
A “Sum of Square Roots” (SSR) Pseudorandom Sampling Method

For Election Audits

Ronald L. Rivest
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

rivest@mit.edu

April 25, 2008

Abstract

This note proposes a cute little heuristic method of
generating a uniformly distributed pseudo-random
number between 0 and 1 for each precinct in an elec-
tion, for use in selecting a sample of precincts for a
post-election audit. A function f is described that
takes as input a 15-digit “seed” S and a six-digit
precinct number i, and produces a pseudo-random
output xi = fS(i) between 0 and 1. The seed S is
obtained by rolling fifteen dice in a public ceremony.
For a 5% audit, precinct i will be audited if xi ≤ 0.05.
This approach also works well for auditing methods,
such as negexp, that set different auditing probabil-
ities for different precincts.

We call the proposed method the “SSR” method,
as it is based on taking the fractional part of a sum
of three square roots. One of the nice features of this
method is that it can be performed on the simplest
of pocket calculators (assuming it has a square-root
button). Thus, local election officials and/or election
observers can easily determine and/or verify whether
or not each particular precinct should be audited,
once the seed S has been determined at headquarters.

The SSR method should be highly unpredictable to
an adversary—an adversary who does not know the
seed should have no advantage in determining which
precincts to corrupt. The SSR method is also highly
efficient, since only 15 dice rolls need to be done,
instead of thousands. Finally, it is easily verifiable

on a simple calculator.

Keywords: pseudo-random number, pseudo-
random function, dice, sampling, post-election audit,
square-root, sum of square roots.

1 Introduction

The auditing of elections has become an area of ac-
tive research and discussion. See [1, 6, 5, 7, 2], for
example.

A post-election audit consists of five steps. The
first step is to collect all of the initial election re-
sults from each precinct; this includes the number of
votes for each candidate in each race, which also de-
termines the apparent margin of victory. The second
step is to use these collected results to determine the
parameters of the audit, such as the sample size or
probability that each precinct is to be audited. The
third step is to actually select the precincts to be au-
dited; this is done in a randomized manner, typically
involving dice. The fourth step is to recount by hand
the paper ballots in the selected precincts. Finally, if
significant discrepancies are found, the audit may be
escalated (to a larger sample). This paper focuses on
the third step, the actual selection of the precincts to
be audited.

0The latest version of this paper is available via: http:

//people.csail.mit.edu/rivest/publications.html

1

http://people.csail.mit.edu/rivest/publications.html
http://people.csail.mit.edu/rivest/publications.html

For an audit to be effective, the set of precincts to
be audited must be unpredictable to an adversary.
For the audit results to be credible, the selection of
the sample must be transparent to the public. Fi-
nally, it must be possible to select the sample in a
simple manner that is easily accomplished by elec-
tion officials.

There is precious little literature on the problem of
selecting a sample of precincts to audit in a manner
that is unpredictable, transparent, and simple.

Cordero et al. [3] give an excellent introduction to
the problem, and explain how to use ten-sided dice
to pick precincts to be audited. It works well, and
can be recommended, when the selection problem to
be solved is to pick k objects out of n, uniformly
at random. That is, each of the n objects is equally
likely to be selected. (The objects to be selected could
be precincts, or perhaps even ballots, depending on
the auditing context.)

However, there is no reason to restrict auditing
methods to those that picks precincts with equal
probability. For example, a recent paper by Aslam,
Popa, and Rivest [1] explores sampling methods that
proceed in a rather different manner. These are the
“basic” sampling methods, which includes the neg-
exp proposal that is particularly flexibile and effi-
cient.

With a basic sampling method, each precinct Pi

(for i = 1, 2, . . . , n) has an associated probability pi

that it will be audited. These probabilities may all
be equal (e.g., p = 0.05 for a “5% audit”), or they
may vary. For example, they may depend on the size
of the precinct. How these probabilities pi are deter-
mined need not concern us here; the reader is referred
to [1] for details relating to the negexp method as
an example of this approach.

We can then imagine that for each precinct Pi, we
have an associated coin that has probability pi of
coming up “heads” and probability 1− pi of coming
up “tails.” We independently flip the coin associated
with each of the n precincts; if the i-th coin comes
up “heads” then the i-th precinct Pi is audited; oth-
erwise it is not audited.

