THE “PP” (PLACEMENT AND INTERCONNECT) SYSTEM®

by Ronald L. Rivest™
MIT Laboratory for Computer Science
Cambridge, Mass. 02139
March 1982

Abstract

“PI” is an advanced LISP-based placement and inter-
connect system for custom NMOS or CMOS (single-layer
metal) designs. When fully implemented, PI will handle
placement of arbitrarily-sized rectangular modules, rout-
ing of power and ground, signal routing, and compaction.
In this paper we briefly review the structure of PI, and
present details on the signal-routing heuristics, focusing on
the definition of “channels”, the global router, the “crossing
placer”, and the channel routers. The signal router is fully
operational; the rest of PI is currently being coded and will
be more fully described in later papers and theses.

Objectives

Our goal is to completely automate the placement
and interconnect phases of IC design for custom NMOS
or CMOS designs created in the “Mead-Conway” style
[MC80]. We take as a model an optimizing compiler
for a high-level programming language: PI should quickly
produce high-quality output with a minimum amount of
human interaction.

Working Assumptions

e The fabrication technology is single-layer metal NMOS
or CMOS. This assumption introduces difliculties that
an extra layer of metal would alleviate. For example,
the routing of power and ground would become trivial,
and the signal router wouldn’t have to worry about
minimizing the length of wires in the non-metal layers.

o The current-carrying limits of the metal layer are
significant for the power/ground routing (wide buses
may have to be used), although not for the signal rout-
ing (minimum-width wires can be used).

o The logic modules and pads can be adequately modelled
as rectangular “black boxes” having pins on their
perimeters. The pins may be in arbitrary locations and
on arbitrary layers. (See “Input to PI”.)

¢ 1/0 pads must be placed on the periphery of the com-
pleted chip.

Major Design Decisions

o Like most compilers, Pl is basically a “batch”-type sys-
tem. Qur objectives are to explore the limits of what
can be accomplished algorithmically, not to provide
“automated drafting tables” [or a human designer. As
a consequence, PI does not provide means for a de-
signer to partiallv specify a placement or a routing.
(However, he may specify an entire placement or an
entire power/ground routing, if we wishes, and can
also specify just the placement of the I/O pads.) But
note that PI can run within “DPL” [BMSSW81], which
provides many of the interactive capabilities that PI
lacks.

PI uses channel routers ([HS71], [Hi74], [PDS77], [So81],
[RF82]) to do the detailed routing. This commonly-
used technique is quick and highly effective. Note
below, however, that PI uses a non-standard notion of
“channel” — the width of the channel is known before
channel-routing is begun.

PI works with absolute coordinates; there are no
“symbolic” channel widths to be computed after the
signal routing is completed. This decision was made
to achieve a high-quality result; we feel that maintain-
ing symbolic positions compromises too much quality
of the final product. Of course, a couple of iterations
of the signal router may be needed to find the maxi-
mally compact result, or to even find a solution if there
were unroutable channels. PI will automatically resize
channels for successive iterations.

PI is not a “hierarchical” router, although the place-
ment phase may involve some explicit manipulation of
the design hierarchy.

Pl is implemented in LISP (i.2. MACLISP or LISP-
Machine LISP [WMS81]). The:re are three reasons for
this choice: (1) LISP is an excellent language for
quickly developing prototype systems, due to its ob-
ject oriented nawure, flexible macro facility, and run-
time interpreter. (2) The “DPL” IC design system

" This research was supported by DARPA grant N00014-80-C0622, Air Force grant AFOSR-F49620-81-0054, and

NSF grant MCS-8006938.

" The following people have participated in the design and development of the PI system: Alan Baratz, C.S. Chow,
David Christman, Ali Ghaznavi, Alain Hanover, David Jilk, Jim Koschella, Andy Mouiton, Ron Pinter, Ramana
Rao, Flavio Rose, Gerry Roylance, Alan Sherman, Susmita Sur, and Alok Vijayvargia.

