
laborotoire de recherche
en informatique
et automatique

A fast stable
minimun-storage sorting
algorithm

R.L Rivest

I
nst;ut kRcherc,:
:Jlnformatiè1’ue‘4$
et a Automotque,4.ik.

I-----.’-. - -

Rapport de Recherche fl° 43
clecembre 1973

A FAST STABLE MINIMUM-STORAGE SORTING ALGORITHM

Ronald L. Rivest

Abstract

An algorithm is presented which sorts n numbers into order in

average time O(nGog2(nfl2) using at most O((log2(n))2 bits of

additional storage. Furthermore, flit algorithm is stable (that is, it

preserves the initial order of equal elements).

Résumé

Nous présentons un algorithme qui trie n nombres dans un temps

mayen 0(n(log2(nfl2 en utilisant au plus &(log2(n))2 bits de mémoire

supplémentaires, De plus, cot algorithme est stable (cost—a—dire qu’il

conserve les éléments égaux dans leur ordre initial).

in this paper we answer in the affirmative a question raised by

Knuth

“Is there a stable minimum—storage sorting algorithm which recuires

less than Qn) nits of time in its worst case, and/cr on the average 0.’

[3, exercise 5.5.3, p38ö.

A sorting algorithm rearranges a given set of n numbers into

non—decreasing order. Thus if the input numbers are stored in memory

locations tL],... , M[n], when sorting is complete we have rearranged

them so that

ME1 MC2JS. M[nJ. (I)

If there are equal elements in the input, ccre than One rearrangetertt

wifl athieve the result (I)

A sorting algorithm is said to be stable if the initial relative

crdering of equal elemetts is preserved in the fital rearrangement. Thus

if each element were ‘ragged’ with its mit i a locat ion, ye would have

at the end

(i < j) => (M[i < tiLj]) Y ((tag[i] < tagLJ)A (MEL] = MEj])). (2)

Equal elements are thus not to be considered “equal’t but ordered

according to their initial ordering in the input.

Stable sorting algorithms are very usejul when some order already

existing in the input file is to be preserved. For example, suppose

we nave a file o transactions, where each transaction lists a custo,ers

name and a dale, and suppose further that this fi’e is already ordered

by date. If we now sort this file by customer name in a stable manner,

the output file will still be ordered by date within the grcup of

transactions for each customer. This obviates considering the (name,

date) pairs as single keys obeying a lexicographic ordering rule.

Stahle sorting algorithms are easy to construct. For example, one

can add the ‘tagging” scheme mentioned above to any standard sorting

algorithm. Problems arise, however, when one wishes to increase the

storage efficiency of the algorithm without drastically increasing the

running time. Knuth defines a minimum_storage sorting algorithm as

one which uses only Q((log2(n))) additional bits of storage for

program variables, in addition to the soac& used by tne array M cr

the set of numbers being scrted. This is a reasonable definition since

—2—

it represents the amount of storage used by a recursive algorithm whose

depth of recursion is hounãed by log2(n). Thus there is ct er.ough

available storage to allocate logjn) bits for a tag’ for each of the

n numbers. Pow fast can a minimun storage stable sorting algorithm

sort 7

The best previous answer to this question is O(nj. The classic

“bubble sort’ [3, p. 106] demonstrates this easily enough, since it

uses only three variab’es, so that its storage utiligation is 0(log2(n)).

Furthermore, it only exchanges values in adjacent memory locations,

an then never if chose values are equal, sc it is stable. Ocher 0(n

minimurn—scoraze stabie sorting a’gorithms also exist E3, p. 386],

but none were knnwr. which required less than Qçn) units ot time, or.

the average or in the worst ca.

In this nape.: we present a stable minimum—storage sorting algorithm

whose avrage run:ring time for any input multiset of numbers is

O(n(log2Cn))2). The worst case running time is still 0(n2), so we

have really only answered part of tcnuth’s question the best possible

worst—case running time remains an open problem.

The algoitun has an cverall structure similar te Quicksert [2]:

Aigorithz A.

Records Mb:, .. . NEc] are scrte stabZv in place, where 5

using Q((icgr))2) bits of additiDnal storage.

Al. if b c, the algorithm terminates. Otherwise set m 4- We].

A2. Using algorithm B, partition the elements M[b],. ., M[c] about

the value m, so that at the end we have, for some k, b k e, and

all i, b i c,

S it) (1 S k). (3)

That is, all values less char. or eçual to m are stored in

Mm:, ..., [k] and all values greater than m are stored in

M[c. Furthermore, :he record originally in MEd (with

value m) has been moved to 1[k], since algorithm B is stable.