The problem addressed in this note is how to sim-
ulate all of these n biased coin flips in a manner that
is unpredictable, transparent, simple, and verifiable.

That is, we focus on the implementation of basic au-
diting methods. For the purpose of this paper, it is
not significant which basic auditing method is being
used; all that matters is that each precinct have an
associated audit probability pi. (These could all be
equal.)

2 Dice-rolling

Suppose we have a state with 5,000 precincts, each
with an associated audit probability pi. How might
we arrange the necessary 5, 000 biased coin flips?
This section examines a straightforward approach us-
ing dice.

2.1 The naive approach—massive
dice-rolling

In the naive approach, we would roll say 6 ten-sided
dice for each precinct Pi, creating a decimal number
xi = 0.d1d2d3d4d5d6 (with dj the digit from the j-th
dice roll). Clearly xi is uniformly distributed between
0 and 1 (up to the obvious limitation that we only
have six digits of precision in xi; more dice could
be rolled for greater precision). If xi ≤ pi, the i-th
precinct is audited. Thus, precinct Pi is audited with
probability (very nearly) equal to pi, as desired.

This approach would require 30, 000 dice rolls,
which seems excessive, particularly when one adds
the requirement that the dice rolls be performed pub-
licly and videotaped for transparency. At ten seconds
per roll, this would take over 83 hours. (Even so, this
is presumably considerably less work than doing the
audit itself.)

2.2 A distributed dice-rolling ap-
proach

It seems natural to consider then a distributed ap-
proach, where six dice are rolled in each precinct, to
determine whether that precinct should be audited.
This distributes the effort of the dice-rolling.

However, when the requirements for transparency
are added (public viewing and videotaping of the

2

dice-rolling ceremony), the distributed approach no
longer seems very workable.

In particular, one might reasonably be concerned
that the necessary security and transparency might
be difficult to obtain with such a distributed ap-
proach. Election officials in a precinct might be
tempted to “do-over” the dice-rolls until a desired
outcome (e.g. “no audit”) is obtained.

3 Pseudo-random numbers

We therefore now consider a different approach,
which greatly reduces the number of (true) dice rolls
needed. There are a small number of true dice rolls,
that determine a large number of “pseudo-random
numbers” through the use of a pseudo-random func-
tion.

In this method, a few ten-sided dice (15 in our
proposal) are rolled in a central location at a public
ceremony, in a public, videotaped, and transparent
manner. The results form a master public “seed”
number S. In our proposal, they are actually divided
into three five-digit seed numbers S1, S2, S3 for our
computation.

Then, the election officials of each precinct Pi de-
termine the precinct’s “random number” xi (where
0 ≤ xi ≤ 1), by combining the master seed number(s)
S with the precinct number i according to some fixed,
public, deterministic function f :

xi = fS(i) . (1)

The function f should intuitively be a “pseudo-
random function”—the output xi for an input i
should be unpredictable and random-looking. (We’ll
talk more about properties of f shortly; for our ap-
plication the requirements are simpler than for the
cryptographer’s definition of a “pseudo-random func-
tion.”) We suggest that it is also important that the
function f be simple to compute; the purpose of this
paper is to suggest such a function f .

The idea of using a pseudo-random function f in
this manner is not new; it is described for example
in Calandrino et al. [2, Section 3.2], who discuss a
number of variations and considerations, such as the
idea of using the ballot, instead of the precinct, as the

auditing unit. But they do not suggest a particular
pseudo-random function to use.

A major benefit of the use of a pseudo-random
function is the fact that its outputs are verifiable.
The numbers xi are publicly computable by anyone,
since the master seed S is public, the precinct num-
bers i are public, and the function f is public.

We also assume that the the precinct audit proba-
bilities pi are also publicly available (or publicly com-
putable, given the election data (precinct sizes, mar-
gin of victory, etc.)). See [1] for details of computing
pi for the negexp method. If a “flat audit” is being
performed, each pi is equal to some fixed flat audit
rate p (e.g. p = 0.05).

Thus, it is straightforward, once the seed S has
been published, for anyone to determine whether a
given precinct Pi should be audited. In particular,
the election officials at precinct Pi can easily do so,
as can any citizen with a simple calculator.

First, the probability pi that precinct Pi is to be
audited is determined, given the preliminary election
results.

