
Illegitimi non carborundum

(Don’t let the bastards grind you down!)

Ronald L. Rivest

Viterbi Professor of EECS
MIT, Cambridge, MA

CRYPTO 2011
2011-08-15

1



Illegitimi non carborundum
(Don’t let the bastards grind you down!)

Ronald L. Rivest

Viterbi Professor of EECS
MIT, Cambridge, MA

CRYPTO 2011
2011-08-15

2



Illegitimi non carborundum
(Don’t let the bastards grind you down!)

Ronald L. Rivest

Viterbi Professor of EECS
MIT, Cambridge, MA

CRYPTO 2011
2011-08-15

3



Outline

Overview and Context

The Game of “FLIPIT”

Non-Adaptive Play

Adaptive Play

Lessons and Open Questions

4



Cryptography

Cryptography is mostly about using
mathematics and secrets to achieve

confidentiality, integrity, or other security
objectives.
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Assumptions

We make assumptions as necessary, such as
ability of parties to generate unpredictable keys

and to keep them secret, or inability of
adversary to perform certain computations.
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Murphy’s Law: “If anything can go wrong, it will!”
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Assumptions may fail, badly. (Maginot Line)
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Even worse...

In an adversarial situation, assumption may fail
repeatedly...

(ref Advanced Persistent Threats)
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Most crypto is like Maginot line...

We work hard to make up good keys and
distribute them properly, then we sit back and

wait for the attack.

There is a line we assume adversary can not
cross (theft of keys).
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Partial key theft

Much research allows adversary to steal some
portion of key(s).

I secret-sharing [S79,...]
I proactive crypto [HJKY95,...]
I signer-base intrusion-resilience [IR04,...]
I leakage-resilient crypto [MR04,...]

But adversary isn’t allowed to steal everything,
all at once. (Some exceptions, e.g.
intrusion-resilient secure channels [IMR’05])

This just moves the line in the digital sand a bit...
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Total key loss

To be a good security professional, there
shouldn’t be limits on your paranoia!

(The adversary won’t respect such limits...)
Are we being sufficiently paranoid??
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Lincoln’s Riddle

Q: “If I call the dog’s tail a leg, how many legs does it
have?”

A: “Four. It doesn’t matter what you call the tail; it is still a
tail.”
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Corollary to Lincoln’s Riddle

Calling a bit-string a “secret key” doesn’t
actually make it secret...

Rather, it just identifies it as an interesting target
for the adversary!
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Our goal

To develop new models for scenarios involving
total key loss.

Especially those scenarios where theft is
stealthy or covert

(not immediately noticed by good guys).
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FLIPIT

The Game of “FLIPIT”
(aka “Stealthy Takeover”)

joint work with
Ari Juels, Alina Oprea, Marten van Dijk

of RSA Labs
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FLIPIT is a two-player game

Defender = Player 0 = Blue

Attacker = Player 1 = Red

FLIPIT is rather symmetric, and we say
“player i ” to refer to an arbitrary player.
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There is a contested critical secret or resource

Examples:
I A password
I A digital signature key
I A computer system
I A mountain pass
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State of secret or resource is binary

Good | Bad

Secret | Guessed or Stolen
Clean | Compromised

Controlled by Defender | Controlled by Attacker
Blue | Red
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A player can “move” (take control) at any time

Defender move puts resource into Good state

= Initialize Reset Recover Disinfect

Attacker move puts resource into Bad state
= Compromise Corrupt Steal Infect

Time is continuous, not discrete.
Players move at same time with probability 0.
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Examples of moves:

Create new password or signing key.
Steal password or signing key.

Re-install system software.
Use zero-day attack to install rootkit.

Send soldiers to mountain pass.
Send soldiers to mountain pass.
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Continual back-and-forth warfare...

I Note that Attacker can take over at any time.

I There is no “perfect defense”.
I Only option for Defender is to re-take control

later by moving again.
I The game may go on forever...
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Moves are “stealthy”

I In practice, compromise is often
undetected...

I In FLIPIT,
players do not immediately know when the
other player makes a move!
(Very unusual in game theory literature!)

