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We examine a hash-coding algorithm due to Elias for retrieving from a file of fixed-length binary records
all the "best-matches" (using the Hamming distance) to a given input word. We prove that no balanced
hash-coding algorithm can examine fewer buckets on the average than Elias's algorithm does, assuming that

every record is eq ally likely to appear in the file.

1. INTRODUCTION.

We consider hash-~coding algorithms for retrieving
from a file of k-bit words all the "best-matches"

to a given input word x (under the Hamming distance
metric). An algorithm based on error-correcting
codes due to Prof. Peter Elias of MIT (according to
[7] ) is shown to minimize the expected number of
buckets examined, over all "balanced" hash-coding
algorithms, if every record is independently equi-
probable to appear in F. (Burkhard and Keller have
apparently independently rediscovered the idea [1] ).
We also analyze its efficiency for a sample applica-
tion.

We shall use the folkowing notation. Let denote
the set of all the 2 different k-bit words (or
records) so that our file F is a nonempty subset of
. We restrict our attention to binary records only
to simplify the analysis ; similar results presumably
hold for nonbinary records. For x ¢ R, let x(i)
denote the i-th bit of x, for I<ic<k. =~ Let d(x,y)
denote the Hamming distance between words x,y ¢ R, ;
this is the number of bit positions i such that
x(i) # y(i). The set B(x,F) of best-matches (or
nearest neighbors) to x in F is defined to be the
set of all records y e F which have minimum distance
d(x,y). That is,

B(x,F) = 1 ¢ 7 e F|(3z € F) d(x,2) < d(x,y)}. (1)

Note that B(x,F) is {x} if x ¢ F. The complement of
X € R, is denoted by X ; we have X(i) # x(i) for
I<i<k. If the binary number denoted by x is less than
that denoted by y, we write x < y.

Our problem is to organize the file F on a random-
access memory so that the average time to calculate
B(x,F) is small, averaging over all records x ¢ .
This problem models a large number of practical
applications. For example, a typical pattern recog-

nition problem fits this schema : the input word x
is known to be a noisy version of some word in F

and we wish to guess which one (the "decoding"
problem). One might want, say, to organize a dic-
tionary so as to be able to correct mistyped charac-
ters. Viewed as an "associative" retrieval problem,
we want to calculate the "nearest associates"

B(x,F) to the input query x. We restrict ourselves
here to the best-match retrieval problem ; the
"partial-match" retrieval problem (finding all y ¢ F
agreeing with a partially specified query x) is

also studied in the author's thesis [5].

One can clearly minimize the average search time

by precomputing the response B(x,F) to each query

X, but this requires exorbitant amounts of storage
and makes file modification difficult. For algorithms
using reasonable amounts of storage, Prof . Marvin
Minsky conjectured that "for large data sets with
long word lengths there are no practical alterna-

tives to large searches that inspect large parts of
the memory" [3]. We show that hash-coding algorithms
can often calculate B(x,F) very quickly, and that
Elias's hash-coding algorithm is in a certain sense
the optimal hash-coding algorithm for our problem.

2. THE ALGORITHM.

We consider balanced hash-coding schemes utilizing
chaining to handle collisions (see [2]). These
schemes maintain b distinct lists (or buckets)

L], ey Lb of records in F.

A record x ¢ F is stored on list Lh(x), where h is
an auxiliary "hash" function mapping R, onto
{1, ..., b}. The b lists Ll’ 3 aivty are thus dis-

joint and satisfy Ulcich Li = F. Collisions (two or

more records hashing to the same bucket address) are
no problem since each list L, can be of arbitrary
length. We denote by B. the Set of records in Rk
which might appear on Iist Li' That is,

B, = gor (X € R | h(0) = i}, 2

so that Li = Bi n F for 1<icb, Ulcich Bi = Rk
and B, n Bj =@ for i # j. We call Bi the block

(of the partition {B,, ..., B.} of R ) corresponding
to the list L., A hash function h is said to be
balanced if |B,| = IR, |/b for Isisb.

Hash-coding schemes are known to be very efficient
for handling "exact match" queries (that is, deter-
ming whether the input word x is in F) -see [2], for
example. Here we give the natural generalization for
handling best-match queries.Let us extend our dis-
tance notation so that d(x,S) denotes the minimum
distance from x to any point in set S (that is,

d(x,8) = def minyés d(x,y)). The idea is to examine

L. in order of increasing corresponding distances
d x,Bi) until a nonempty L; is found. The value
o
§ = m:'myEL d(x,y) then gives an upper bound for
i
d(x,B(x,F))? the distance from x to itS nearest
neighbors in F. We then only need to look at those
unexamined lists L. such that d(x,Bj) < 6 in order

to calculate B(x,F). The upper bound § can be
decreased every time records in F closer than §

are found, in a typical dynamic programming fashion,
further reducing the number of buckets yet to be
examined. We now pre?g?t the algorithm Qgscisely,
using the notation x (respectively S to
denote the set of points y ¢ such that d(y,x) = §
(resp. d(y,S) = §), for points x e Rk and sets