19th Design Automation Conference

0420-0098/82/0000/0475%$00.75 © 1982 IEEE

Paper 29.3
475

[BBSSW81] is implemented in LISP Machine LISP;
using LISP allowed us to interface easily with this
sytem for graphic 1/0, module specifications, etc. PI
is thus one of the many tools available in this design
system. (3) LISP is by far the best-supported and best-
documented programming language at MIT.

e P1 works only with rectangles oriented parallel to the
axes. There are no “45°” wires, and all modules are
rectangles that will be placed parallel to the z—y axes.

e PI will not route nets “over” unrelated modules (it
can’t, since it doesn’t know the wiring inside a module),
although it may route a net “through” a module, if
that module has more than one pin for that net.

e PI will treat signal nets uniformly; there is no way to
mark any signal lines (including clock lines) for special
treatment.

High Points

PI incorporates a number of innovative features:

e A placement algorithm that gracefully combines “min-
cut” and “bottom-up” approaches.

e An effective technique for producing compact single-
layer interdigitated trees for power/ground routing.

e A novel “channel-definition” algorithm that produces
large, natural-looking channels.

e A “crossing-placer” that runs after global routing is
completed that determines exactly where each net
crosses every channel-to-channel edge. This permits
a global approach to reducing channel-routing com-
plexity, and makes the channel-routing problems en-
tirely independent.

o A novel “channel-router” (which could also be called
a “switchbox router” [So81]) based on a left-to-right
scan of the channel [RI'82].

System Organization
PI divides the “silicon compilation” process into the
following steps:

e Input the problem specification and check its validity.
e Place the logic modules.
e Route the power and ground buses.

e Route the signal nets, as follows:
Chennel Definition: Divide the area of the chip outside
of the modules (including the power/ground buses)
into non-overlapping rectangular channels in which
the wiring will be done.

channels it will pass through, thus determining the
approximate path for each net.

Crossing Placement: Decide exactly where, and on
which layer, cach net will cross from one channel
into the next. This phase, unique to PI, attempts to
globally minimize signal line crossover and jogging. It
also decomposes the remaining routing problem into
the independent subproblems of routing each channel.
Channel Routing: Route each channel. To maximize
the completion rate PI has several channel routers.

Paper 29.3
476

o Resize Channels. If the routing produced was satis-
factory, stop. Otherwise, resize the channels to en-
large over-congested channels (ones that could not be
routed) and to shrink overlarge channels (ones that had
too much empty space). Restart with a new global
routing phase.

In the following sections we describe each of the phases
a little more precisely.

Input to PI
The designer using PI specifies a layout problem by

describing:
o The logic modules: their size (length and width, since
they are rectangles), terminals, pins, power consump-
tion, and whether they are logic blocks or 1/0 pads.

e The signal nets to be routed,

e The desired size of the completed chip.

A pinon a module is specified as a rectangle of material
(on some layer - e.g. metal, poly, or diffusion) inside the
module. Typically, the pin is a degenerate rectangle (a
point) on the border of the module. If it is not on the bor-
der, P1 will add direct wiring from the point to the nearest
edge of the module (or another cdge if the designer so
specifies). This facility is useful with modules that are only
approximately rectangular in shape; the pins are automati-
cally extended to lie on the “bounding box” of the module.
il the pin is a true rectangle (and not just a point), Pl may
be able to connect to the pin in several ways (e.g. the rec-
vangle might cover one whole side of the modrle - as is com-
mon for power and ground), giving additional flexibility.

A terminal is specified as a set of pins on a module;
usually just one pin is given. In contrast to the physical
notion of a pin, the notion of a terminal is a logical one. It
is possible to specify several pins as alternative choices for
that terminal; PI will choose the most convenient pin. Since
the pins of a given terminal are assumed to be clectrically
connected inside the module, Pl may route a signal net
through a module by entering a terminal via one pin and
leaving through another.

A signal net is specified as a set of terminals to be
interconnected.

Similarly, power and ground nets are specified as part
of the input to PI. The specification lists for each of power
and ground the terminals that must be joined together.

Since only the signal routing stage is now implemented,
the user of PI must currently specify a module place-
ment and power/ground routing. (The placement and
power/ground routing algorithms have been designed and
should be implemented within a couple of months.)