Second, the value of the seed S is obtained.
Then the value xi of the pseudo-random function

f on inputs S and i is determined (see equation (1)).
Then, if xi ≤ pi, precinct Pi is scheduled to be au-
dited.

This approach is efficient and transparent. Only a
few dice rolls are needed; these are to compute the
seed S. Instead of rolling 30,000 dice, election offi-
cials need to roll only 15—a reduction by a factor of
2000. This is particularly significant since each dice
roll needs to be witnessed and perhaps videotaped.

Once S is determined, election officials can also
publish a list of the xi and pi values for each precinct.
Those precincts with xi ≤ pi are those that will be
audited.

We don’t further discuss the (nontrivial) problem
of generating the randon number seed S, except to
note that it must be done in a public videotaped cer-
emony that is credibly free of outside influence. Our
recommendation would be to base the procedure on
the use of dice, although other procedures could be
used.

3

4 Requirements for f

What are the requirements for f for this application?
First, f should be uniformly distributed : for each

precinct i, random values for S should produce values
for xi = fS(i) that are uniformly distributed in the
interval [0, 1]. This is necessary so that the event
xi ≤ pi has probability pi.

Second, f should be easy to compute. We adopt the
desideratum that f should be easily computable using
a simple pocket calculator. We do assume that such
a calculator is capable of computing square roots. A
calculator producing results with 8 decimal digits of
display should suffice.1 2

Third, f should be unpredictable. There should be
little “structure” relating the values of S and i to
values xi computed. Of course, f is a fixed function,
so there is some “structure.” But f should appear to
behave like a random function.

A cryptographer might call for a pseudo-random
function family here, with index S and input i (see
Goldreich et al. [4]). However, we have limited our-
selves to simple computations on a pocket calcula-
tor, so we won’t be using the usual cryptographic
definitions and complex hash function computations,
but rather simpler approximations computable on a
pocket calculator. Indeed, our application is also sim-
pler, since in our application the seed is made public.
Our security requirement says that knowing f (but
not S or any values fS(i)) should not give an adver-
sary any advantage in determining which precincts to
corrupt.

Fourth, the result should have sufficient precision.
While we are proposing that it be computable on an
8-digit calculator to an adequate level of precision
(perhaps three to five digits), we also would like the

1We would like the proposed method to work on the sim-
plest of available calculators. We bought a Staples SPL-110
calculator for the amazingly low price of $3.15; it has 8 dig-
its of display, the standard four functions +, -, *, /, plus the
square-root function, which is all we need.

2One could use computers for this task, since the compu-
tation of f uses only public inputs and so is verifiable. But
elections officials may not have computers readily available,
while pocket calculators are very easy to obtain. It is also
an interesting challenge to see what can be done with just a
pocket calculator.

result to be computable to greater precision on a more
capable calculator. Indeed, we would like the com-
putation to be one that is capable of being extended
to arbitrary precision, with calculators or comput-
ers capable of working with arbitrary high-precision
arithmetic.

5 A specific proposal for f

We now propose a particular function f , the “SSR”
(Sum of Square Roots) function. We could also call
f a “function family,” since there is a function fS for
each seed S.

We assume that precincts are numbered i =
1, 2, . . . , n, where n is less than one million (106). We
shall assume that the precinct number is divided into
three blocks i1, i2, i3 of exactly two digits each. For
example, for precinct i = 23951 we have:

i = i1i2i3 = 02 39 51

Note that leading zeros are not suppressed; there are
exactly three blocks, and each has exactly two digits.
(We let b = 3 denote the number of blocks, and let
d = 2 denote the number of digits in each block.)

We assume that the master seed S consists of three
blocks S1, S2, S3 of exactly five digits each. Each
such number Sj can be obtained by rolling a ten-
sided die five times. (The number of blocks is b =
3, the same as the number of blocks in the precinct
number. The length of each block is exactly k = 5
digits. Again, leading zeros are not suppressed.)

We emphasize that the determination of the seed
numbers is done only once by the central election
officials in a public ceremony; the same seed numbers
are then used by each precinct.

Continuing our example, we assume that the seed
numbers determined are:

S1 = 27901

S2 = 67556

S3 = 06125

We now describe how to compute fS(i), given three
precinct index blocks i1, i2, i3 of two digits each and
the three seed values S1, S2, S3 of five digits each.

