The BLIZZARD Computer Architecture
Ronald L. Rivest
MIT Laboratory for Computer Science
February 6, 1378(Rev. 8/8/79)

We present a simple and pouwer ful computer architecture uith several
novel features, the most interesting of which are probably the ways in which
immediate and stack operands are treated in this register-oriented machine.
The recent cdebate in this journal (see [11-15]) over the relative efficiencies
of stacks and registers uwill take on a new form for the BLIZZARD,

The machine is called the BLIZZARD, since the design was initiated
while the author uas snou-bound at home during the Boston "Blizzard of '75".

A summary of the BLIZZARD's features are:

- Nemory consists of up to 2xx32 16-bit words. Addressing is by uord.
16 double-uard registers are available. Seven have special functions (like
PC, SP): three of the seven are "windouw" registers for fetching immediate
immediate operands and pushing/popping stack operands,

- Data tenqths 1, 2, 4, 8, 16 or 32 bits (called bits, dabs, nibs, hutes,
vords, and double-uords, or generically, "flakes") handled easily.
Smatl flakes are stored as packed arrays; each flake is easily accessible,

- Each instruction is one word long (and is possibly folloued by word or
doubrle-ord immediate operands) and has a simple four-nib format.

- There are looping, subroutine enter/exit, and block move instructions, etc.

I. NOTATION AND DATA FORMATS

A doubte-uord occupies consecutive words; its address is the same as
the word with lower address (uhich contains the least-significant bits of the
doubte-uord), MWe let [X) denote the contents of the memory word at location
X. and (X) denote the doubie-word stored at location X (consisting of (X] and
[X+11). Ue also use () for denoting register contents: (PC), etc.

Integers are in tuo's-complement; floating-point numbers are double-
words with a sign, eight exponent bits (excess 128 code) and a 23-bit manticsa.

lle use hexadecimal notation; a uord is four hex digits (nibs). A hex
constant appears as # followed by a nib sequence. Louer case letters denote
arbitrary nibs: #3ABd is a word with nibs 8, A, B, and an arbitrary nih d.

The hits of a double-word or word are numbered from 31 or 15 for the
sign bit to @ for the least-significant bit. Similarty, flakes in a word are
numbered starting uith zero for the flake in the least-significant position.

1., REGISTERS

BLIZZARD's 16 douhle-uord registers (R@ to RF) are carefully
allocated betueen seven dedicated uses and general-purpose use. This frees
the opcodes from having to specify operand sources (e.g. immediate, stack, or
register), The registers are identified with double-words @ to F of memory
{(Ri consists of memory words 2xi and 2xi+l).

RO = Program Status Register PSR
carry bit (bit 31}, overfiou bit(bit 38}, interrupt mask bit
(hit 29), and flake size code: 1,2,4,8,16, or 32 (bits 8-51

llhen used as a base or index register, PSR has a value of 0.

Rl = Link Register LR: Keeps the return address for subroutines.
LR agets the old PC, uhenever PC is assigned a new value,

RZ - RA = General Purpose Registers
RB = Frogram Counter PC: Incremented by 1 after each instruction fetch.

RC = Stack Pointer SP
Push decrements oF by £ then stores a double-word.
Pop feiches the deouble-uord at (SP) then increments SP by 2.

RO = Word Imnediate "Window" Register WIR
Fetch of WIR (even as base or index register} returns [(PC}] then
adds 1 to PC. Store into WIR is a no-op.

RE = Oouble-tord Immediate "Window" Register DUIR
Fetch of DUIR (even as base or index register) returns ({PC}) then
adds 2 to PC, Store into DUIR is a no-op.

RF = Double-uord Top-of-Stack "Window" Register TOS
Fetch of TGS (even as base or index register) returns [(SP)] then
adds 2 to SP. (This is a "pop".) Store into T0S subtracts 2 from
SP, then stores into location (SP)}, (This is a "push",)

IT]. THE INSTRUCTION SET

An instruction is one word long, but its execution may fetch the next
word or double-uord and bump PC by an additional 1 or 2 (due to WIR or DUWIR).

