606

space methods of pattern recognition which combine the role of
feature selection and pattern classification. The method of Chien
and Fu [10] is suitable for compressing second-order statistical
information about patterns. Watanabe’s Selfic [11] is ideal for
feature selection in nonsupervised pattern recognition, etc. Since
in these specific cases such techniques are better than any other
procedure it would be inappropriate to attempt to order the
methods according to some subjective criterion of feature selec-
tion effectiveness. Instead, they should always be discussed in
the objective terms of their individual applicability.

IV. CONCLUSIONS

This correspondence discussed the relationship of the discri-
minant vector method of feature selection recently proposed by
Foley and Sammon and the method of Kittler and Young. Al-
though both methods determine the feature space coordinate
axes by maximizing the Fisher criterion of discriminatory power,
the resulting feature spaces are considerably different because
of the difference in the constraints imposed on the axes by indi-
vidual methods. It has been shown that the latter method is, from

the point of view of dimensionality reduction, more powerful and

also computationally more efficient.

REFERENCES

[1] D. H.Foley and J. W. Sammon, “An optimal set of discriminant vectors,” IEEE
Trans. Comput., vol. C-24, pp. 281-289, Mar. 1975.

[2] S. Watanabe, “Karhunen-Loeve expansion and factor analysis,” Trans. 4th
Prague Conf. Information Theory, pp. 635-660, 1965.

[3] K. Fukunaga and W. L. G. Koontz, “Application of the Karhunen-Loeve ex-
pansion to feature selection and ordering,” IEEE Trans. Comput., vol. C-19,
pp- 311-318, Apr. 1970.

[4] J. Kittler, “Mathematical methods of feature selection in pattern recognition,”
Int. J. Man-Machine Studies, vol. 7, pp. 609-637, 1975.

[5] J. Kittler and P. C. Young, “A new approach to feature selection based on the
Karhunen-Loeve expansion,” Pattern Recognition, vol. 5, pp. 335-352, Dec.
1973.

[6] J. Kittler, “A method of feature selection for high dimensional pattern rec-
ognition problems,” in Proc. 2nd Int. Conf. on Pattern Recognition, pp. 48-51,
1974.

[7] ——, “Feature selection methods based on the Karhunen-Loeve expansion—A
review,” in Proc. Int. Comput. Symp., pp. 379-385, Taipei, 1975.

[8] S. Watanabe, Knowing and Guessing. New York: Wiley, 1969.

[9] S. Watanabe and N. Pakvasa, “Subspace method in pattern recognition,” in
Proc. 1st Int. Conf. Pattern Recognition, pp. 25-32, Washington, 1973.

[10] Y.T.Chien and K. S. Fu, “On the generalized Karhunen-Loeve expansion,”
IEEE Trans. Inform. Theory, vol. IT-13, pp. 518-520, July 1967.

[11] S. Watanabe, P. F. Lambert, C. A. Kulikowski, J. L. Buxton, and R. Walker,
“Evaluation and selection of variables in pattern recognition,” in Computer
and Information Sciences II. New York: Academic Press, 1967, pp. 91—
122.

The Necessity of Feedback in Minimal Monotone
Combinational Circuits

RONALD L. RIVEST

Abstract—We present a specific n-input 2n-output positive
unate Boolean function which can be realized with 2n two-input
gates if feedback is used, but which requires 3n -2 gates if feedback
is not used.

Manuscript received April 2, 1976. This work was supported by the National
Science Foundation under Grant GJ-4364X and Contract DCR74-12997-A01.

The author is with the Laboratory of Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1977

& § i ! I’ I
Y

£
x, (xl+x3) x3+x2x1

xl(x2+x3) x2+'x X

3%y Xa(xptRy) xphRgxg

Fig. 1.

Index Terms—Boolean functions, feedback, gate complexity,
minimal combinational circuits, monotone functions.