4

The first step is to form three numbers n1, n2,
n3, each of seven digits in length, by concatenating
the index blocks with the corresponding seed values.
The j-th number nj is formed by writing the j-th
two-digit block ij of the precinct number followed by
the corresponding five-digit seed number Sj . In our
example, we have

n1 = i1S1 = 0227901

n2 = i2S2 = 3967556

n3 = i3S3 = 5106125

Here the notation ijSj means writing the two digits
of ij followed by the five digits of Sj . The precinct
number i = 023951 is apparent by looking at the
leading two digits of each number nj , in sequence.

The second step is to compute the sum L of the
square roots of these values:

L =
∑

1≤j≤b

√
nj

=
√
0227901

+
√
3967556

+
√
5106125

= 477.38977
1991.8724
2259.6736

= 4728.9357

The third and last step is to take the fractional
part of L (i.e. the part after the decimal point) as
the desired value xi.

In our example:

xi = fS(i) = 0.9357 (2)

Thus Pi will be audited if and only if pi ≥ 0.9357.
Typically, xi will not be close to pi, and the com-

parison is straightforward. In a few cases, xi might
be quite close to pi, and the issue of roundoff error
in the computation of xi may become relevant. The
rare cases when this might be relevant is readily ap-
parent, as xi and pi will differ by a small amount

(two or less) in the least significant digit position. In
such a case, a calculator with higher precision can be
used to determine the correct comparison result.

For example, the above values were computed on
an inexpensive calculator with an 8-digit display; a
ten-digit calculator gives the value:

xi = fS(i) = 0.935913

a high-precision computation (done with the PC pro-
gram Microsoft Calculator) gives a more accurate re-
sult:

xi = 0.93591273640858040364659219 (3)

See the discussion on precision in Section 6.1. We
thus see that there is a very small (0.00021. . .)
roundoff error in the computation of xi on an eight-
digit calculator.

The overall computation thus requires typing in
three numbers of seven digits each, adding their
square roots, and writing down the desired value as
the number in the result after the decimal point. The
Appendix illustrates key sequences for this computa-
tion on a typical calculator.

6 Analysis

This section explores various statistical and other as-
pects of the SSR function, with the goal of determin-
ing if SSR has any weaknesses or vulnerabilities that
an adversary could exploit. We find no such weak-
nesses or vulnerabilities.

We use the general notation introduced above: b
is the number of blocks, d is the number of digits in
each precinct number block, and k is the number of
digits in each seed number. The recommended values
for these parameters for the SSR method are b = 3,
d = 2, and k = 5.

6.1 Precision

How much precision can one obtain in the computa-
tion of fS(i) using a calculator? Is this enough?

The value L is less than b ·
√

10d+k. With our
recommended parameter values, L < 9487. There are

5

thus up to four digits before the decimal point in L,
so a calculator with an eight-digit display can show
four digits of precision after the decimal point, giving
four digits of precision in the calculation of f .

Calculators with more precision are readily avail-
able. A calculator with a 10-digit display (Casio fx-
260 solar) can be bought for $9, a calculator with a
12-digit display (Canon HS-1200TS) can be bought
for $14, and a calculator with a 14-digit display
(Canon WS-1400H) can be bought for $23, at today’s
prices; all have square-root functionality.

A calculator with a ten-digit display can show six
digits of precision after the decimal point, that is,
six digits of precision in the calculation of f , which
should be plenty. Similarly, a calculator with a
twelve-digit display can show eight digits of accu-
racy in the computation of f , and a calculator with a
fourteen-digit display can show ten digits of accuracy.

If for a given precinct Pi the computed result xi

appears to be equal (or very near, within two in the
least significant digit, due to roundoff error, as in the
difference between equation (2) and equation (3)) to
the precomputed value pi, one should use a calcula-
tor with greater precision to determine if xi is ac-
tually less than pi, or greater. We can also recom-
mend the use of the PC program “Microsoft Calcu-
lator,” which has 32 digits of precision, or an equiva-
lent high-precision calculator program on a PC. But
this should rarely be necessary (e.g. only five out of
every 10,000 precincts might need to do this higher-
precision check). The central election officials could
also be available by phone to handle inquiries about
such “close calls.”

6.2 Sensitivity

How sensitive is the value of xi to changes in the
precinct number i or to changes in the seed values Sj?