A3. Use algorithm B again on the subfile M[b], ..., MDC], partitioning

it about the value m, but modifying the definition of algorithm B

—3—

slightly so that alt values equal to n are grouped together. Thus,

alter this sep4 we have for some values Ic’ andk, bsk< k c

I Ic’ ts$ MCI] < m

< I Ic s> MCI] m

k < I > M[iJ > m. (4)

A4. Use algorithm A recursively to sort the smaller of the two

subfi].es MTh, ..., M[k9 and Mtk+H, ..., Then adjust b
and c to point to the ends of the larger subfile, and go to step
Al. D

Initially this algorithm is invoked with b = I and c U.

It is clear that this algorithm uses Q((log(n))2) bits vf

additional storage, since no re than lcg2(n) levels of recursion

can be invoked-

The standard partitioning algorithm [3] is very efficient (its

running time is (9(n)), but not stable. We next show how a stable

partitioning can be performed in O(n log2(n)) units of time ,sing

minimal storage.(This is algorithm B referred to above).

The partitioning algorit baa to deal with oniy two yoas of

rnbers those that are less than or equal to m, and those that are

greater. For simplicicv let us call the former ‘zeros” and the latter

‘ones”. Thus we .,ish to move all the zeros to the left end of M, and

all the ones to the right, end, in a stable manner. (Here we adopt

the usual convention that MEl] is to the ‘left’ of M[i+1].)

Let us first consider the simple case where we have a run of s

ones tollowed by a run of zeros. That is the input loDks like

I
O 5)

In this case we can clearly perform a stable partition with only

s transpositions, the i—rh of which exchanges the i—th one with

the i—th zero.

Encouraged by this much success, let us continue. How about

ones followed by t zeros, for some t > s 1 That is, we have

Is Ot
(6)

—4—

We can clearly exchange the first s ones with the first s zeros

in a stable fashion, as above. What remains is a similar problem

involving s ones and only t—s zeros, since the leftmost s zeros

are now in their proper places

Os 0t—s (7)

This process can clearly be iterated, moving the block of s ones

to the tight s places each time, until only u zeros remain to their

right where c s. At this point we can reverse the roles of left and

right, ones and zeros ; and move the block and forth in a manner which

follows the Euclidean algorithm for computing gcd (s,t), until every

element is in its proper place. The total number of transpositions

involved is at most st—, since every transposition puts at least

one digit into its final location.

The following algorithm describes the above procedure exactly.

(We will use this routine later.)

Algorithm C.

Records Mn], . . , M[j+s*t—I] are stably partitioned about the

value m, where records M[j]. .., 1Ej+s—1] are known to be greater

than m, and records M[j#sL . . . MLj+s+t — are known to be less

than or equal to m.

Cl. Set d - mins,t). If d = 0, halt.

C2. For i 0,1,.. , d—I, exchange the values of MLj+s+iJ and

M[j+s+i—dl.

13. If s < t set j -& j+d and t - t—d otherwise Set S -- s—a.

Go to step Cl.

Now we consider the general partitioning problem. There will occur

naturally in the input runs of ones followed by ruts of zeros. That is,

we consider the general case

5 t S t t
I 2 2 w

(8)

for some integer w. This ormulation is completely general if we allow

and t to assume the value zero.
w

—5—

car, clearly use algorithm C to reversa each sat of s. cues

followed by t. zeros, and iterate to completion. This idea unfortunately

fails -take s t1 = •.. = t I, for example. In this case we must

use n2/4 transpositions altogether9 since each zero gets transposed

with each one. The problem is that algorithm C is efficient only far

long runs but in this example the run lengths remain fixed at

(except for the runs at the ends of H • whizh are aready in their

fina3. places).

The way to overcome this difficulty is to only exchange every

other block 62 ones with its subsequent block of zeros. That is, we

exchange and
Ott

only for odd values of i. Thus after the first

pass we get the following situation

5459 t,t] 53+3,
O’ O I (9)

Now every exchange of adjacent runc has caused those runs to
coalesce with the neighboring runs of the same type which were

left fixed. It is clear that the length of the shortest run must

double at each step, (if we don’t consider the engts of ct.e runs

at the ends of M). Thus at most icg,(n) passes are necessary to

ccrpTetelv partition (about m, and the :otal partitiQuing time IS

O(n log2(nfl

For the sake of completeness we list the above algorithm in detail

Algorithm 8.

Records CC, . . Crares:ahy partitioned about the vaue

=

DI. (Skis over elemen:s already in place,)

While 2. < r and ML] cm, set — £41.

While t < r aod MEt] > iii, set r — r—I.

If Q r, the algorithm terminates.

32. Set

83. (Ge t lengtls of next two runs.)

Set s-c-c, t.-o.

While M[j+s] > in, set s s+I.

While j+s+t < r and MH4-s4t] m, set t - t+I.

—6—

fl Use algorithm C to exchange the S IIQnes4t at M[j],...,M[j+s—1]

with the subsequent t “zeros’ in NUts], .. ., MUj+s+t—fl, then

set 5 j÷stt, so that now either 5 r or MU] is the beginning of

tte next string of “ones”.