The instructions have similar four-nib formats. Using "0" for opcode, "r" for
register, and "-" for immediate denotations, they look like:

Orr- lnad/store a double-nord/flake (base reg + immediate offset)
{Orre inard/store a double-uord/flake {base reg + index)

00 - compare against immediate, not, enter, exit

00er compare/add/subtract/exchange/etc. registers

Or - load/add/subtract immediate, load PC (base reg + displacement)
Do jump (relative to PC)

The instructions are listed below. In all cases the registers named
Rx, Rb, and Ra are evaluated in that order. {(This only matters if tuo of them
refer to the stack via T0S or to immediate operands via WIR or DWIR.)

T11.1 LOAD and STORE DOUBLE-WORD INSTRUCTIONS

Bahd LOAD DOURLE-WORD: loads Ra uith the double-uord at address (Rb)+2xd.
Acsembler: L a,d(b) {(PUSH di{b) for L T0S,d{bl})

1 abx LOAD DOURLE-LORD INDEXED: loads Ra with the double-uord at (Rb)+2%(Rx),
Ascemhlier: LX a, (b,x]) (PUSHX (b, x} for LX T0S, {(b,x))

ahd STORE NOUBLE-WORD: stores double-word (Ra) into location (Rb)4+2xd.
Assemhler: S a,d(b) (POP d{b} for S T0S,d(b})

]

Rahx STORE DOUBLE-WORD INDEXED: puts (Ra) into location (Rb}+2x(Rx).
Accembler: SX - a; (b, %) {or POPX (b,x) for SX T0S, (b,x))

These instructions load registers, jump (Ra=PC}, change the current
flake size (Ra=PSR), push/pop data from the stack {Ra=T0S), etc. [If the base
or index register (or hoth) is T0S, the value used is popped from the stack.
Smat!l displacements (8 to 15) are coded directly; larger displacements require
the LOAD/STORE INDEXED format with WIR or OWIR as the index register {the
displacement appears as an immediate operand). Note that for all of these
instructions the displacement d or (Rx) is in double-words from location {Rb).

111.2 LOAD and STORE FLAKE INSTRUCTIONS

4 abd LLOAD FLAKE {Assembler: LF a,d{b}) or PUSHF dib))
Satiw LOAD FLAKE INDEXED {Assembler: LFX a, (b,x) or PUSHFX (b,x})
Eahd STORE FLAKE {Assembler: SF a,d(b) or POPF d(b))

7 abx STORE FLAKE INDEXED {Assemblier: SFX a, (b,x) or POPFX ({b,x}))

A flake {of size given in PSR} is loaded (right-justified with leading
reras) into or stored from Ra, The flake is the d-th or (Rx}-th flake from
the least significant flake in (Rn) (B-origin indexing). Thus if PSR=1, the
instruction LF 2.5(3) toads R2 uith the 5-th bit of word [R3].

TI1.3 SIMPLE TMHEDIATE INSTRUCTIONS

abe JOAD TIMEDTATE {Assembler: LI a,ffbc or PUSHI #bc) Ra gets #bc,
Qahc ADD TMHMEDIATE {Assembler: ADDI a,f#ibc) Add H#Hbc to Ra.
Aahc SUBTRACT THHMEDIATE {Assembier: SUBI a,#bc) Subtract #bc from Ra.

These mildly redundant (viz. WIR/DWIR) instructions provide for
compact code uhen the immediate operand is one byte or less.

F11.4 JUMP AND SUBROUTINE CALL INSTRUCTIONS

Banbc JMP: Tuo's complement value Habc is added to PC. (-2848<-Habc<=2047)
Assembler: J label

Cabc LOAD PC: The PC is loaded uith the double-word at (Ra)+2xbc.
Assembler: LPC bec(a) or just LPC subrname

These are also mildly redundant, but help to compact code. JUIP
provides enough displacement to handle most local jumps. LPC provides a
concise uay of referring to a relatively large (256) set of subroutines. for
example, hy dedicating one register as base register for a dispatch table,
each of ZG6 common procedures can be called with a one-word instruction.

Since LR gets the old PC uhenever PC is changed (except by the post-
instruction fetch incrementation), any of the instructions LOAD, STORE, Junt,
LPC, etc., can call a subroutine. The subroutine need only save the return
address in LR (say on the stack) immediately upon entry. The ENTER
instruction (see later) provides a neat uay of doing this.

111.5 COMPARE AND LOOP-CONTROL INSTRUCTIONS

Ofab Decrement/Increment/leave alone Ra, then
compare (Ra) against either b or (Rb) and skip. f-codes:
@-DSLL, 1=SLI, 2=SE1, 3=SLEIl, 4=5GI, S=SNEl, 6=SCEl, 7=ISGI,
8=DSL, 9=SL. A=SE, B=GLE, C=5G, D=SNE, E=SGE, F=15G.
DSLI and DSL first decrement Ra. ISGI and ISG first increment Ra.

