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On the invertibility of the XOR of rotations of a binary word

Ronald L. Rivest!
(Received 00 Month 200z; in final form 00 Month 200z)

We prove the following result regarding operations on a binary word whose length is a power
of two: computing the exclusive-or of a number of rotated versions of the word is an invertible
(one-to-one) operation if and only if the number of versions combined is odd.

(This result is not new; there is at least one earlier proof, due to Thomsen in his PhD
thesis [I12]. Our proof may be new.)
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1. Introduction and proof of main result

This short note considers some simple operations on binary words.

We only consider binary words whose length is a power of two, as this is typically the case
for actual computer operations (e.g., with 32-bit or 64-bit words).

‘We focus on operations based on rotations and exclusive-ors, as these are typically standard
built-in operations.

Simple invertible operations such as these are used in many applications, such pseudo-
random number generation [7}[9], encryption [4], and cryptographic hash function design [10].

We state and prove the main result, and then provide some related discussion afterwards.

THEOREM 1.1 Ifn is a power of two, v is an n-bit word, and r1, r2, ..., vy are distinct fized
integers modulo n, then the function

R(v) = R(v;ri,re,...,rp) = (0 <KL r1) & (v <K 1m2) @ -+ & (v <L 1)

is tnvertible if and only if k is odd, where (v <K r) denotes the n-bit word v rotated left by
r positions, and where “®" denotes the bit-wise “exclusive-or” of n-bit words.

Proof Let V = {0,1}, and let V" denote the set of all n-bit words. We
identify V™ with GF(2)", the set of n-element vectors over the finite field
GF(2).

With this identification, R is a linear operation over V"; R(v) may
be obtained by multiplying v by an n x n circulant matrix over GF(2)
having k ones per row and per column. (An equivalent statement of our
theorem is that when n is a power of two, an n X n circulant matrix over
GF(2) is invertible if and only if the number & of ones in each row is
odd.)

We define the Hamming weight (or weight) of an n-bit word v to be
the number of ones in v.

Our proof identifies words in V" with polynomials in GF'(2)[z] of de-
gree less than n.

For each n-bit word v we define an associated polynomial v(x) in
GF(2)[z] in the natural way: if

v = (Un—1,Vn—2,...,01,00)
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then the associated polynomial v(x) is

For example, the unit-weight word u; having a one in position ¢ is asso-
ciated with the polynomial u;(x) = x%. This association between words
and polynomials is one-to-one.

Let f,(z) = 2™ + 1, a polynomial in GF(2)[z]. We now work with
polynomials modulo f,(z), so that rotation can be effected by polynomial
multiplication modulo f,(z), as is typically done when working with
cyclic error-correcting codes (see [0, Section 9.2]) or circulant matrices
(see [11).

Now the word

(v<<T)

is associated with the polynomial

v(z) *up(x) (mod fr(x));

reducing modulo f,, captures the effects of the rotation. In other words,
multiplying by w,(x) modulo f,(z)) represents a left-rotation by r posi-
tions.

Computing R(v) combines the effect of several rotations, so the word
R(v) is associated with the polynomial

v(z)xr(x) (mod fn(z))
where
rz)=a™ +z 4+ -+ 2™ .

Note that R is an invertible operation if and only if (z) is relatively
prime to fy(z); (This result is due to Guan et al. [5, Theorem 2.4]; see
also Bini et al. [T, Theorem 2.2].) If ged(r(z), fn(x)) = 1, then an inverse
to r(z) modulo f,(z) can be found by the extended version of Euclid’s
algorithm, otherwise no inverse exists. These propositions hold whether
or not n is a power of two.

If n is a power of two, then

fal)=2"4+1=(x+1)",

since we are working in GF(2) (see [0, Thm. 1.46]). In this case, r(z)
is relatively prime to f,(z) if and only if r(x) is relatively prime to the
polynomial z + 1.

Polynomials that are not relatively prime to z + 1 must be multiples of
x+1, since z+1 is irreducible. A polynomial in GF'(2)[x] is a multiple of
x+1 if and only if its value at z = 1 is 0. But (1) = 0 if and only if r(z)
has an even number of non-zero coefficients. Therefore r(z) is relatively
prime to fy,(x) if and only if k is odd.
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2.
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4.

Thus, when n is a power of two, R is an invertible operation on GF'(2)"
if and only if £ is odd. |

Discussion

The inverse operation to R can be found using Euclid’s extended algorithm on input polyno-
mials r(x) and fn(z), to find polynomials s(z) and ¢(z) such that

s(z) -r(x) +t(x) - fo(z)=1.

The inverse operation S to R corresponds to the polynomial s(z), representing another func-
tion of the same form as R (that is, an xor of rotations). In matrix terms, the inverse of a
circulant matrix is another circulant matrix.

In terms of computational complexity, R(v) is easy to compute when k is small, requiring
not more than k rotations and k — 1 xors. Although the inverse S has the same form as
R, it may require considerably more work to compute. For example, if r(z) has degree d,
then s(xz) must have degree at least n/d and at least n/d terms, so that evaluating S(v)
requires at least logy(n/d) additions, since each addition in a computation chain can at most
double the number of terms. Here multiplication by =" (rotations) are “free” and we are only
counting exclusive-ors. The exact complexity, in terms of rotations and xors, of evaluating
R(v) or S(v) may be non-trivial to determine precisely, and we leave these questions as open
problems. Thus, when k£ and d are small R may be considered to be in some sense “very
modestly one-way”—easier to compute in one direction than another. Stephen Boyack [3]
has interesting related results on the complexity of matrix operations over GF(2) and their
inverses.

