Domaine de Voluceau
Rocquencourt

78150 - le Chesnay
Tél. 954.90.20

laboratoire de recherche
en informatique
et automatique

A fast stable
mininiun-storage sorting
algorithm

R.L. Rivest

Rapport de Recherche ne 43
décembre 1973




A FAST STABLE MINIMUM-STORAGE SORTING ALGORITHM

Ronald L. Rivest

Abstract :

An algorithm is presented which sorts n numbers into order in
average time O(n(logz(n))z) using at most O((lqu{n))z bits of
additional storage. Furthermore, the algorithm is stable (that is, it

preserves the initial order of equal elements).

Résumé :

Nous présentons un algorithme qui trie n nombres dans un temps

i 2 : x4
moyen CJ(I'L(lcwg:’:(n))2 en utilisant au plus O{logz(n)) bits de mémoire
supplémentaires. De plus, cet algorithme est stable (c'est—-a-dire qu'il

conserve les &léments &gaux dans leur ordre initial).



In this paper we answer in the affirmative a question raised by
Knuth :

"Is there a stable minimum~storage sorting algorithm which requires
less than O(nz) units of time in its worst case, and/or on the average ?"
[3, exercise 5.5.3, p.3881].

A sorting algorithm rearranges a given set of n numbers into
non-decreasing order. Thus if the input numbers are stored in memory
locations M[1],..., Mlnl], when sorting is complete we have rearranged

them so that

MC1] < M[2]<... <M[n]. o

If there are equal elements in the input, more than one rearrangement

will achieve the result (1).

A sorting algorithm is said to be stable if the initial relative
ordering of equal elements is preserved in the final rearrangement. Thus
if each element were 'tagged'" with its initial location, we would have

at the end
(1 < j) => MLil < M[§]) v ((taglil < tagljlda MLid = M[3D)). (2)

Equal elements are thus not to be considered "equal" Hut ordered
according to their initial ordering in the input.

Stable sorting algorithms are very useful when some order already
existing in the input file is to be preserved. For example, suppose
we have a file of transactions, where each transaction lists a customer's
name and a date, and suppose further that this file is already ordered
by date. If we now sort this file by customer name in a stable manner,
the output file will still be ordered by date within the group of
transactions for each customer. This obviates considering the (name,
date) pairs as single keys obeying a lexicographic ordering rule.

Stable sorting algorithms are easy to comstruct. For example, one
can add the "tagging" scheme mentioned above to any standard sorting
algorithm. Problems arise, however, when one wishes to increase the
storage efficiency of the algorithm without drastically increasing the
running time. Knuth defines a "minimum-storage" sorting algorithm as
one which uses only O((logz(n))z) additional bits of storage for
program variables, in addition to the spacé used by the array M for

the set of numbers being sorted. This is a reasonable definition since



it represents the amount of storage used by a recursive algorithﬁ whose
depth of recursion is bounded by logz(n). Thus there is not enough
available storage to allocate logz(n) bits for a "tag" for each of the
n numbers. How fast can a minimum storage stable sorting algorithm

sort 7

The best previous answer to this question is O(nz). The classic
"bubble sort"” [3, p. 106] demonstrates this easily enough, since it
uses only three variables, so that its storage utilization is O(logz(n)).
Furthermore, it only exchanges values in adjacent memory locatioms,
and then never if those values are equal, so it is stable. Other O(nz)
minimum-storage stable sorting algorithms also exist [3, p. 3881,
but none were known which reguired less than O(nz} units of time, on
the average or in the worst case.

In this pape: we present a stable minimum—-storage sorting algorithm
whose average runaing time for any input wmultiset of numbers is
O(n(logz(n))z). The worst case running time is still O(nz), 50 we
have really only answered part of Kouth's question ; the best possible
worst—case running time remains an open problem.

The algorithm has an overall structure similar to Quicksort [2]:

Algorithm A.

Records M[bl, ..., Mlc] are sorted stably in place, where b < ¢,

using O((logz(n))z) bits of additional storage.
Al. If b 2 c, the algorithm terminates. Otherwise set m < Mlel].
A2, Using algorithm B, partition the elements Mbl,..., Mle]l about

the value m, so that at the end we have, for some k, b = k = ¢, and

all i, b= i< ¢,

MLil < m) = (L < k). (3)

That is, all values less than or equal to m are stored in
M(b], ..., M[k] and all values greater than m are stored in
M[k+1], ..., Mlc]. Furthermore, the record originally in M[c] (with

value m) has been moved to M[k], since algorithm B 1is stable.