Far Be=f<-7 comparison is (Ra) against b, otheruise it is (Ra) vs. (Rb)
F.g.: GG skips if {Ra)>(Rb), ISG a,b is equivalent to ADDI a,1: G a.b,
Azcemblers SE a.b or SEI a,b etc,

The immediate form can compare a register to zero. The instruction
sk ipper muzt he a one-uord instruction (no immediate operands). (if Ra or Bb
is WIR/OWUIR, the instruction skipped appears after an immediate operand.)
The fioating-point format causes comparisons to be consistent with integer
comparizons, [5L], 0SL. 1SGI, ISG are useful in loop control: typically they
are folloned by a jump back to the beginning of the loop.

I111.6. BINARY DPERATIONS

Efab Ra gets binary operation "f" of (Ra) and (Rb). f:
g-ADD, 1-5UB, 2=MUL, 3=DIV, 4=FADD, 5=FSUB, 6=FMUL.
7-FDIV, &=REM, 9=AND, A=0R, B=XOR, C=LSH, D=RSH,

E.F unused
Assembler: ADD a,b etc.

ML and DIV have double-uord product and dividend.

IT1.7. UNARY and UTILITY OPERATIONS

FBad NOT a,d Set Ra to complement of (Ra), plus d
(d=0 is complement, d=1 for 2's complement)
Flad ENTER a,d Saves RO..Ra on stack, while taking d arguments from

the stack and loading them into RZ..R[d+1]
(Top goes into R2, etc.)

Fzad EXIT a.d Restores R8..Ra from save area on stack, underneath
d result double-words. Eliminates save area by moving
d results doun a+l positions and adjusting SP. (l.e.
stack goes from [d results, (a+l) regs, other]
to {d results, other}) Then loads PC from LR.

F3ah EXCH a.b Exchange registers a and b (Note that a=b=T05
exchanges top tuo elements on stack.)
Faan BLOCK a.b Moves a block of [TOS) words from (Rb),...
to {Ra},... . Stack is popped. "Smart" version.
FS.. to FF.. Unused,

This completes our listing of the BLIZZARD instruction set.

[V. THE WINDOW REGISTERS WIR, DWIR AND TOS

These give much versatility to the simple instruction set. They are
not registers in the usual sense, since they are just shorthand:

WIR is the word pointed to by PC,
DWIR is the double-uord pointed to by PC, and
T05 is the double-uord pointed to by SP.

That is, (MWIRY=[(PC}], so that "register" WIR has a value equal to the
immediate word operand for the instruction. Analogously, {(DUWIR) equals the
doutile-uard just after the instruction word. Similarly, (T0S) equals the the
double-iord on the top of the stack. Thus the programmer can talk about
immediate operands or top-of-stack operands as simply and naturally as he can
talk ahout register operands. This includes any use of these registers; even

for hase or index-registers purposes. Freeing the opcodes of the necessity of
making this distinction helps make a flexible instruction set,

To make this work smoothly, these "registers" have an
"auto-increment” property relative to their defining pointers (PC or 5P} uhen
they are fetched: PC is incremented by 1 (resp. 2) after any fetch of UIR
{(resp. DUIR), and SP is incremented by 2 after any fetch of T0S, The
increment of PC after fetching WIR or DUIR keeps BLIZZARD from subsequentiy
trying to execute that operand.

When a value is to he stored into T0S, SP is first decremented by 2,
and then that double-uord is placed in the memory location then pointed to by
SP. Thus a load into TOS is a "push”, An attempt to store into WIR or DUIR is
a no-op,

The concept of a "uwindou register” is different than the
"autoincrement indirect” addressing modes of the PDP-11 and VAX. There they
obtain the effect of a window register by specifying the defining pointer
register {say PC or SP) and then specifying via additional control bits the
autoincrenent indirect addressing mode. Here immediate and top-of-stack
operands are fully equivalent to register operands and may be used uherever
register operands are permitted (even as hase or index registers): no
additional control bits are required.