In [2] W. H. Kautz demonstrates that any minimal combina-
tional circuit realizing a specific three-input three-output Boo-
lean function using only NOR gates must contain feedback. (That
is, the directed graph corresponding to the minimal circuit is not
acyclic.) In [1] David A. Huffman studies circuits containing
feedback in detail, concentrating on minimizing the number of
inverters used. He proves that any function can be realized with
just one inverter, plus AND and OR gates, if feedback is used. At
the end of his paper, Huffman raises the question of whether
feedback is only useful in producing functions which are not
positive unate, or whether feedback can in fact help reduce the
number of AND and OR gates required to realize positive unate
functions as well. In this correspondence we present a specific
positive unate n-input 2n-output Boolean function which can
be realized using just 2n two-input gates if feedback is used, but
requires at least 3n-2 gates if feedback is not used. We assume
that n is odd for the rest of our discussion.

The optimal circuit for our function for n = 3 is given in Fig.
1.

This example is generalized to the following function of n in-
puts {x, - - - ,x»} and 2n outputs {f1, - - - ,fon}:

faic1=x; A (j—1 V (Kj—2 A (xj—3 V (cec V.xj31))--+)
forl <i < n wherej = ((2{ —2) mod n) +1;
foi=x; vV (xj—1 A (xj—2 V (xj—3 A (- A xj31)) -+-)
for1 <i < nwherej=((2t —1)modn)+1;

where the subscripts of x are computed modulo n, (with x,, used
instead of xg).

The optimal circuit (with feedback) for {f;} requires exactly 2n
gates; this circuit is merely the generalization of the circuit in Fig.
1. To prove that this circuit is optimal we need only observe that
the 2n output functions are all different from each other and from
the inputs; at least one gate is required to compute each output
function.

To prove that any feedback-free network must use at least 3n-2
gates, it suffices to note that one gate is required to produce each
output function, and that in a feedback-free network there must
exist at least one gate producing one of the output functions,
which does not depend, even indirectly, on the output of any
other gate producing an output function. However, since every
output function depends on all n inputs, there must be at least
n-2 gates (which are not output gates) connecting the inputs to
the chosen output gate. Thus, at least 3n-2 two-input gates are
required by any feedback-free combinational realization.

Hence, we have demonstrated that feedback can reduce by a
factor of at least % the number of two-input gates required to
realize positive unate functions, answering Huffman’s question,
and providing the first proof that feedback can yield reductions
in size by a factor ¢ < 1, as n — <. We have been unable to im-
prove upon the constant % by considering nonmonotone func-
tions, nor do we have any reason to suspect that % is the best
possible improvement factor for monotone functions. Whether

CORRESPONDENCE

feedback is useful in reducing the size of minimal networks for
single-output functions is also unknown. It thus remains an open
problem to determine the extent to which feedback can yield
economical realizations; this determination must await the de-
velopment of better techniques for proving lower bounds on the
gate complexity of feedback-free networks for Boolean func-
tions.

REFERENCES

[1] D. A. Huffman, “Combinational circuits with feedback,” in Recent Develop-
ments in Switching Theory, A. Mukhopadhyay. New York: Academic Press,
1971.

[2] W. H. Kautz, “The necessity of closed circuit loops in minimal combinational
circuits,” IEEE Trans. Comput., vol. C-19, pp. 162-166, Feb. 1970.

Comments on “A Computer Algorithm for Transposing
Nonsquare Matrices”

DAVID C. VAN VOORHIS

Abstract—In the above correspondence! a three-step algorithm
is presented for transposing large nonsquare matrices stored ex-
ternally or in main memory. The first step can be generalized, and
the last two steps can be replaced with a single step.

Index Terms—Externally stored matrices, large matrices, matrix
transposition, nonsquare matrices, partitioned matrices.

An M X N array A[*,*] is stored in row-major order as a one-
dimensional array B[*], with B[iN + j] = A[i,j] fori =0,1,--- M
—1landj=0,1,---,N — 1. The array B[*] may be stored exter-
nally or in main memory. In either case the objective is to rear-
range the elements of B[*] so that it stores the transpose of A[*,*]
in row-major order; i.e., the objective is to achieve the permuta-
tion

B[jM +i] < B[iN +j],
i=01,---,M—-1j=01---N-1.. (1)

Furthermore, this permutation should be achieved with a “small”
amount of temporary storage.