S ¢ Rk.
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procedure SEARCH (record x) ;.
begin comment find all best-matches to x ;

integer 6,j ; record set S ;
comment S contains the current best-matches to x,
at distance § from x ;
§: =»; § :=null ; j := -1 3
for j := j+1 while j < min($,k) do

for each i e {1, ..., b} such that d(x,B;) = j do

begin comment examine list L.;
if Lix%G?uII then § := min(é,d(x,Li)) :

n (Su Li) B

w

end 5
print(x,6,S) ;
comment now S = B(x,F) and d(x,B8(x,F)) = &;
end .

The efficiency of the above algorithm depends on the
hash function h used. A typical pseudo-random hash
function would perform poorly since each block B,
could be expected to contain some word near to X,
causing list L, to be examined with high probability.
It is more reasonable to make each block B, a compact
subset of R, so that d(x,Bi) is large for many

. Elias suggests (according to [71])
using a (k,w) perfect error-correcting code with
minimum distance 2\ + 1 as a basis for a suitable
hash function. Such a code is a subset C of of
size 2" such that for any distinct pair s cj of

points X €

codewords 1in C we have d(ci’cj) 2 2\ + 1 and

furthermore, for each x € Rk there is a unique
codeword c; with d(x,ci) < "A. We define the hash

function h associated with the code C by eq.(2) and
B, = {x € R, | d(x,ci) < A} for 1<i<b, where

b = 2. Each block B. is a "sphere" of radius A
centered at c.. This is intuitively appealing since
records relevant to the same search are likely to
be stored together. While perfect (k,w) error-—
correcting codes do not always exist (see [6]) we
would expect nearly equivalent performance from

the best (k,w) error-correcting code available.

The actual amount of work performed is also depen-—
dent on the particular file F being searched. We
wish to consider the average work done over all
queries x and files F, assuming that each query

x € R is equally likely and that each file F of
the same size is equally likely. More precisely,
we assume that there is a probability p such that
any record x ¢ R appears in F with independent
probability p. Tﬁus the expected size ﬁf F is p2 K

and the probability that |F|=n is (i ) pn(]_p)Z-n.

We thus ignore second-order "correlation" effects
between records.

We will only consider balanced hash functions, for

which the average number of buckets examined is an

accurate measure of the total work performed, since
the expected size of each list is the same

(E(lLiI) = PZk/bfor‘lsisb).‘We define our cost

measure a(h) to be the aVetage ndmﬂer;of lists
examined by the procedure SEARCH over all queries

. x and files F (using the preceding assumption about

the probability distribution for F). The number of

. lists examined is arealistic cost measure when the
. file is stored on a secondary storage device such
. that the time to access an arbitrary list L.

exceeds the time to read it. Requiring the hash
function to be balanced also eliminates considera-
tion of such degenerate solutions as storing all
records on a single list (so that a(h) = 1).

3. A SAMPLE APPLICATION.

An an examnle, suppose we have a file F of approxi-

mately 215 23-bit words. If we use the Golay perfect
(k = 23, w = 12) error-correcting code with minimum
distance 2A + 1 =7 betweenlaodewords (see [4]), our
hash function h will have 2 ° = 4096 buckets, each
containing about 8 records. The following formula
gives the average number of buckets examined to find
all best-matches to an input query x.

23, .-1
SLILEEDY
0<j<23

ath) = 2 ( v(i) i, 3)

0<i<3

Here we take as separate cases the distance i of x
from the center of its bucket, the codeword ch(x) 3

the factor (22) Z_l] is the probability of this
distance occurring. The factor v(j) is the probabili-
ty that the nearest record to x in F is at distance
j ; this is given by the formula
(23) /
v(j) = (1 = (1-p)" i) * Bk, i-1) (4)
We use V(k,j) to denote the number E%sisj (?)
of points in a k-dimensional sphere with radius j

and #(k,j) = (1-p) Vi, 1) to denote the probability
that it is empty (that is, it contains no points in
F). Finally, the value of t(i,j) in eq.(3) denotes
the average number of blocks B such that d(x,B) < j,
given that d(x,ch(x)) = 1 ; the relevant values of

t(i,j) were calculated with a computer program to
obtain table 1 of _; a(h) versus p. For our
application p is 2 ; we see that only 37 buckets
need be examined on the average, or about 9 7 of the
file.