I Player’s uncertainty about system state
increases with time since his last move.

I A move may take control (“flip”) or have no
effect (“flop”).

I Uncertainty means flops are unavoidable.

44



Moves are “stealthy”

I In practice, compromise is often
undetected...

I In FLIPIT,
players do not immediately know when the
other player makes a move!
(Very unusual in game theory literature!)

I Player’s uncertainty about system state
increases with time since his last move.

I A move may take control (“flip”) or have no
effect (“flop”).

I Uncertainty means flops are unavoidable.

45



Moves are “stealthy”

I In practice, compromise is often
undetected...

I In FLIPIT,
players do not immediately know when the
other player makes a move!
(Very unusual in game theory literature!)

I Player’s uncertainty about system state
increases with time since his last move.

I A move may take control (“flip”) or have no
effect (“flop”).

I Uncertainty means flops are unavoidable.

46



Moves are “stealthy”

I In practice, compromise is often
undetected...

I In FLIPIT,
players do not immediately know when the
other player makes a move!
(Very unusual in game theory literature!)

I Player’s uncertainty about system state
increases with time since his last move.

I A move may take control (“flip”) or have no
effect (“flop”).

I Uncertainty means flops are unavoidable.

47



Moves are “stealthy”

I In practice, compromise is often
undetected...

I In FLIPIT,
players do not immediately know when the
other player makes a move!
(Very unusual in game theory literature!)

I Player’s uncertainty about system state
increases with time since his last move.

I A move may take control (“flip”) or have no
effect (“flop”).

I Uncertainty means flops are unavoidable.

48



Moves may be informative

I A player learns the state of the system only
when he moves.

I In basic FLIPIT, each move has feedback
that reveals all previous moves.

I In variants, move reveals only current state,
or time since other player last moved...
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Cost of moves and gains for being in control

I Moves aren’t for free!

I Player i pays ki points per move:
Defender pays k0, Attacker pays k1

I Being in control yields gain!
I Player earns one point for each second he is

in control.
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How well are you playing? (Notation)

I Let Ni(t) denote number moves by player i
up to time t . His average rate of play is

αi(t) = Ni(t)/t .

I Let Gi(t) denote the number of seconds
player i is in control, up to time t .
His rate of gain up to time t is

γi(t) = Gi(t)/t .
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How well are you playing? (Notation)

I Score (net benefit) Bi(t) up to time t is
TimeInControl - CostOfMoves:

Bi(t) = Gi(t)− ki · Ni(t)

I Benefit rate is

βi(t) = Bi(t)/t
= γi(t)− ki · αi(t)

I Player wishes to maximize βi = limt→∞ βi(t).

58



Movie of FLIPIT Game – Global View
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Movie of FLIPIT Game – Defender View
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How to play well?
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Non-Adaptive Play
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Non-adaptive strategies

I A non-adaptive strategy plays on blindly,
independent of other player’s moves.

I In principle, a non-adaptive player can
pre-compute his entire (infinite!) list of
moves before the game starts.

I Some interesting non-adaptive strategies:

I Periodic play
I Exponential (memoryless) play
I Renewal strategies: iid intermove times
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Periodic play

Player i may play periodically
with rate αi and period 1/αi

E.g. for α0 = 1/3, we might have:

t

It is convenient to assume that periodic play
involves miniscule amounts of jitter or drift; play
is effectively periodic but will drift out of phase
with truly periodic.
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Adaptive play against a periodic opponent

An adaptive Attacker can easily learn the period
and phase of a periodic Defender, so that
periodic play is useless against an adaptive
opponent, unless it is very fast.
Examples:

I a sentry makes his regular rounds
I 90-day password reset
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Periodic Attacker

Theorem
If Attacker moves periodically at rate α1 (and
period 1/α1, with unknown phase), then
optimum non-adaptive Defender strategy is

I if α1 >
1

2k0
, don’t play(!),

I if α1 = 1
2k0

, play periodically at any rate α0,
0 ≤ α0 ≤ 1

2k0
,

I if α1 <
1

2k0
, play periodically at rate

α0 =

√
α1

2k0
> α1

73



Graph for Periodic Attacker and Periodic Defender
(k0 = 1, k1 = 1.5)
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Exponential Attacker

If Attacker plays exponentially with rate α1, then
his moves form a memoryless Poisson process;
he plays independently in each interval of time
of size dt with probability α1 dt

Probability that intermove delay is at most x is

1− e−α1x

For α1 = 0.5, we might have:

t
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Renewal Strategies

A renewal strategy is non-adaptive with iid
intermove delays for player i ’s moves:

Pr(delay ≤ x) = Fi(x)

for some distribution Fi .