Since the derivative of the function
√
z is 1/(2

√
z),

changing z by an amount a changes
√
z by an amount

approximately equal to a/(2
√
z).

Thus, changing one digit of the precinct number i
should change the corresponding square root by at
least

10k/(2
√

10d+k) =
1
2

10(k−d)/2 ,

using a ≥ 10k, and z ≤ 10d+k, in the previous for-
mula. This lower bound is equal to 15.8 for the stan-
dard parameter values (d = 2 and k = 5). Thus, the
change of a single digit of the precinct number will al-
ways have a potentially large effect on the computed
value of xi. In general, having k > d should ensure
that each digit of the precinct number will have a
strong effect on all digits of the output.

Similarly, changing digits of Sj will have similar
(but reduced) effects on the final output (reduced ef-
fects since the digits of Sj are in less significant po-
sitions within nj).

6.3 Uniformity

We have run chi-square experiments for several fixed
values of i (the precinct number) and a large num-
ber of different seeds. The results were always that
the function f produces results that are very close to
uniform. (Bin sizes were 10−5; 109 computations of
f were performed. A typical χ2 value obtained was
99506 for 105 degrees of freedom; a result at the 44%
level for the χ2 cdf; this is easily within the range
of what one would expect for a uniformly distributed
random variable.)

6.4 Correlation

We ran some experiments to determine how corre-
lated are values of xi and xj when i and j are closely
related. This was measured by measuring the average
“mod 1 distance” between fS(i1) and fS(i2) when i1
and i2 were closely related. The “mod 1 distance” be-
tween x1 and x2 is min(z, 1− z) where z = |x1 − x2|.
The expected value for uncorrelated inputs is 0.250;
we observed 0.251.

We ran additional experiments that measured the
χ2 statistic on the pairs (bx1 ∗ 100c , bx2 ∗ 100c);
these showed little or no correlation (even nonlinear)
between the values for different precincts.

None of the results obtained suggest that SSR
would be unsuitable for this application.

6

6.5 Squares

One potential concern is with the proposed SSR
method is that some seven-digit numbers are perfect
squares, whose square root has a zero fractional part.
This could conceivably cause some bias in the SSR
output.

However, only one of every 3162 seven-digit num-
bers is a perfect square, so this effect should be very
small. Moreover, the method adds the square roots of
three numbers, and the chance that all three of them
are perfect squares is very tiny. Thus, the bias caused
by the presence of perfect squares seems negligible.

Along the same lines of analysis, we note for the
record that if two integers s and t have square roots
with the same fractional part, then both fractional
parts must be zero (that is, both s and t are square
numbers).

7 Variations

7.1 Other parameter values

This SSR method generalizes in the natural manner
to handle other values for b, d, and k, instead of the
standard recommended values b = 3, d = 2, k = 5.

While we have tested these recommended values
for the parameters extensively, we have only lightly
tested other parameter settings. Since many poten-
tially attractive alternative parameter settings (e.g.
b = 3, d = 3, k = 5, or b = 1, d = 5, k = 6) give
worrisome results on statistical tests, we recommend
staying with the standard values.

8 Discussion

When using a basic auditing method in an audit there
is variability in the number of precincts actually au-
dited, since with a basic auditing method the audit-
ing decision for each precinct is made independently.
A uniform threshold of p = 0.05 may result in an au-
dit with slightly more, or slightly fewer, than 5% of
the precincts being audited. The threshold p might
need to be lowered or raised slightly to get the desired
number of precincts in the sample.

One could of course use cryptographic hash func-
tions for the pseudo-random function, instead of f .
One would concatenate the value of i with the value
of S (perhaps with a separator character in between),
and use the result as an input to SHA-1 or MD53 The
output can then be interpreted as a number between
0 and 1, by putting a point before its output. For
example, the MD5 hash of the string

iS = 023951-279016755606125

is (in hexadecimal):

md5(iS) = b2eda26190dbf89f733f946c68305d79

or (interpreting the previous value as base-16 frac-
tion with a point in front, and representing it now in
decimal):

0.6989

However, this approach seems a bit “heavy-handed”
for the present application. It should give good re-
sults, but will be a bit more difficult to integrate into
election operations, and will be somewhat more diffi-
cult for pollworkers and election observers to confirm
the determination of the election audit sample.

