 We give two formalizations, and show 
that assumption of pseudo-freeness 
implies many other well-known 
assumptions. 
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Two ways of distinguishing 
 In a weak pseudo-free group (WPFG), 

adversary can’t find any nontrivial 
identity involving supplied random 
elements: 

   a2 b5 c-1 = 1      (!) 
 In a (strong) pseudo-free group 

(PFG), adversary can’t solve nontrivial 
equations: 

   x2 = a3 b 



Weak Pseudo-freeness 
  A family of computational groups { Gk } is weakly 

pseudo-free if for any polynomial t(k) a PPT 
adversary has negl(k) chance of: 
–  Accepting t(k) random elements of Gk, 

                      a1, … ,at(k) 
–  Producing any word w over the symbols 

               a1, … ,at(k) a1
-1, … ,at(k)

-1 

when interpreted as a product in Gk using the 
obtained random values, yields the identity 1 , while 
w does not yield  1  in the free group. 

–  Adversary may use compact notion (exponents, 
straight-line programs) when describing w.                  



Order problem 
 Theorem: In a WPFG, finding the 

order of a randomly chosen element is 
hard. 

 Proof: The equation 
                        ae = 1 
does not hold for any e in FA(a).  No 
element other than 1 in a free group 
has finite order.  



Discrete logarithm problem 
 Theorem: In a WPFG, DLP is hard. 
 Proof: The equation 

                        ae = b 
does not hold for any e in FA(a,b);  a  
and  b  are distinct independent 
generators, one can not be power of 
other. 



Subgroups of PFG’s 
  Subgroup Theorem for WPFG’s:   

If  G  is a WPFG, and g is chosen at random 
from G, then <g> is a WPFG.    [not in paper] 

  Proof sketch:   Ability to find nontrivial 
identities in <g>  can be shown to imply that g 
has finite order. 

  ==> DLP is hard in WPFG even if we enforce 
“promise” that  b  is a (random) power of a . 

  Similar proof implies that  
    QRn  is WPFG when n = (2p’+1)(2q’+1). 



Equations in Groups 
  Let x, y, … denote variables in group. 
  Consider the equation 

   x2 = a    (*) 
This equation may be satisfiable in Zn*  
(when a is in QRn), but this equation is 
never satisfiable in a free group,  since 
reduced form of x2  always has even length. 

  Exhibiting a solution to (*) in a group  G  is 
another way to demonstrate that  G  is not 
a free group. 



Equations in Free Groups 
  Can always be put into form: 

   w = 1 
where w is sequence over symbols of group 
and variables. 

  It is decidable (Makanin ’82) in PSPACE 
(Gutierrez ’00) whether an equation is 
satisfiable in free group. 

  Multiple equations equivalent to single one. 
  For abelian free group it is in P.  Also: if 

equation is unsatisfiable in FA() it is 
unsatisfiable in F(). 



Pseudo-freeness 
 A family of computational groups { Gk } is 

pseudo-free if for any poly’s t(k), m(k) a 
PPT adversary has negl(k) chance of: 
–  Accepting t(k) random elements of Gk, 
–  Producing any equation  

          E(a1,…,at(k),x1,…,xm(k)):  w = 1 
with t(k) generator symbols and m(k) 
variables that is unsatisfiable over F(a1,…,at(k))   

–  Producing a solution to E over Gk, with given 
random elements substituted for generators. 



Main conjecture  
 Conjecture:     

    { Zn*  }  is a (strong) (abelian)  
                    pseudo-free group 

 aka “Super-strong RSA conjecture” 

 What are implications of PFG 
assumption? 



RSA and Strong RSA 
 Theorem:  In a PFG, RSA assumption 

and Strong RSA assumptions hold. 
 Proof: For  e>1  the equation  

                      xe = a 
is not satisfiable in FA(a)  
(and also thus not in F(a)).   



Taking square roots 
 Theorem: In a PFG, taking square 

roots of randomly chosen elements is 
hard. 

 Proof:  As noted earlier, the equation 
   x2 = a    (*)  

has no solution in FA(a) or F(a). 
 Note the importance of forcing 

adversary to solve (*) for a random a; 
it wouldn’t do to allow him to take 
square root of, say,  4 . 



Computational Diffie-Hellman  
 CDH: Given  g ,  a = ge,  and  b = gf,  

         computing  x = gef  is hard. 
 Conjecture:   CDH holds in a PFG. 
 Remark:  This seems natural, since in 

a free group there is no element 
(other than 1) that is simultaneously a 
power of more than one generator.  
Yet the adversary merely needs to 
output x; there is no equation 
involving x that he must output. 



Open problems 
  Show factoring implies Zn* is PFG.  
  Show CDH holds in PFG’s. 
  Show utility of PFG theory by simplifying 

known security proofs. 
  Determine is satisfiability of equation over 

free group is decidable when variables 
include exponents. 

  Extend theory to groups of known size (e.g. 
mod p), and adaptive attacks (adversary 
can get solution to some equations of his 
choice for free). 



      ( THE END ) 

Safe travels! 