Placement

The placement heuristic uses a combination of “min-
cut” {[Br77], [La79]) and “bottom-up” (successive pairing)
approaches. During placement PI maintains a tree indicat-
ing the current decomposition of the chip into nested rec-
tangular regions. The leaves of this tree are the modules
being placed.

For the placement of the logic modules, at each step
a node of the tree is selected, and it is “refined” by either
a min-cut step or a bottom-up step. These steps continue
until all modules are placed. (The I/O pads are placed
separately by a special-purpose ad hoc routine.)

A min-cut step will divide the associated region in
two and assign the logic modules of the region to each
subregion in a way that attempts to minimize the number
of wires cut by the dividing line. This technique is similar
to the approach suggested by Lauther [La79]. The min-
cut parititioning algorithm used is due to Fiduccia and
Mattheyses ["'M82].

A “bottom-up” step identifies two modules that “fit
well together” and combines them to form a “supermodule”
1eplacing the two component modules in the tree. The
purpose of this routine is allow PI to discover and take
advantage of situations where two modules have been de-
signed to fit nicely together - e.g. a bus may leave one
module, cross a small channel, and then enter the other
module. By carefully aligning these modules the bus can
be run straight-across the channel. PI later takes these
connections into account when resizing channels, so as not
to disturb this nice alignment if" at all possible.

IMigure 1 illustrates the way the decomposition tree is
modified by a min-cut step on node X; Figure 2 illustrates
how a bottom-up step combining modules A and B affects
the tree.

The placement heuristics will be more fully described
in later papers.

A B CD
A CB D
Figure 1. Min-Cut step
A BC D c D
A B

Figure 2. Bottom-Up step

Power/Ground Routing

Given a placement of the logic modules and I/O pads,
the next step is to route the power and ground nets entirely
in the metal layer.

The key observation in our power/ground routing
heuristic is that to each possible power/ground routing
structure there is a unique Hamiltonian path through the
modules that does not cross the power or ground supply
trees. (We assume here that each module has one pin cach
for power and ground; this assumption is easily removed.)

"This correspondence permits the use of heuristics for finding
short Hamiltonian paths to be applied to this problem. The
distance metric used should be a good estimate of the ac-
tual amount of wiring needed to connect both power and
ground from one module to the next.

This heuristic will be more fully described in later
papers.

Figure 3 illustrates the key observation showing a
Hamiltonian path through modules A, B, C, and D.

power net~

Hamiltonianee®|
path

ground net]

Figure 3. Power/Ground Heuristic
Channel Definition
The chip is partitioned into nonoverlapping rectan-
gules, each of which is either

e a module,

e a routing region free of any previous logic or wiring (a
“free channel”), or

e a routing region covered by metal (under a power or
ground bus) but {ree on the other layers (a “covered
channel”).

Our definition of a channel is nonstandard since our
channels have fixed height and fixed width, and may have
fixed pins on all four sides to be connected up. Such chan-
nels have also been called “switchboxes” [So81].

The channels are separated from each other and from
the modules by horizontal and vertical edges. Each edge is
on the border of exactly two distinct channels or modules,
unless the edge is on the border of the chip.

The channecl-definition heuristic tries to produce a
channel structure that minimizes the sum of the lengths of
these edges. This heuristic tends to give large, “natural”-
looking channels.

This phase also identifics “narrow” channels: channels
so narrow that no jogs are possible in them; wires can only
run straight across these channels.

This original channel structure is then refined so that
each covered or narrow channel is enclosed by exactly four
edges. This simplifies the channel assignment phase of the
system.

Figure 4 illustrates the result of channel definition on
a small example.

¢

Paper 29.3
477

////////////7 P

=

P
7
7

A

LS P

ANSSNENNASONSSSN

N

eveave

R
AR I

:

P/ Rl P2

—

seolvvenenn

e —
: _ground net &/// Z
1 o S S A, 4 7
: ‘D’
z A
% i ff
Z 7, Z
% C z il 772
Z 2 X s
7 Z, :
Vi A 0 —
7y 2| power net : J

Figure 4. Channel Definition

Global Routing

The global router determines for each net which chan-
nels it will pass through and which edges it will cross.