Table 1

Average number of buckets examined versus 1og2(p)

logz(p) a(h)
0 1.000
-1 3.162
-2 4,259
3 ! 5.450
4 i 8.545
-5 % 12.86
-6 i 17.14
-7 i 24,51
-8 36.97
-9 : 51.85
-10 : 75.16
-11 109.8
-12 ; 157.0
-13 2275
-14 , 325.1
-15 | 463.5
-16 l 653.5
t-17 909.8
-18 1244
-19 1665
20 ' 2153 |
21 2612
22 2701 ‘
- =(p=0) 4096 .
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4. OPTIMAL BUCKET SHAPES.

To prove the optimality of Elias's algorithm, we
consider the probability ¥(B,) that each list L.
will be examined. Note that this is necessarily
only a function of the set B, of records' that could
possibly appear on L., and not of L. itself (since
we don't ow what L, is until we eXamineit). Since
a(h) = 1<5< V(Bi), la(h) will be minimal if each

W(Bi) is minimal.

Theorem. The probability ¥(B) that a list L will be
examined during the search for all best-matches
B(x,F) of x in a file F is minimized over all blocks
of size |B| when the block B associated with list L
is a "sphere" -that is, when B consists of a center
c e and all points y such that d(e,y) € A for
some A,
Proof. List L will be examined if and only if the
file F does not contain any words y such that
d(x,y) < d(x,B) (that is, any words y closer to x
that the nearest word in B). Under our assumption
that each word y ¢ R is in F with probability P,
the probability that L is examined is exactly
?(k,d(x,B)=1). Averaging over all queries x ¢ Rk
we have

k

wm=ddz'x§R B(k,d (x,B)-1) (5
k
=27 3 O cpk, -1 (6)
O<s<k
(8)

(Remember that B is the set of points x such
that d(x,B) = §.) Since @(k,5-1) is a decreasing
function of §, we can show that ¥(B) < ¥(C) for
any blocks B and C.whenever the vector

0 i . .
(IB( )I,IB(I)I, IB(k)[) is lexicographically
less that the corresponding vector for C (that is,
whenever there is an m, O<m<k such that

1812 1¢9) for 0ssam bur 3™ < [c@)y.
Since IB(m)I- Ic(m)l=§;m<65k (|C(6)|‘|B(5)|) we

have

¥ = v®) = 27°1c™ - 3™ ) pe,m-1) ()
£ 27 2 e 5189y upck, 6-1)
m<d8<k
> 27501 e™ =13 1) (a(k,m-1) - (k,m)) (9)

5 (6]
Since IB( )I=IBI, for two blocks B and C of the
same size, the list associated with block B will be
examined less frequently than C's list if

IB(I)I < IC(I)I. Note that IB(])I is the discrete

analog of the surface area of a region B, so that
what we would like to show is that a sphere has
minimal "surface area".

We first extend our,definition of a sphere to include
‘subsets S ¢ Rk of size n, where n is not V(k,\) for

any \.

1

Definition. The sphere S of size n about ¢ ¢ Rk
s I L RO, n,c
is defined by

(1) Sl,c = {c}, and

(ii) Sn+],c = Sn,c

s (1

. ‘with minimal pair (ac(x), X @ ¢) where
i)

u {x}, where x is that point in

cc(x) denotes min{i|x ¢ Si(l)}, using a lexicogra-
’

phic ordering between pairs. Here x ® c denotes the

Computational Complexity

k-bit word obtained by performing a component-wise

"exclusive-or" of x and ¢ (this has d(x,c) ones in

it, in the positions where x and ¢ differ).

Note that either S. c. (5% u S.(])) or
1,¢ = J»C JscC

. v sj(":)) s, _ for all i,j. When n = V(k)
t] ’

JsC
for some A the definition corresponds to the usual
one, giving all points x within distance A of c,
since if d(x,c) < d(y,c) then x will be reached
before y.

‘We prove our theorem by induction on the length k of

the words under consideration. For k = 1 all the
nonempty subsets {0},{1},{0,1} of R1 are spheres ;

since ¥({0}) = ¥({1}) trivially, the theorem holds.

Now suppose that we have an arbitrary block B cR
for k > 2., We show that B can be transformed into
a sphere by a finite sequence of operations such

that B(l)
all spheres S, S
of size |S].

is non%?sreasing at each step. Thus for
will be minimal over all blocks

Let BO i (respectively B1 i) denote the subset of
’ ’
Rk-l obtained from B by taking each word x ¢ B such

1) and deleting this

1 iI and B is uni-
’

.+ For each point
1 5%

X € Rk' denote by ¢&(x) the corresponding point in

that the x(i) = O (resp. x(i) =
i-th bit. Thus |B| = [By .| + B
’

quely determined by By i and B
?