A3. Use algorithm B again on the subfile M[b], ..., M[k], partitioning

it about the value m, but modifyving the definition of algorithm B



slightly so that all values equal to m are grouped together. Thus,

after this step, we have for some values k' and k, b < k'< k < ¢

i k' =2 Mi] <mn

k' < i<k => Mi]l =m
k < i => M[i] > m. (4)

A4, TUse algorithm A recursively to sort the smaller of the two
subfiles : M[bl, ..., M[k'] and Mik+1], ..., Mlc]. Then adjust b
and c to point to the ends of the larger subfile, and go to step
Al. [0

Initially this algorithm is invoked with b =1 and ¢ = n.

It is clear that this algorithm uses 0((1og2(n)}2} bits of
additional storage, since no more than 10g2(n) levels of recursion
can be invoked.

The standard partitioning algorithm [1] is very efficient (its
running time is O(n)), but not stable. We next show how a stable
partitioning can be performed in O(n 1ogz(n)) units of time using
minimal storage.(This is algorithm B referred to above).

The partitioning algorithm has to deal with only two types of
numbers : those that are less than or equal to m, and those that are
greater. For simplicity let us call the former "zeros'" and the latter
"ones". Thus we wish to move all the zeros to the left end of M, and
all the ones to the right end, in a stable manner. (Here we adopt
the uwsual convention that M[il is to the "left" of M[i+1].)

Let us first consider the simple case where we have a run of s

ones followed by a run of s zeros. That is, the input looks like :

1> o® (5)

In this case we can clearly perfofm a stable partition with only
8 transpositions, the ifEE of which exchanges the i"EE one with
the i-th zero.

Encouraged by this much success, let us continue. How about s

ones followed by t zeros, for some t > s ? That is, we have :

12 gt (6)



We can clearly exchange the first s ones with the first s zeros
in a stable fashion, as above. What remains is a similar problem
involving s ones and only t-s zeros, since the leftmost s =zeros

are now in their proper places :
0" 1" 0 (7)

This process can clearly be iteratad, moving the block of s ones
to the right s ‘places each time, until only u zeros remain to their
right where u < s. At this point we can reverse the roles of left and
right, ones and zeros } and move the block and forth in a manner which
follows the Euclidean algorithm for computing ged (s,t), until every
element is in its ﬁroper place. The total number of transpositions
involved is at most s+t-l, since every transposition puts at least

one digit into its final location.

The following algorithm describes the above procedure exactly.

(We will use this routine later.)

Algorithm C,

Records M[j], ..., M[j+s+t—1] are stably partitioned about the
value m, where records M[jl;..., M[j+s=1] are known to be greater
than m, and records M[j+s], ..., M[j+s+t - 1] are known to be less

than or equal to m.

[

Set d < min(s,t). If d = 0, halt.

For i = 0,1,..., d—1, exchange the values of M[j+s+i] and

IS |

ML j+s+i~d].

3. If s<t set j <+ j*d and t + t~d ; otherwise set s + s=d.

Go to step Cl.

Now we consider the general partitioning problem. There will occur
naturally in the input runs of ones followed by runs of zeros. That is,

we consider the general case :

I 810" sis® (8)

for some integer w. This formulation is completely general if we allow

s . and tw to assume the value zero.

1



We can clearly use algorithm C to reverse each set of s, ones
followed by t. zeros, and iterate to completion. This idea unfortunately
fails ; .take 51 = t1 = ,,, = tW = 1, for example. In this case we must
use nzf4 transpositions altogether, since each zero gets transposed
with each one. The problem is that algorithm C is efficient only for
long runs ; but in this example the run lengths remain fixed at Is
(except for the runs at the ends of M , which are already in their
final places).

The way to overcome this difficulty is to only exchange every
other block of ones with its subsequent block of zeros. That is, we
exchange 11 and Oti only for odd values of i. Thus after the first

pass we get the following situation :

01 0 1 Ces e (9)

Now every exchange of adjacent runs has caused those runs to
"coalesce" with the neighboring runs of the same type which were
left fixed. It is clear that the length of the shortest run must
double at each step, (if we don't consider the lengths of the runs
at the ends of M). Thus at most logz(n) passes are necessary to
completely partition M about m, and the total partitioning time is
O(n logz(n)).

For the sake of completeness we list the above algorithm in detail :

Algorithm B.

Records M[#], ..., M[r] are stably partitioned about the value
m= M[r].

l. (Skip over elements already in place.)

While g <r and M[gl < m, set g <« g+l.

While 2 <r and Mlr] > m, set 1 <« r—-1.

If 2 2r, the algorithm terminates.
-ag.— Set j + 3
B3. (Get lengths of next two TUuns.)

Set s « 0, £ + 0.
While M[j+s] > m, set s < s+l.

While j+s+t < r and M[j+s+t] < m, set t < t+l.



B4. Use algorithm C to exchange the s 'ones" at M[jJl,s..,Mj+s-1]
with the subsequent t 'zeros" in M[j+s], «.., M[j+s+t-1], then

set j + j+s+t, so that now either j > r or M[j] is the beginning of

the next string of '"ones".
B5. If j > r, go to step Bl.