We define a crossing to be the data structure recording
that a net will cross a given edge. Later on the crossing
placer will assign each crossing an actual position on the
edge, as well as a layer.

We define a strand to be the data structure correspond-
ing to a connected portion of a net which lies within a
given channel. (Note: a net may have more than one strand
within a channel, although this is unlikely.) Each strand
specifies which net it is part of and which crossings it con-
nects. For strands connecting more than two crossings the
channel router will have to produce a tree-like wiring within
the channel. The branch points of the tree are Steiner
points.

The output of the global router thus consists of strands
and crossings.

The global router processes the nets in order of in-
creasing length of the perimeter of the bounding box of the
net’s terminals divided by the number of terminals of the
net, so a many-terminal net may be routed early, although
in general the nets are routed approximately in order of
increasing net length.

The global router uses an explicit graph representation
of the pin/channel/edge structure. The vertices of this
graph are (1) the mid-points of the edges in the channel
structure, together with (2) the pins of the net currently
being processed. Two vertices are adjacent il and only if
they lie on a common channel. Figure 5 illustrates a graph
created for a simple routing example for a net having 3 pins
on module A and 2 on module B.

PI estimates the [ength of each arc in the graph as the
rectilinear distance between its endpoints, plus penalties for
turning corners, traversing covered channels, or reaching an
edge that is nearly “full” of crossings.

Paper 29.3
478

Figure 5. Graph for Global Router

In this graph PI then finds for each net a tree which
connects together at least one pin {rom each terminal of
that net and which approximately minimizes the sum of
the arc lengths of the tree (the estimnated net interconnect
length). The arcs found determine which channels the net
traverses, the vertices of the subgraph determine which
edges it crosses. For each arc of the path a strand is created,
for each vertex a crossing.

For two-pin nets such a tree is the shortest path be-
tween the two corresponding “pin vertices”. The routing of
two-pin nets is therefore performed by Dijkstra’s shortest-
path algorithm, beginning at one pin and searching until
the other is reached.

For multi-pin nets the desired tree must have Steiner
points. Here the search is begun simultaneously at all
pins. These secarches expand outwards {from each starting
point like waves from a number of pebbles dropped simul-
tancously into a pond. When one search finds another
pin to which it is not already connected the corresponding
strands are created and the search is restarted.

A search being performned may have more than one
“starting-point” around which it is expanding. (We handle
terminals with two or more pins this way.) Similarly, we
will restart a search using as a starting point all the vertices
on the path connecting two pins connected on a previous
iteration.

The global router is described in more detail in [Ba81].

Crossing Placement

Any system based on channel routers must somehow
decide where and on what layer nets will cross from one
channel into the next. A common approach to this problem
has been to try to route the channels in some particularly
favorable order, so that when completing the routing for
one channel it becomes determined where the nets from
that channel cross into the next. ‘This approach has at
least two well-known difficulties: the router may make the
problem of routing the next channel unnecessarily difficult
by injudiciously choosing the crossing points when com-
pleting the current channel, and (worst of all) it is not
very difficult to create channel structures for which no
“particularly favorable” routing order exists. One is often
left with the situation of routing a channel which has the
crossings fixed on three or four sides, whereas the usual
channel router can only handle channels with crossings on
two opposing sides.

Our point of view is that this “crossing placement”
problem is too important to be left to the lowly channel
router. The choice of crossing placements has a major
mpact on overall wire length, number of vias used, and the
routability of each channel. We feel that a separate, global
determination of crossing placements is the best path to
successful, high-quality routings.

The benefits to be gained by a global crossing place-
ment routine are an increased likelihood that each channel
routing problem will be simpler, and an expected decrease
in overall wire length and number of vias used.

A potential disadvantage of this approach is that every
channel now becomes a “switchbox” [So81] with crossings
fixed on all four sides; new, more capable channel routers
are thus required. It is also possible that by fixing the cross-
ing positions one might so constrain the solution space that
certain channels become unroutable that otherwise might
be routed. The crossing placement routine is designed to
minimize this likelihood.

The crossing placer is a unique innovation of the PI
system. PI tries to organize the crossings in a “global”
manner that will maximize the probability that the channel
router will succeed ou each channel and will be able to
produce a routing that minimizes the amount of wire in the
non-metal layers. PI also tries to maximize the number of
crossings that will be “facing” each other across a channel
so that the corresponding strand can be implemented as a
straight run across the channel.

