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because they:
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I are updated “all-at-once” instead of

incrementally.
Are there better (non-PK) methods?
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Keyring (Bag of Words) Model
Main idea: Key is a “bag of words” agreed upon
by sender and receiver. (Really “set” not “bag”
(multiset).)
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I Each word is a keyword.

I Bag is a keyring.
I Separate keyring for each

sender/receiver pair.
I Sender and receiver have

identical (or nearly identical)
keyrings.

I Maybe 10–100 keywords on
a keyring.



Keyrings

I Each word is a keyword.
I Bag is a keyring.

I Separate keyring for each
sender/receiver pair.

I Sender and receiver have
identical (or nearly identical)
keyrings.

I Maybe 10–100 keywords on
a keyring.



Keyrings

I Each word is a keyword.
I Bag is a keyring.
I Separate keyring for each

sender/receiver pair.

I Sender and receiver have
identical (or nearly identical)
keyrings.

I Maybe 10–100 keywords on
a keyring.



Keyrings

I Each word is a keyword.
I Bag is a keyring.
I Separate keyring for each

sender/receiver pair.
I Sender and receiver have

identical (or nearly identical)
keyrings.

I Maybe 10–100 keywords on
a keyring.



Keyrings

I Each word is a keyword.
I Bag is a keyring.
I Separate keyring for each

sender/receiver pair.
I Sender and receiver have

identical (or nearly identical)
keyrings.

I Maybe 10–100 keywords on
a keyring.



Incremental Key Updates Are Simple

Alice says privately to Bob:
I Let’s add “garlic” to our keyring.

I Let’s delete “mustard” from our keyring.
I Let’s add all words from your last two tweets.
I Let’s add words of a quote:

“It is a miracle that curiosity survives
formal education.”

(Albert Einstein)

I Let’s delete all keywords added in 2015.
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Keyring Issues

I (Resilience) How to make encryption work
even if Alice and Bob’s keyrings are slightly
“out of sync”?

I (Keying) How to use a “bag of words” as a
symmetric crypto key?

I (Security) How to keep adversary from
breaking in and then “tracking” keyring
evolution?
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Resilience

We want that a ciphertext made using keyring A
can be decrypted using different keyring B, as
long as A and B are “close”.

Two metrics of interest:
I Set distance. (Relative) size of set

difference. That is, |A⊕B| or |A⊕B|/|A∪B|.
I Hamming distance. (Relative) number of

positions in which vectors x and y differ.
We describe a nice way of converting from the
first to the second.
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Fuzziness everywhere

I Juels/Wattenberg 1999 “A Fuzzy
Commitment Scheme”. Introduces
“code-offset” construction.

I Juels/Sudan 2006 “A Fuzzy Vault Scheme”
Based on clever use of interpolation.

I Dodis/Ostrovsky/Reyzin/Smith 2004
“Fuzzy Extractors: How to Generate Strong
Keys from Biometrics and Other Noisy Data”
Relates ‘secure sketches” and fuzzy
extractors. (Also: Dodis/Reyzin/Smith 2007
“Fuzzy Extractors”)

I Sahai/Waters 2005 “Fuzzy IBE”. Fuzzy PK
scheme.
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PinSketch[DORS04]

I Uses BCH ECC with algorithms that work
efficiently on sparse vectors.

I Message transmitted has length δ over
GF (2α), where 2α ≥ |U| and U is universe of
keys, and where δ is upper bound on the
size of the set difference A⊕ B.

I Allows recipient to reconstruct A.



Quantum Key Distribution

I Bennet Brassard 1984
“Quantum cryptography: Public key
distribution and coin tossing”
Information reconciliation by public
discussion over a classical channel.



Resilient Set Vectorization
A set vectorizer φ takes as input a set A, an
integer n, and a nonce N, and produces as
output a uniformly chosen (over the choice of
nonce) vector from An.
A resilient set vectorizer is a set vectorizer
with the property that for any two sets A and B
with |A ∩ B| = p · |A ∪ B| (for some p,
0 ≤ p ≤ 1), we have

d(φ(A,n,N), φ(B,n,N)) ∼ n − Bin(n,p) .

That is, if a fraction p of A ∪ B are shared, then
the fraction of positions where φ(A,n,N) and
φ(B,n,N) agree follows the binomial distribution
with mean np.