B6. (Skip next two runs.)
While ML3j] > m, set j < j+I.
While j < r and M j] < m, set j <« j+1.
Go to step Bl. [
To modify this algorithm as required for step A3 of algorithm A,
we need only to consider each element equal to m as a "one" instead

of a zero. Thus each test of the form "M[...] = m" becomes "™[...] < m"

and each test of the form "M[...] > m" becomes '"M[...] = m".

An exact analysis of the preceding algorithms appears to be very
difficult. For example, the running time of algorithm C, in terms of

the number of transpositions used, is
8 + t- ged(s,t), for s > o, t > o. (10)

Carrying this gcd(s,t) term into an analysis of algorithm B would
require knowing the distribution of gcd(si,ti) at each step, which in
turn requires knowing the relative probability that equal elements
occur.

Let B(n) denote the number of transpositions required by
algorithm B to partition n numbers in the worst case. From our

previous discussion we know that

B(n) £ n 1032 (n). (11)

To analyze the average running time of algorithm A, we need first
to define what we mean by "average'". Most analyses of sorting algorithms
merely.assume that the 0 input nﬁmbers are distinct. Here, however,
we are considering a stable sorting algorithm, which is designed for
situations in which equal elements are known to occur, and are perhaps
even likely. We wish to show that our algorithm works well in all these

cases.



Our model of the input runs as follows. We assume that there are
P, n occurences of the value l,pZH occurrences of the value 2, and
so onm, up to P, occurrences of the value t, for some t, 1 £ t < n.
This we may do without loss of generality. The vector p = (pl""’pt)

thus satisifes the equality

p; = L. (12)

lsist

Let A(n,p) denote the average number of transpositions used over

the set of all arrangements of the p 0 l's, P,n 2's, etc, and let A(m)
denote the maximum value of A(n,p), for any p. We will show by

induction on n that

(Feso)htn) £ e-n (1og2(n))2. (13)

The basis for the induction is easily established by choosing c

large enough. For convenience we define

gz = EE P. 3 for 1
a 1<j<i

IA
-
I
Lad

(14)
The following inequality for A(m) 1is then easily derived

A(n) £ 2n lcgz(n) ¥ 2 Py [A(nqi—I) + ﬁ(ﬂ(l‘qi))]-(15)'

l<ist
The first term on the right is an upper bound for the cost of the
two partitioning steps A2 and A3. The occurrence m = i (which occurs
with probability pi), causes the remaining two subproblems to be of

size ng; and n(]—qi).

Substituting (13) into (15) and simplifying, we obtain

A(m) < £(P) n(logz(n))z + (g *+ 2 n log,() + h(®) n, (16)
where

£E@) = cll- 2 p.%], (17)

l<i<t
g() =c ¥ L q., log,(g )+ (I~q) log,(1=q) 1 ,(18)
l<igt

and

h(p) = ¢ 2 pi‘(l-Pi)[(lagz(l—pi))2 w1 1og2(1—pi) + 17.019)

1€ist



We first note that
(3c') W) h(p) < c' (20)

so we need not worry about the term h(p)n in (16) becoming large

for certain p. We next note that

0vp) g(p) < o, and (21)

(vp) £(P) < ¢, (22)

so the only positive term to consider is the term 2 n 1og2(n).

Let ¢ be a small positive real number, 0 <e < 1/2. If

maxi(pi) > e then we have
2 n log,(m = (c=£() n (logym)” (23)

if ¢ = e¢(e) 1is chosen sufficiently large. On the other hand, if

maxi(pi) <e , it is not difficult to show that

g(p) + 2 <0, (24)

again assuming that c¢ = c(g) is chosen sufficiently large.

In anv case, we arrive at the result
2
A(n) = O(n(logzin)) K (25)
which was to be shown.

Conclusions

The above algorithm demonstrates that stable minimum-storage
sorting can be done quickly on the average. It remains an open problem
whether this result can be improved to O(n 1og2(n)) or whether
O(n(logz(n))z) is indeed optimal. In addition, it remains to be
shown whether stable minimum-storage sorting can be done in the

. . 2
worst~case in time less than O(n™).*

* ; :
I have just been informed by Professor Donald E. Knuth that Professor

R.B.K. Dewar (Illinois Inst. Tech.) has a minimal-storage stable sorting

: . ; 3/2
algorithm that runs In worst-case time O / I



References

[1] Hoare, C.A.R. "Algorithm 63 (Partition)",
CACM 4 (July 1961), 321.

F

[2] Hoare, C.A.R. "Algorithm 64 (Quicksort)",
CACM 4 (July 1961), 321.

[3] Knuth, Donald E. The Art of Computer Programming, -

Vol 3 : Sorting and Searching. Addison-Wesley
Publishing Company. (Menlo Park, California, 1973).

...]0...