A further advantage of including an explicit crossing-
placer is that it cleanly decomposes the remaining problem
into a set of independent channel-routing problems.

The input to the crossing placer is the set of edges of
the channel structure, each of which contains a number of
crossings. An edge between a module and a channel already
has its crossings placed, since these crossings represent the
module’s pins. An edge between two channels has “floating”
crossings to be placed by the crossing placer. Note that
each floating crossing will belong to two strands - one for
each channel the edge is on.

The crossing-placer uses an iterative relaxation method
where every edge is considered in turn and the crossings on
that edge are adjusted in position. Initially every floating
crossing is placed at the center of its edge. At each step
a new position for a crossing is coraputed as the weighted
average of the old position for the crossing and the projec-
tions of the other crossings on the same strands onto that
cdge. Crossings close to the crossing being placed are
weighted heavier than those further away, and a crossing
which is “facing” the edge is weighted much heavier. After
a new position for each crossing on the edge is computed
the positions are “discretized” so that they lie on a “global
grid” whose spacing equals the standard track-center-to-
track-center distance. (The only exception is that a cross-
ing may be off the global grid if it is facing a pin of a
module.) Crossings which face each other across narrow
and/or covered channels are treated as a unit for purposes
of crossing placement, since we want to guarantee that they
will always be directly opposite each other.

The above simple procedure has the effect of “sorting
out” bus structure in the desired manner; after several
iterations of the global crossing placement procedure the
wires of a bus will be ordered in the same way that they
leave the modules, forming a nice clean “bus” structure.
This works well whether the bus is a logical part of the
design or just an accidental grouping of wires that follow a
common route.

The layer-assignment phase of the crossing-placer as-
signs the metal layer to all floating crossings, except for
crossings which are on an edge of a metal-covered channel
— these crossings will be assigned poly or diffusion. Fur-
thermore a crossing which is connected to a non-metal pin
across a narrow channel will be assigned the same layer as
thepin.

Figure 6 illustrates a typical “crossing-placement”
situation. Here crossing X will be attached to crossing (pin)
A with a strand in channel R, and to crossings B and C
with a strand in channel S. The new position for X will be
a weighted average of positions A’, B’, C’ and X.

.
.

. P 2 //////////////////////////'//y
2 P 7

A\

Figure 6. Crossing Placement

Channel Routing

At this point each channel is a self-contained routing
problem: the channel has a definite size and shape and there
are a number of crossings of fixed position and layer on its
perimeter. Furthermore, a number of “strands” have been
defined for the channel which indicate, for each strand,
which crossings need to be connected together with wiring
internal to the channel. While some of the crossings may
correspond to pins on modules and others to floating cross-
ings that have been placed, at this time they can all be
treated on an equal footing.

The wiring must be placed internal to the channel in a
way that will not interfere with wiring in adjacent channels
or modules; the wires may not be near the edge of the
channel unless the wire is running to the edge of the channel
to make a connection to a crossing.

We believe that the channel-routing problem is best at-
tacked with a variety of routers with different philosophies
and capabilities. In this way we can maximize the chances
of a successful routing by trying each router in turn on the
channel until one succeeds.

At the moment we have implemented three routers:
a “quick and dirty” router, a slower, more sophisticated
“slice” router, and a “Lee”-type router [Le61] that is rarely
used. We find that the “quick router” succeeds 50-80% of
the time, decreasing the overall running time.

Paper 29.3
479

Before routing the channels, each channel is assigned
a “preferred dircction” (vertical or horizontal) giving the
direction in which the metal wiring will be run; wires in
the other direction will be in poly or diffusion where they
cross the metal wires. This is chosen so as to maximize the
amount of metal wiring used.