The approach suggested in this paper allows the
central election officials to determine the seed S via
dice roll in a public ceremony, for the election offi-
cials to publish a list of those precincts to be audited,
and for election officials at each precinct, election ob-
servers, and even voters to verify the correctness of
the list of precincts to be audited. This verification
can be performed on a per-precinct basis, using a sim-
ple pocket calculator, and/or by checking the whole
list of precincts to be audited using independent soft-
ware.

The use of a pseudo-random function may have
additional security advantages, in the sense that it
is harder for an adversary to somehow manipulate
dice to his advantage. When the dice rolls are used
directly to pick precincts as in Cordero et al. [3],
a clever adversary might be able to manipulate the

3Although the collision-resistance of MD5 has been
defeated[10], MD5 still seems fine as a pseudo-random func-
tion for applications such as ours. SHA-1 or SHA-256 would
of course also be excellent choices.

7

dice rolls so as to avoid picking any of the corrupted
precincts. But when the precincts are picked through
the intermediation of a pseudo-random function f ,
and the dice rolls only determine the seed S for f ,
it may be much harder for the adversary to deter-
mine a seed S (if any exist) that would miss all of
the corrupted precincts.

The pseudo-random function of this note may have
other uses besides those described in this paper.
However, one should not assume that it has any cryp-
tographic strength, or that it would serve satisfacto-
rily in other applications (particularly those in which
it is desired to keep the seed secret even though out-
put values are revealed).

Further study is desirable to further understand
the strengths and weaknesses of this proposal. But
our initial analysis shows no reason to be concerned
about using the proposed pseudo-random function f
for the application of sampling in election audits. We
propose that it is a viable option for this purpose.

9 Related work

There has been significant study of sums of square
roots of integers. See, for example, Qian and
Wang [9], and Problem 33 of the The Open Problems
Project [8]. This problem looks for sums of square
roots that are nearly equal to each other. For exam-
ple: √

10 +
√

11−
√

5−
√

18 ≈ 0.0002
√

5 +
√

6 +
√

18−
√

4−
√

12−
√

12 ≈ 0.000005

This research seems to support the general position
that working with sums of square roots is rather dif-
ficult, in general.

10 Conclusion

We have proposed a simple method for selecting
which precincts to audit in a basic post-election
(where the precinct audit probabilities have already
been determined by some other means). The main
virtues of this approach are ease of computation and
(thus) ease of verification; the proposed method only
requires the evaluation of three square roots. The

method should be secure against an adversary’s at-
tempts to evade an audit, based on our preliminary
examinations, but further study of its security prop-
erties is desirable.

Acknowledgments

I’d like to thank Lynn Garland for encouraging me
to turn an email on this suggestion into this note, for
providing detailed comments on an earlier draft, and
for the suggestion to reduce k from 6 (as it was in an
earlier draft) to 5 to enable getting 4 digits of output
precision on an 8-digit calculator.

References

[1] Javed Aslam, Raluca Popa, and Ronald L.
Rivest. On auditing elections when
precincts have different sizes, 2008.
http://www.usenix.org/events/evt07/
tech/full_papers/aslam/aslam.pdf.

[2] Joseph A. Calandrino, J. Alex Halderman,
and Edward W. Felten. Machine-assisted
election auditing. In Proc. EVT’07, 2007.
http://www.usenix.org/event/evt07/tech/
full_papers/calandrino/calandrino.pdf.

[3] Arel Cordero, David Wagner, and David
Dill. The role of dice in election au-
dits — extended abstract, June 16 2006.
IAVoSS Workshop on Trustworthy Elections
(WOTE 2006). http://www.cs.berkeley.edu/
~daw/papers/dice-wote06.pdf.

[4] Oded Goldreich, Shafi Goldwasser, and Silvio
Micali. How to construct random functions.
JACM, 33(4):792–807, Oct 1986. http://www.
wisdom.weizmann.ac.il/~oded/X/ggm.pdf.