Keyword Matching Game (≡ RSV with n = 1)

I Alice and Bob agree on a strategy.

I Alice is given an arbitrary keyring A.
I Bob is given an arbitrary keyring B.
I They are told sizes of A, B, A ∩ B, A ∪ B, U .
I They are given the same random nonce N.
I Alice and Bob separately each pick one

element from their keyrings.
I What is the maximum probability that they

pick the same element, using optimal
strategy?
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Simplest interesting example

|A| = 2 |A ∩ B| = 1 |B| = 2 |U| = 3

CAT DOG RAT

Alice sees:

N = 3762134912

Bob sees:

Should Alice pick CAT or DOG?

Should Bob pick DOG or RAT?

Agree with prob 1/4? 1/3? 1/2?...
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Keyword Matching Game – Random Strategy

I If Alice and Bob make their choices
independently at random, then they match
with probability

|A ∩ B|/|A| |B| .

I (Pretty small, especially when A and B are
large.)
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Keyword Matching Game for |A ∩ B| = 1

Brute-force searches for optimal strategies
(surprisingly) suggested the following

Theorem
When |A ∩ B| = 1 and A ∪ B = U the optimum
match probability is at least

1/max(|A|, |B|) .

Proof: (at end). �
Exercise: Find such an optimal strategy for our
example that matches with probability 1/2.
But |A ∩ B| = 1 and A ∪ B = U are unrealistic...
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Jaccard Index of Similarity

I The Jaccard similarity coefficient J(A,B)
measures the similarity of two sets A and B:

J(A,B) =
|A ∩ B|
|A ∪ B|

.

I It can be estimated using the MinHash
method (Broder 1997): Construct n random
hash functions mapping elements to real
values. Compute the fraction f of them
having the same minimum in A as in B. Then

E(f ) = J(A,B) .
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Keyword Matching Game via MinHash

Theorem
Alice and Bob can always win with probability at
least p = J(A,B) = |A ∩ B|/|A ∪ B| .

Proof.
I Initially, Alice and Bob agree on a random

hash function h.
I They each pick their keyword with minimum

hash-value.
I They win if one of their shared keywords has

the smallest hash value in both sets.

Conjecture: The MinHash strategy is
optimal for |A ∩ B| > 1.
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Resilient Set Vectorization (RSV)
Alice iterates the MinHash method (with n
random hash functions), to create a keyword
vector

W = φ(A,n,N) = (W1,W2, . . . ,Wn)

of some desired length n.

Bob (using same hashes) similarly creates a
keyword vector W ′.
Let z denote the number of positions in which
W and W ′ agree, and let p = J(A,B). Then
(under ROM)

z ∼ Bin(n,p),

so E(z) = np and σ(z) =
√

np(1− p).
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Security Analysis Setup

Suppose we can arrange things so that Bob can
always decrypt Alice’s ciphertext if

z ≥ 3n/4 .

Suppose further we can arrange things so that
the Adversary can’t decrypt Alice’s ciphertext if
the number z ′ of positions of W it knows (or
guesses) correctly satisfies

z ′ < n/2 .
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Analysis–for the good guys

I Suppose Alice and Bob have

p = J(A,B) = 0.90 .

I Alice encrypts a message to Bob using
φ(A,n,N) as a key, where n = 256.

I Bob’s vector φ(B,n,N) agrees with
φ(A,n,N) in z positions.

I If z ≥ 192, Bob can decrypt the message.
I Bob fails to decrypt with near-zero

probability:

Prob (z < 192) = 1.5× 10−12 .
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Analysis–for the Adversary
I Suppose Adversary knows (or guesses) Q, a

set of 1/4 of Alice’s keyring A, so

p′ = J(A,Q) = 0.25 .

I Alice encrypts a message to Bob using
φ(A,n,N) as a key; Adversary overhears
ciphertext.

I Adversary’s vector φ(Q,n,N) agrees with
Alice’s in z ′ positions.

I If z ′ ≥ 128, Adversary can decrypt message.
I But Adversary fails almost certainly, since

Prob (z ′ ≥ 128) = 7.5× 10−18 .
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Error Correction

I An (n, k) Reed-Solomon code has k
information symbols and codewords of
length n.