The stack is automatically checked for overflow or underflou uhenever
it is modified, The ldcation of the bottom of the stack is given in memory
double-nord 16 and the location of the top of the stack area is given in memory
double-word 17,

Some sample code sequences are:

LoC VALUE ASSEMBLER COMMENT

208 a,on L 2,UIR % loads the constant 1888 into R2

201 A3EA HA3ES % {Note that 1008 = HG3ES.)

202 12E3 LX 2, {DWIR,3} % loads the (R3)th element of the .array
283 00123000 #123000 % beginning at #123000 into R2

In our future examples, ue shall replace WIR or DUIR by the constant so
ohtained, preceded by e. (E.g. for above: L Z,el0889 and LX 2, (e#122008,3))

205 0rnB PUSH PC. % {(same as L T0S,PC) push the program
% counter (206) on the stack.

206 orap PUSH @253 % push constant 253 on the stack,

207 9183

283 PFCA PUSH 8 (SP) % (same as L T0S,8(SP}) duplicates the top
% double-uord of the stack

2089 ZFeB POP PC % (same as S TOS,PC) pop the top of stack
% into the PC

2BA 12C0 LX 2,(5P,e933) % load R2 with 393th stack element

208 B3E7

28C 8nps L1 PSR,8 % Set byte size to 8-bit bytes.

28D EIFF SuB 10S, TOS % Subtract the double-uord wuhich is on top of

% the stack from the double-uord vhich is
% second on stack, save result on stack

ZPE EIFD SuB T10S,e259 % Decrement doubie-uord on top of stack hy 259
20F 8103
219 2009 S @1000,0(e259) % Store 1008 into iocation 259

211 ales

212 0363

213 2FED POP 8(70S) % {Same as S T05,8(705)) Puts the double-

% word which is second the stack in the
% location given on top of the stack.

V. LOADING AND STORING FLAKES

BLIZZARD has a flexible way of manipulating flakes., The flake lenqgth
veerd in 3 load/store flake instruction is obtained from PSR uhen the
instruction is axecuted.

The motivation for the BLIZZARDS's flake addressing method is that
flakes are usually kept in packed arrays. The way to address a flake is thus
to give the bheuinning of the array as a word address, and the offset in
flakes, Gince the flake offset can he given in a register, it is easy to
randomly arcese flakes in an array of packed flakes.

For example, suppose we'd like 3@ "flag bit" for each double-uord of
memory, Then if LX 2,(8,3) loads R2 with the (R3)-rd double-uord of memory.
LEY 4,(5,3) loads R4 nith the (R3)-rd bit of the table of flag bits beginning
at (RS), when PSR = 1, That is, R4 now contains the flag bit for the
double-uord in R2,

A flake is aluays loaded into a register right-justified uith teading
zeros, LUhen a flake is stored, only the indicated flake is modified; other
flakes in the same uword are not changed. Some examples are:

1.0C VALUE ASSEMBLER COMMENT

209 &no3 L1 PSR, 8 % Set flake-size to 8-bit bytes

201 4248 LF 8,08(4) % CGet rightmost byte located at (R4)
292 Gan] SF 8,11(5) % Store in leftmost byte at (RS)

283 a9 Sk 8,31{5) % and in teftmost bhyte of (R5)+4,

284 £R04 Ll PSR, 4 % Suitch to 4-bit flakes

285 L3004 LFX 9, (el000,4) %load (R4)-th flake from flake array
206 AEES % which begins at location 1800

iy, 7956 SFX 9,(5,6) % Store in (RB)-th flake of array uhich

% begins at location (R5)

208 SAGF LFX 9,(5,T05) % load flake from array whose origin is

% given in RS, index is on top of stack
203 GABF LF A, HF % Get HF-th flake of array beginning at
% B, which is thus rightmost nib of Rl.

The load/store double-word and the load/store flake instructions share
a common philosophy about offsets: the offset (d or (Rx}). is aluays measured
from {(Rb} in units equal to the size of the item being loaded. Thus, L
a,d{b} and LF a,d(b) have the same effect uhen the current flake size is 32.
The fact that the current fiake size is given in natural form (rather than in
a more compact logarithmic notation) in PSR both provides more perspicuous
code and permite later expansion of the design to handle fiakes of other sizes.