Rk—] obtained by deleting the i-th bit of x.
Suppose B ¢ is not a sphere about the point c.
Then at least one of following three cases hold
(i) there is an i such that at least one of Bo i
’

Bl,i is not a sphere in Rk—] about ¢&(c), or

(ii) there exists a pair of records x ¢ B, y e Rk—B
such that cc(x) > oc(y), but cases (i) and (iii) do
not apply, or '

(iii) there exists a pair of records x € B, y « Rk-B
such that cc(x) = oc(y) and x& ¢ > y & ¢, but
case (i) does not apply.
Note that if (ii) or (iii) occur, then we must have

X =7y to exclude case (i) as well, since if
x(i) = y(i) then ¢§(x) and ¢i(y) are both in Bx(i),i'

which is thus not a sphere about ¢.(c). In addition
the pair (x,y) must be unique, othérwise we could
find another pair (x,y) having x # J.

Our transformation of a nonspherical B depends on
which of the three cases occurs. With (ii) or (diiiy
we merely set B «+ B u {y} - {x}; in either case it

is easy to verify E??t B immediately becomes a

sphere and that B is nonincreasing. For case
(iii) to occur we muff)hav?]§ = 2 ; for case (ii) to
occur we must have y' ‘c B » since y must either

be the only point in S(]) or must have the
o, (¥),c 1)
largest value y & ¢ of any point in S (y),c*s° that
c ’

all of y's neighbors have already beei assigned their
o values. ,

When case (i) occurs, we modify B so that the corres-
ponding sets By i and Bl i for the postulated i (at
9 9

least one of which is nonspherical)) be???e spheres
conserving their sizes. To show that |B |is
nonincreasing we use the following fact.

7



R. L. Rivest, On the optimality of Elias’s algorithm 681

18D - 130‘1)| +|B, , - (B

n
1,1 0,i Y Bo,1)!

(@D _ n
+ IB | + IBO . (B u Bl,i)l (1)
is a subset of R, but that the

sl 1,
Remember that B( ) Kk
sets on the right-hand side of (11)  are all in Rk T

The first two terms count those x € B( ) such that

x(i) = 0 ; the last two terms count those with

x(i) = i. The first and third terms count those

X € B such that there exists a y € B with

x(i) = y(i) ; the other terms handle the ecase that

the only y € B adjacent to x has y(i) # x(i).

Making B(li and B to be spheres about @; (c)
(1)!

’

induction hypothesis. If we assume (without loss of

generality) that IBO i| > IB] iI , then our operation

’ ’

1,

means that |B and IB([)I become minimal, by our

forces B, . ¢ B , causing the second term

1,1 = 70,1
IB, . = (B_.u B(]))I of (11) to drop to zero.
L1 Ot (1) P i
Finally, either BO (B uB1 ») occurs, in which
’
case (l)| clearly becomes minimal, or else we get
(1)
(B]’. ) O,i' In this case, we get
(n, _ n _ g : ;
|B | = !Bo,i | + lBO,i Bl,i" which is necessarily

minimal among the set of blocks B for which [B . . |

0,1
andIB1 .| are at their current values. The value of
IB“)I'

is thus nonincreasing at each step.

To show that a sequence of the above operations will
transform any block B of size n into the sphere

Sn & in a finite number of steps, it is only necessa-
:

ry to note that the value > {jlx e (S. -S. )}
¢ J7
xeB
is strictly decreasing, but bounded below by &
Thus B = Sn & after a finite number of steps. Tﬁls
’

proves that a spherical B has minimal surface area

B(l).

Finally, we remark that B U B(l) is a sphere whenever
B is a sphere, so that (BUB(I))(]) = B(z) is also
minimal. By induction on the index j of the IB(J)I's

the vector (!B(])I,IB(Z)I, vy IB(k)[) is lexicogra-
phically minimal over all blocks of size |B|, thus
proving that the chance ¥(B) that a list L is exami-
ned is minimized when B is a sphere. [J

Since Elias's algorithm has a sphericai B, for each

list L., it minimizes the average number of buckets
examineéd over all balanced hash-coding algorithms
with the same block size.

5. CONCLUSION.

The preceding theorem shows that in a sufficiently
idealized setting one may prove a data structure
optimal for a given application. We have shown that
the best strategy in certain situations for organi-
zing a file for best-match retrieval is to divide the
record space into spherical domains B., so that each
subset Li of the file (with LiEBi) is necessarily

very compact and cluster-like. This result gives a
certain amount of justification for selecting clus-—
tering and similar organizational methods for prac-
tical applications.

The results presented here raise the interesting
question of what to do in slightly more general
situations. It is probably possible to generalize
this result to nonbinary records in a straightfor-
ward manner, for example, but changing the distance
metric or modifying the assumption that each record

is equally likely to appear in F gives a new problem
for which no results are known. An exact determina-
tion of the number of buckets examined on the average
would also be desirable, but seems to require deter-
mination of the behavior of the function 1 described
in §3.
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