ES. If j > r, go to step 31.

E6. (Skip next two runs.)

While M[j] m, set j
While j < r and M[i: in, set j - j+J.
Cc to step B).

To modify this algorithr as required for step AS of algorithrn A,

we need only to consider each element equal to m as a “one” instead

of a zero. Thus each test of the form “ME...] S rn’ becomes ‘MU...] rn’

and each test of the form ‘ML...] > m” becomes “ML...] rn’.

An exact analysis of the preceding algorithms appears to be very

difficult. For example, the running time of algorithm C, in terms of

the number of transpositions used, is

+ t— gcd(s,t), for s >u, t >c (10)

Carrying this gcd(s,t) term into an analysis of algorithm B would

require knowing the distribution of gcd(s,t.) at each step, which in

turn requires knowing the relative probability that equal elements

occur

Let E(n) denote the number of transpcsitions required by

algorithm B to partition n n,nbers in the worst case. From cur

previous discussion we know that

3(n) n log2 (n). (II)

To anak-ze the average running time of algorithm A, we need first

to define what we mean by ‘average’. Most analyses of sortin2 alcrithms

merely assume that the n input tunbers are distinct. Here, ho-ever,

we are considerin a stable sorting algorithm, which is designed for

situations in which equal elements are known to occur, and are perhaps

even likely. We wish to show that our algorithm works well in all these

cases.

—7—

Our model of the input runs as follows. We assume that there are

p3 n occurences of the value I, pn occurrences of the value 2, and

Sc on, up to Pt
occurrences of the value t, tcr Sate t, t n.

This we way do without loss of generaiit. The vector p (p1....

thus satisifes the equality

1. (12)

Let A(a,p) denote the average number at traflsposit:Dfls used over

the set of all arrangements of the p1n l’s, p2n 2’s, ete, and let &(n)

denote the maximum value of A(np), for any ¶. We will show by

inducticr. on n that

(]c>o)A(n) c n (Iog(n))2. (13

The basis for the induction is easily established by choosing c

large enough. For convenience we define

q.= P ,for lit.
—

The following inequality for A(n) is then easily derived

Aft) 2n Jogjn) + I P: EA(nq:_.) + A(nOq;fl].(15)

— :irt
I

The first term on the right is an upper bound for the cost of the

two partitioning steps A2 and A3, The occurrence ra = i (which occurs

with probability p.), causes the remaining two subproblerns to be of

size nq1 and n(I—q.).

Substiruting 03) into (IS) and simplifying, we obtain

A(n) f(n(log2(a))2 + (g() + 2) n lcg2(n) + hC) n, (16)

where -

-—
2; —

t(p) = c[I — .L_ p. j , (I,)

Iit —
gC) = c qjj lo2(1)+ (I—c1) log2(I—q)] ,(I8)

lj.s t

and

= c z p. (IpJ(lo4I—p.)Y — 2 icg(—p.) •

Iist
-L 4-

—8—

We first note that

Gc’) (VP) h(p) s c’ 2O)

so we need not worry about the term h(p)n in 06) becoming large

for certain p. We next note that

(‘o) g(p o, and (21)

(VP) fC) , (22)

so the only pvsitive term to consider is the cern 2 n lcg2(n)

Let be a small positive reaL number, 0 <C /2. It

max.(p.) E then we have

2 n iog2(n) S (c—t(p)) n (log,(n))’ (23)

if c = crc) is chosen sufficiently large. On the other hand, if

rnax(p.) it is not difficult to show that

2 < (24)

again assuming that c = c() is chosen sufficiently large.

In an;’ case, we arrive at the result

Mn) = Q(nlo?2(nfl2). (25)

which was to be shown.

Conclusions

ThO ave algDrltnm dat’onstra:es that stable w.iniiiurn—storage

sorting can be done quickly on the average. It remains an open problem

whether this result can be in,proved to O(n log,(n)) or whether

O(n(log2(n))2) is indeed optimal. In addition, it remains to be

shown whether stable minimum—storage sorting can be done in the

worstcase in time less than O(n2),*

*
have just been inoniied b-i Professor Donald E. Knuth that Professor

R.3.K. Dewar (llinoxs Inst. Tech.) has a niinmal—storage stable wrtng

algorithm that runs in worst—case Lime

—9—

References

[1] Hoare, C.A.R. “Algorithm 63 (Partition)”,

CACM 4 (July 1960, 321.

[2: Hcare, C.A.R. ‘Algcrit±i 6 (Quicksort),

CAC!4 3 (July 961), 321.

[31 Knuth, Donald E. The Art of Computer Prorarntning,

Vol 3 Sorting and Searching. Addison—wesley

Publishing Company. (Menlo Park, California, 973).

— 0—