I Bob can efficiently correct up to (n − k)/2
errors and always obtain a unique
decoding.

I With list decoding Adversary can efficiently
correct up to (n − k) errors (and obtain a
small number of possible decodings).
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Compute nonces, K , C, T

I Choose random nonces N1, N2, N3.

I Choose n and k (e.g. n = 256, k = 128) and
byte size (GF (28)).

I Choose random k -byte message key
K1, . . . ,Kk (aka “vault contents”).

I Encrypt message M with key K and nonce
N3 using an authenticated encryption
method to obtain ciphertext C and
authentication tag T .
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Compute W , X , and Y

I Compute keyword vector W = φ(A,n,N1).

I Reed-Solomon-encode key to give n-byte
encoded key X1, . . . ,Xn.

I Use each keyword vector element Wi as key
to encrypt each encoded key byte Xi :

Yi = E(Wi ,Xi ,N2 + i)

use small-domain encryption tweakable
encryption method like “swap-or-not”
(Hoang-Morris-Rogaway14).

I Send (N1,N2,N3),Y ,C,T .
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Attack 1: Guessing large subset of A

I Adversary may try to guess a large subset of
A.

I Difficulty depends on A. Even if |U| = 4096
and |A| = 24 (chosen uniformly), guessing a
12-word subset of A has chance(

24
12

)
/

(
4096

12

)
≈ 2−94

of success.
I Using keyrings may invite poor choices (just

as passwords tend to be poor). “Biometric”
keyrings don’t have this problem.

I Initial keywords may be high-entropy.
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Attack 2: Stealing A, then tracking its evolution

I Stealing A, then tracking its evolution if
updates are small.

I Make updates large every once in a while!
I Reminiscent of problems of refreshing

entropy pool in PRNG.
(Ferguson-Schneier-Kohn’10, Dodis-Shamir-
StephensDavidowitz-Wichs’14).
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Attack 3: Playing Matching Game better

I We only conjectured that MinHash strategy
was best way to play Keyword Matching
Game.

I Perhaps Adversary can play this game better
than Bob can, even for a fixed strategy by
Alice!

I We need to prove that MinHash strategy is
optimal (for |A ∩ B| > 1)!
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Attack 4: Chosen ciphertext attack

I Given a valid ciphertext, Adversary can use
Bob as a pass/fail decryption oracle to do a
sensitivity analysis disclosing where he has
correct keywords.

I Serious! Adversary may compute set of
candidate words with small MinHash values
in each such position. These are good
candidates for being in B.

I Encrypt M with AEAD instead of AE, where
AD includes Y and nonces. Insecure? (AD
and K are related.) Proof needed.
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Comparison with PinSketch

I Keyring scheme is not a “sketch”—Bob can’t
recover A.

I Keyring scheme isn’t restricted to certain
error codes (e.g. algebraic codes).

I We don’t require bounded |U|.
I PinSketch messages have size

|A⊕ B| log |U| .

I We send n = 256 bytes plus nonces.
I Bob can decode whp if

p − k/n ≥ c
√

np(1− p), which holds for
constant n if p > (1 + ε)k/n.
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Summary

I New scheme facilitates updates of keys;
these updates can now be done
incrementally as well as all at once.

I New scheme has reduced message size.
I Security is controllable via choices of n and

keyring size.
I Keyword Matching Game of possible

independent interest.
I Open problems include

I Determining optimal strategy in Keyword Matching Game.
(Is it MinHash?)

I Analyzing security of AEAD variant against CCA.
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The End



Strategy for p = 1/max(|A|, |B|) when |A ∩ B| = 1,
U = A ∪ B, |A| ≥ |B|

I Create bipartite graph whose vertices are all
|A|-subsets (resp. all |B|-subsets) of U with
an (X ,Y ) edge iff |X ∩ Y | = 1. The
|A|-subsets have degree |A|; the |B|-subsets
have degree |B|.

I By Hall’s Thm you can find a matching that
covers all |A|-subsets.

I Alice and Bob each choose keyword shared
with their matched subset (if any).

I They pick the same keyword with probability
1/|A| = 1/max(|A|, |B|). �

I (This only works for |A ∩ B| = 1. )
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