Alltop! describes a three-step transpose algorithm requiring
only 2MN/D temporary storage locations for an externally stored
array and MN/D locations for an array in main memory, where
D is a common divisor of M and N. (The original array can be
padded with zeros, if necessary, to achieve a larger array whose
dimensions have a suitable common divisor.) Although the
original description of the algorithm requires D to be a power of
2 when the array is stored externally, we shall see that this re-
striction can be eliminated if f/MN/D temporary storage locations
are available, where f1f5 - - - f4 is any factorization of D and f =
max;(f;). Furthermore, we shall see that the last two steps of the
three-step algorithm can be replaced with a single step.

The three-step transpose algorithm uses the permutation
T(R5,R4,R3,R9,R1) defined as follows for any factorization
R5R4R3R2R1 of MN.

Manuscript received February 2, 1976; revised May 3, 1976.

The author is with the System Communication Division, IBM Corporation, Los
Gatos, CA 95030.

1W. O. Alltop, IEEE Trans. Comput., vol. C-24, pp. 1038-1040, Oct. 1975.

607

Aogo[**]
Ayol**]

Ag[**]
Ayi[**]

- Agp-1[*¥)
- App-1l*¥]

Ap-10**] Ap-11[**] --- Ap-1p-1[**]

Fig. 1. The original M X N array A[*,*] partitioned into D2 M’ X N’ subar-
rays.
Aogol**] Arol**] - Ap_10[**]
Aoal**] Avilr~] - Ap-11[**]
Aop-1[**] A1p-1[**] .-+ Ap-1p-1[**]

Fig.2. The M X N array achieved by Step 1.
AooT[**] AgT[%*] Ap-1,0T[**]
AoaT**] | ALiT[*] Ap-11T[**]
Aop-1T**] A1p-iT[%*] --- Ap-10-1T[*¥]

Fig. 3. The final N X M array.

B[x5R4R3RoR1 + x2R4R3R1 + x3R4R1 + x4R1 + x4]
< Blx5R4R3R2R1 + x4R3RoR1 + x3RoR1 + x2R1 + 4],
x=01-.--,R; — 1.

This permutation amounts to treating B[*] as R5 R4 X R3 arrays,
whose elements are R3 X R; subarrays, and transposing each R4
X R array. The three-step algorithm is the following sequence
of three such transpose operations, where M’ = M/D and N’ =
N/D.

Step 1: T(1,D,M’,D,N").

Step 2: T(D,M,1,N’,1).

Step 3: T(N,M’,1,D,1).

The permutation in Step 1 can be written as

B[rMN’ + gN + pN’ + s] < B[pNM’ + gN + rN’ + 5],

(pgrs)e R, (2)

where R is the set of 4-tuples defined by
R={p,qgrs)|0<p<D,0<qg<M,0<r<D,0<s<N’

This permutation treats the original M X N array A[*,*] asa D
X D array whose elements A, .[*,*] forp =0,1,---,D —1land r
=0,1,---,D — 1 are M’ X N’ subarrays, as shown in Fig. 1. The
array B[*] initially represents the subarray elements A, ,[qg,s]
for (p,q,r,s) € R, with :

B[pNM’ + gN + rN’ +s] = Ap.[q,s] = A[pM’ + ¢,rN’ + 5],

and the permutation (2) rearranges the elements of B[*] so that
it represents the new M X N array shown in Fig. 2.

If B[*] is stored in main memory, the transpose (2) can be
achieved by simply interchanging the elements of the subarrays
Apr[**] and A, p[*,*],forp =0,1,--- . D—1andr=0,1,---,D
— 1, which requires only one temporary storage location and one
pass over the data. For an externally stored array, Delcaro and
Sicuranza’s extension [1] of Eklundh’s algorithm [2] requires d
passes over the data and fMN’ temporary storage locations,
where f1f2 - - - fq is any factorization of D and f = max;(f;). (The
original description of the three-step algorithm requires f; = 2
fori =1,2,---,d,sothat D =29 and f = 2.)