VI. THE JUMP INSTRUCTION AND SUBROUTINE CALLS

The BLIZZARD s one-uord jump instructions {(J and LPC) are meant to
encourage moadular code. They have the side effect of setting LR, the link
register, to the location one beyond the current instruction. Thus these
instructions can be used both for ordinary jumps and for subroutine calls,
since the link register will contain the return address for a subroutine call,

The normal way to save the return address upon subroutine entry is to
execute an ENTER a,d instruction as the first instruction, This
(1) removes the o parameters from the top of the stack and saves them in a
"eafe place”,
{Z) pushes Ra,, RB onto the stack (in that order},
(3) arranges the d parameters in R2, ... , Rld+l]l. (The parameter uhich
was originaliy on the top ends up in RZ.)
If as=]1. then this saves the return address. If a>l, the registers 2,...,3
are freed for use as temporaries., 1f d>8, the first d of these temporaries
are loaded uith the d parameters from the top of the stack. (These parameters
are removerd from the stack.)

lhen the subroutine is finished, the instruction EXIT a.d restores
the reqgisters and returns the d results on top of the stack as the subrout ine
results. ({This Ioads the registers from a save area underneath the d resulits
on the stack, and then moves the d results doun a+l positions on the stack.)

V1. INPUT/OUTPUT AND INTERRUPTS

Input/ouput is handled by memory-mapped i/o. A write to (or read
from) an 10 device looks like a urite to {or read from) a particular memory
focation,

When an interrupt occurs: the PC is stored in double-word 18 of
memory, and then the PC is loaded from a double-uord reserved to store the
address of an interrupt-handling routine (i.e. vectored interrupts). (The
link register LR is not modified.) Simultaneously, the interrupt mask bit in
the PSR is turned on, uhich masks out other interrupts.

VIII. A SAMPLE PROGRAM: THE EIGHT QUEEN'S PROBLEM

To illustrate uhat typical BLIZZARD programs look like, we present here
a solution to the Eight Queen's problem, MWe first present a PASCAL program for
its solution due to Niklaus Wirth [Algorithms + Data Structures = Programs,
Prentice-Hall, 1976, p. 347-348), and then what BLIZZARD code for the compiled
program might look tike,

program eightqueens (output);

var i: integer,
a: array [1..8] of boolean,
b: array [2..16) of boolean,
c: array [-7..7} of boolean,
wx: array [1..8] of integer:

procedure print;
var k: integer;
begin for k:=1 to 8 do write(x(kl:4);
uriteln
end {printh;

procedure tryflisinteger);
var j: integer:
bhegin
for j 1= 1 to & do
if alj) and bli+j) and cli-j] then
pegin x[ili=j;
aljl:=false; bli+jl:=false;cli-jli=false;
if i < 8 then tryli+l) else print;
aljli=true; bli+jl:i=true; cli-jl:= true
end

and Ttryl

hegin
for
for
for

i
i
i

tryfl)

end,

Nou ue present the

LoC

1200
108]
1902
1804
1705
1168
1181
1142
1104
1105
1186
1187
1188
11893

1128
1121
1122
1123
1124
1125
1126
1127
1129
112A
11em
1120
112E
112F
1131
1132
1133
1135
1136
1132
1132A
113C
113D
113k
113F
1140
1141
1142
1143
1144
1146
1148
114A

VALUE

138
8201
1FDT1085
2F04
Cess
0728
BFFA
Cose
Fo20

F171
2021
8201
ana?
EBLR
R702
E173
Lep31 009
[
naes
SLN-] 80l
258
B4
nON7iens
n=og
ISILAS
420710805
5an
75031000
75061001
75071884
D128
BOR4
proz
arpl
BFOF
Beal
BFCA
2501
75031000
75061001
75071864
D738

it

it

1 to 8 do alil
2 to 16 do bii} :
-7 to 7 do clil :

4o

t=true;

true;
true;

BLIZZARD code for the above program.

LABEL ASSEMBLER
A WORD
B: {0UBLE-WORD
WORD
s WORD
X 9 DOUBLE-WORD
PRINT: ENTER 3,8
Ll 2,1
PR1: PUSHX (eX,2)
PUSHI 4
LPC WRITE
15G1 2,8
J PR1
LPC WRITELN
EXIT 3,8
TRY: ENTER 7,1
L1 8,1
L1 3,1
JRl1: L 6,2
ADD 6,3
L 7,2
sSUB 7.3
LFX 5, (eA,3)
SEl 5,0
J TR2
LFX 5, (eB,6)
SEL 5,0
J TR2
LFX 5, {eC,7)
SNE] 5,0
J TRS
TR2: SX 3, (eX,2)
Ll 5,8
SFX 5, {eA,3)
SFX 5, (eB,6)
SFX 5,{eC,7)
SL1 2,8
J TR3
PUSH 2
ADDI F.1
J TRY
J TR4
TR3: J PRINT
TR4: LI 5,1
SFX 5, (@A, 3)
SFX 5, {eB,6)
SFX 5, (eC,7)
TR5: 1GGI 3.8