Renewal strategies are a large class; periodic,
exponential, etc. are special cases...
Origin of term: player’s moves form a renewal
process.
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Optimal (renewal) play against a renewal strategy.

One of our major results is the following:

Theorem
The optimal renewal strategy against any
renewal strategy is either periodic or not playing.
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Proof notes

Average time between buses
6=

Average waiting time for a bus

Proof considers size-biased interval sizes...

Note that a periodic strategy minimizes variance
of interval sizes, and thus minimizes size-biased
interval size.
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Adaptive Play
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Adaptive Strategies

I Periodic strategy not very effective against
adaptive Attacker, who can learn to move
just after each Defender move.

I FLIPIT with adaptive strategies can be
complicated – generalizes iterated Prisoner’s
Dilemma—e.g. for periodic play:

slow(α1 = 0.1) fast(α1 = 0.2)
slow(α0 = 0.1) 0.40,0.40 -0.10,0.55
fast(α0 = 0.2) 0.55,-0.10 0.30,0.30
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Exponential works well even against adaptive
strategies

Theorem
The optimal strategy (of any sort, even adaptive)
against an exponential strategy is either periodic
or not playing.

Defender can always play exponential strategy
against a potentially adaptive Attacker; Attacker
can’t then do better than playing periodically (or
not playing).
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Defender’s (α0 = 0.25) net benefit β0

against optimal (periodic) Attacker (α1variable)

α1
2
3

1
3

β0

2
3

1
3

Periodic Attacker

Periodic Defender

⇓
Adaptive Attacker

Exponential Defender

∃ ? Better Defender ?

107



Defender’s (α0 = 0.25) net benefit β0

against optimal (adaptive) Attacker (α1variable)

α1
2
3

1
3

β0

2
3

1
3

Periodic Attacker

Periodic Defender

⇓
Adaptive Attacker

Exponential Defender

∃ ? Better Defender ?

108



Defender’s (α0 = 0.25) net benefit β0
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Lessons and Open Questions
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Lessons

I Be prepared to deal with repeated total
failure (loss of control).

I Play fast! Aim to make opponent drop out!
(Agility!)
(Reboot server frequently; change password
often)

I Arrange game so that your moves cost much
less than your opponent’s!
(Cheap to refresh passwords or keys, easy
to reset system to pristine state (as with a
virtual machine))
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Open question 1

Conjecture: The optimal non-adaptive strategy
against a renewal strategy is periodic.

(We proved only that optimal renewal strategy is
periodic; not every non-adaptive strategy is a
renewal strategy.)
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Open question 2

What is “optimal” renewal strategy against an
adaptive rate-limited Attacker?
(e.g. N1(t)/t ≤ α1 for all t)?

That is, how to balance trade-off between
periodic play, which has low-variance intervals
but is predictable, and exponential, which has
high-variance intervals but is very
unpredictable?

Perhaps using gamma-distributed intervals or
delayed exponentials?
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Open question 3

Are there information-theoretic bounds on how
well a rate-limited Attacker can do against a
fixed renewal strategy by Defender?
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Open question 4

What learning theory algorithms yield adaptive
strategies provably optimal against renewal
strategies?
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Open questions 5, 6, 7, ...

5 Multi-player FLIPIT
6 Other feedback models (e.g. add low-cost

“check”)
7 How to structure PKI when any party

(including CA’s) may get “hacked” at any
time?

... ...
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Online version of FLIPIT

More information on FLIPIT, including an
online interactive version of the game, will be
available in the next few weeks at:

www.rsa.com/flipit

Enjoy!
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The End
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