[5] D. Jefferson, E. Ginnold, K. Midstokke,
K. Alexander, and A. Lehmkuhl. Post-election
audit standards working group report: Evalu-
ation of audit sampling methods and options
for strengthening california’s manual count, July

8

http://www.usenix.org/events/evt07/tech/full_papers/aslam/aslam.pdf
http://www.usenix.org/events/evt07/tech/full_papers/aslam/aslam.pdf
http://www.usenix.org/event/evt07/tech/full_papers/calandrino/calandrino.pdf
http://www.usenix.org/event/evt07/tech/full_papers/calandrino/calandrino.pdf
http://www.cs.berkeley.edu/~daw/papers/dice-wote06.pdf
http://www.cs.berkeley.edu/~daw/papers/dice-wote06.pdf
http://www.wisdom.weizmann.ac.il/~oded/X/ggm.pdf
http://www.wisdom.weizmann.ac.il/~oded/X/ggm.pdf

2007. http://www.sos.ca.gov/elections/
peas/final_peaswg_report.pdf.

[6] John McCarthy, Howard Stanislevic, Mark Lin-
deman, Arlene Ash, Vittorio Addona, and Mary
Batcher. Percentage-based versus SAFE vote
tabulation auditing: a graphic comparison. The
American Statistician, 62(1):11–16, February
2008. Full version: http://verifiedvoting.
org/downloads/TAS_paper.pdf.

[7] Lawrence Norden, Aaron Burstein,
Joseph Lorenzo Hall, and Margaret Chen.
Post-election audits: Restoring trust in elec-
tions, August 2007. Brennan Center for Justice
at New York University [School of Law and
Samuelson Law, Technology and Public Pol-
icy Clinic at UC Berkeley School of Law],
http://www.brennancenter.org/dynamic/
subpages/download_file_50227.pdf.

[8] The Open Problems Project. Problem 33: Sum
of square roots, September 2007. http://
maven.smith.edu/~orourke/TOPP/P33.html.

[9] Jianbo Qian and Cao An Wang. An opti-
mal bound for sum of square roots of special
type of integers. In The Sixth International
Symposium on Operations Research and Its Ap-
plications (ISORA’06), pages 206–211, August
8–12 2006. http://www.aporc.org/LNOR/6/
ISORA2006F15.pdf.

[10] Xiaoyun Wang and Hongbo Yu. How to break
MD5 and other hash functions. In Proc. Euro-
crypt 2005, pages 19–35. Springer, 2005.

Appendix.

This section illustrates how to compute fS(i) on a
typical calculator. Here we assume that the calcula-
tor has a SQRT button and an addition button. The
only significant point to note is that the calculator
allows one to chain the results of the computation ap-
propriately, so that intermediate results do not need
to be copied down or saved in a memory register.

Let the six-digit precinct number i be divided
into three two-digit blocks i2, i2, i3.
Let the seed be three five-digit numbers
S1,S2,S3.
Clear the calculator.
Enter the two digits of i1.
Enter the five digits of S1.
Enter SQRT, then “+”
Enter the two digits of i2.
Enter the five digits of S2.
Enter SQRT, then “+”
Enter the two digits of i3.
Enter the five digits of S3.
Enter SQRT, then “=”
Write down “0.”
Write down the digits after decimal point from
display.
The result is xi.

The operations would be similar or identical on
other calculators. In addition to simple pocket calcu-
lators, one could use Microsoft Calculator on a PC for
high precision, since Microsoft Calculator maintains
32 digits of precision. (Note that the “standard” view
in this program has a square-root button, while the
“scientific” view does not.)

9

http://www.sos.ca.gov/elections/peas/final_peaswg_report.pdf
http://www.sos.ca.gov/elections/peas/final_peaswg_report.pdf
http://verifiedvoting.org/downloads/TAS_paper.pdf
http://verifiedvoting.org/downloads/TAS_paper.pdf
http://www.brennancenter.org/dynamic/subpages/download_file_50227.pdf
http://www.brennancenter.org/dynamic/subpages/download_file_50227.pdf
http://maven.smith.edu/~orourke/TOPP/P33.html
http://maven.smith.edu/~orourke/TOPP/P33.html
http://www.aporc.org/LNOR/6/ISORA2006F15.pdf
http://www.aporc.org/LNOR/6/ISORA2006F15.pdf

	Introduction
	Dice-rolling
	The naive approach---massive dice-rolling
	A distributed dice-rolling approach

	Pseudo-random numbers
	Requirements for f
	A specific proposal for f
	Analysis
	Precision
	Sensitivity
	Uniformity
	Correlation
	Squares

	Variations
	Other parameter values

	Discussion
	Related work
	Conclusion