COMMENT

%

%

%
%
%
%
%
%

%
%

%
%
%
%

%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%

%
%
%
%
%
%

bits array for A
% bits array for B
bits array for C

% integer array X
enter, save to R3
use R2 for k. do k:=1
push x k]
push 4
call system urite routine
ke=k+l: to PRI if k<=8

call system writeln rouine
return

save to R7, get i into RZ
set flake-size to bits
initialize j (R3) to 1
set R6 to i+j

set R7 to i-j

load bit ALj]

skip if Alj1=0 (false)
else enter body of if stmt
toad bit Bli+j]

skip if Bli+jl=0 (false)
else enter body of if stmt
load bit Cli-j]

skip if Cli-jl=1

skip over if stmt body
Xlils=j

set RS to false
Aljl:=false

Bli+jl:=false
Cli-jl:=false

test if i<8

push i+l
do tryti+l)

if i>=8 call print
set RS to true
Aljl:=true
Bli+jl:=true
Cli-jl:=true

{oop

114B nBres J TR1

114€ F270 EXIT 7.8 % exit from try

1150 a7nd FIGHTQ: L] 2.1 % set RZ to true

115] apal LI 8,1 % set flake-size to hits
1152 2301 L1 3.1 % set i tol

1153 72021000 EL: SFX 2, (@A, 3) % Alil:i=true

1165 D738 1SG1 3,8 % loop

1156 BFFC J El

1157 &302 L1 3,2 % i1=2

1158 70310681 E2: SFX 2, {eB,3) % Blil:=true

115A Fa200810 156 3,el6 % loop

115C BEFC J EZ

1150 8287 L1 3,7 % R3 1= -7

11GE Fn3l - NOT 3,1

115F 72031084 E3: SFX 2,{eC,3) % Clile=true

1161 07y 16G1 2,7 % loop

1162 BFFT, J E

1163 SFO1 PUSHT 1 % do tryfl)

1164 BFRB J TRY

1165 CorF LPC SYSEXIT % call system exit routine

IX. FINAL COMMENTS AND SUMMARY

The desiun presented here emphasizes those aspects of the architecture
that 1 was most interested in studying: the generalization of the
qutthrw\t!urture of the typical von-Neumann machine to handle more general
aperands and the development of a clean way of handling flakes, By comparison
Hith similar solutions to these problems in other machines (e.g. the
addressing modes of the PDP-11 or the byte pointers of the PDP-18), 1 feel
that BLIZZARD is significantly more powerful and flexible.

Other aspects of the design need to be clarified and expanded hefore
BLIZZARD becomes nell-defined. The interrupt structure and the possible
Aaddition of supervisor/user mode bits in the PSR or test-and-set instructions,
for example, need study.

The design of BLIZZARD is also an exercise in aesthetics. An attempt
vas made to achieve the maximum of capability with a minimum of mechanism. The
reader can judge to uhat extent BLIZZARD achieves this goal.

X. REFERENCES

1) Myers, G. J., "The Case Against Stack-Oriented Instruction Sets", Computer
Architecture Neus Vol. 6, No. 3 (Aug. 1977), 7-10.

(21 Keecy, 1o L., "On the Use of Stacks in the Evaluation of Expressions",
Computer Architecture Neus, Vol, 6, No, 6§ (Feb. 1978), 22-28.

(3} Myers, G. J., "The Evaluation of Expressions in a Storage-to-Storage
Architecture, Computer Architecture Neuws Vol. 6., No 3{June 1978),
2p-23.

(4] Keedy, J. L., "On the Evaluation of Expressions using Accumulators, Stacks,
and Store-to-Store Instructions", Computer Architecture News, Vol. 7,
No. 4 (Dec., 1978), 24-27.

[5G} Keedy, J. L., "More on the Use of Stacks in the Evaluation of Expressions”,
Computer Architecture News, Yol, 7, No, 8 (June 1979), 18-21.

10