Efficient invertible operations are useful in many applications. A linear operation somewhat
similar to the one studied here is the “xorshift” operation:

v=v® (vr)

where “<<” is the “left-shift” operator; xorshift has been used in pseudo-random number
generation [7}, [9] and hash-function design [10]. Schnorr and Vaudenay [II, Lemma 5] study
the related operation

(vAd)® (vr)

where “A” denote bitwise “and” and where d is a constant n-bit word; they show that this
operation is invertible if and only if the iterates (d << (r - 1)) take for each bit position the
value 0 for some .

The result of this paper may be useful to those working on similar applications. For example,
we began our study of R when thinking about possible improvements to the MD6 hash
function [I0]. We also note that the k& = 3 version of the operation discussed here is used
in the C2 cipher [2] (although not in manner that required its invertibility (it is part of the
feedback function in a Feistel block-cipher)), and in the SHA hash function standard message
expansion computation [8] (as the ¥ function; invertibility of X is not claimed or proven).

When n is not a power of 2, we don’t know of any comparably simple characterization
of when R(v) is invertible, other than the requirement that ged(fn(z),r(xz)) = 1; perhaps

simpler characterizations can be found for some cases, such as when n = 3 - 2%,

Related Work

Lars Knudsen points out that a different proof for the same result is available in the the Ph.D.
thesis [12,‘Theorem 3.3, pages 86-87] of Sgren Thomsen. Thomsen’s cute proof considers
powers R?" of the original operation, notes that

R*(v;r1,72,...,7k) = R(v;2r1,2r2, ..., 218
from which it follows that R is invertible since R™ will be the identity function (if and only
if k is odd).

Conclusions

This note provides an alternate proof of a characterization as to when an easily computed
operation, based on the exclusive-or of rotated versions of a word, is invertible.



November 10, 2009

23:20 International Journal of Computer Mathematics Xorrot

REFERENCES

Acknowledgments

I’d like to thank Lars Knudsen, Niels Ferguson, Louay M. J. Bazzi and Sanjoy K. Mitter for
helpful comments and suggestions.

References

(1]
2]

(3]
(4]

(1]

[12]

Dario Bini, Gianna M. Del Corso, Giovanni Manzini, and Luciano Margara. Inversion of circulant
matrices over Zn,. Mathematics of Computation, 70(235):1169-1182, Mar 24 2000.

Julia Borghoff, Lars R. Knudsen, Gregor Leander, and Krystian Matusiewicz. Cryptanalysis of C2
. In S. Halevi, editor, Proc. CRYPTO’09, volume 5671 of Lecture Notes in Computer Science, pages
250-266. Springer, 2009.

Stephen Wayne Boyack. The Robustness of Combinatorial Measures of Boolean Matriz Complexity.
PhD thesis, MIT Mathematics Dept., 1985.

Scott Contini, Ronald L. Rivest, M.J.B. Robshaw, and Yiqun Lisa Yin. Improved analysis of some
simplified variants of RC6 . In Knudsen, editor, Proc. Fast Software Encryption ’99, volume 1636
of Lecture Notes in Computer Science, pages 1-15. Springer, 1999.

Pu hua Guan and Yu He. Exact results for deterministic cellular automata with additive rules. J.
Stat. Physics, 14(3/4):463-478, 1986.

Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, 1983. Vol. 20 of
Encyclopedia of Mathematics and its Applications.

G. Marsaglia. Xorshift RNGs. J. Stat. Soft., 8(14):1-6, 2003. http://wuw.jstatsoft.org/v08/i14/
xorshift.pdf.

National Institute of Standards and Technology. Secure hash standard, August 1, 2002. FIPS 180-2.
Frangois Panneton and Pierre L’Ecuyer. On the Xorshift random number generators. ACM Trans.
Modeling and Computer Simulation, 15(4):346-361, Oct. 2005.

Ronald L. Rivest, Benjamin Agre, Daniel V. Bailey, Christopher Crutchfield, Yevgeniy Dodis, Ker-
min Elliott Fleming, Asif Khan, Jayant Krishnamurthy, Yuncheng Lin, Leo Reyzin, Emily Shen, Jim
Sukha, Drew Sutherland, Eran Tromer, and Yiqun Lisa Yin. The MD6 hash function: A proposal to
NIST for SHA-3, Sep 2008. http://groups.csail.mit.edu/cis/md6/|

Claus P. Schnorr and Serge Vaudenay. Black box cryptanalysis of hash networks based on multiper-
mutations. In Proceedings EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science,
pages 47-57. Springer, 1995.

Sgren Steffen Thomsen. Cryptographic Hash Functions. PhD thesis, Technical University of Denmark,
November 28, 2008.


http://www.jstatsoft.org/v08/i14/xorshift.pdf
http://www.jstatsoft.org/v08/i14/xorshift.pdf
http://groups.csail.mit.edu/cis/md6/