The “Quick” Channel Router
This router tries a quick but naive strategy for routing
and then does a simple design-rule check to see if it worked.
It fails in many simple situations, such as when there exists
a strand connecting more than three crossings.
The routing strategy is the following:

e If the strand contains exactly two crossings which face
each other across the channel, the natural straight-
across routing is produced.

o If the strand contains exactly two crossings, one on a
horizontal edge and one on a vertical edge, the quick
router creates the natural “L” routing. (This is inde-
pendent of any other wiring already placed, so this may
create design-rule violations.)

o If the strand contains exactly three crossings on edges
not all having the same orientation, the routing produced
is a straight run from the crossing lying on the edge
having unique orientation, with legs extending out to
the other two crossings.

o In all other cases (i.e. the strand contains exactly two
crossings, both lying on edges having the same orien-
tation, where the crossings are not directly opposite
each other, or the strand contains exactly three cross-
ings all lying on edges having the same orientation)
there is a need to find a “jog track” where a portion
of the routing can be placed. These jog tracks are
determined in a way that minimizes the chance that a
design-rule violation will be produced (i.e. by looking
for an empty track). Furthermore, they are found in
a way that attempts to minimize the number of wire
crossovers produced for the common “river routing”
situations. Once the jog track is found the routing for
the strand is straightforward.

Once all the wire segments are placed, they are as-
signed layers in a way that maximizes the amount of
metal wiring used. A single long segment may be assigned
different layers along its length to achieve this objective.

Finally, a design-rule check is used to see if there
are any conflicts between the routings produced for the in-
dividual strands. If so, the quick router reports failure.

The “Slice” Channel Router

The “Slice” channel router is a more powerful and
effective channel router. At present, if the quick channel
router fails, we depend primarily on the “slice” channel
router to produce a successful channel routing. This router
is based on the “greedy” philosophy espoused in [RF82],
which proposes a left-to-right, column-by-column (or “slice-
by-slice”), scan of the channel, routing each column com-
pletely before proceeding to the next.

Paper 30.1
480

The basic components of this router are:

e A “jiggler” which can be used to adjust the track
positions of the wires as they enter on the left or right.

e An iterative “slice router” that successively routes
within the sequence of vertical “slices” that the channel
is broken into. A given slice may contain connections
to crossings on the top and/or bottom of the channel.
The router tries to avoid “coaflicts” (when the wires

extending from pins opposing each other in the channel
would have to cross) by making small local jogs to the
wire as it cnters the channel, so that the conflicting pins
are in essence no longer opposing. This will succeed if the
density of opposing pins is not too great. More precisely, a
conflict occurs when two nets enter the channel at the same
horizontal position — one from the top and one from the
bottom — where the tracks in the channel already assigned
to these nets are such that the track for the net coming in
from the bottom is above the track for the net coming in
from the top. Conflicts are avoided by assigning the nets of
the conflict to different slices; small horizontal jogs may be
made by these nets from the top and bottom as they enter
the channel. Conflicts are also avoided by the techniques
given in [RF82], where nets may occupy more than one
track for several slices.
This router is described in more detail in [Ko81].

Resize Channels

If PI fails to route all of the nets successfully, the user
will be notified that some set of channels and/or edces
is over-congested and more space must be provided. PI
will then modify the placement accordingly by resizing the
channels and restart the routing. In practice several such
iterations may be required before a final layout is obtained.
Resizing of channels is also used to compact the layout.
The resizing routines are particularly careful not to shrink
any covered channels too much (these channels form the
power/ground bus structure, after all), and not to misalign
any modules that were paired by the “bottom-up” place-
ment routines (these placements enable many nets to run
straight- <across from one module to the next).

Results

The current implementation is about 200 pages of LISP
code.

The PI system has been used to route several project
chips at MIT. On a typical sized project chip (e.g. 10
modules and 100 nets) a routing is obtained in 3-4 minutes
on the LISP machine. We feel that the system produces
high-quality solutions, and look forward to having the com-
plete system up and running (i.e. placement as well).

Figure 7 illustrates the performance of PI on a small
“toy” example.

[Ba81] Baratz, A. E., “Algorithms for Integrated Circuit
Signal Routing,” Ph.D. Thesis, MIT Department of
Electrical Engineering and Coinputer Science. (August
1981).

[BMSSW81] Batali, J., N. Mayle, H. Shrobe, G. Sussman,
and D. Weise, “The DPL/Daedelus Design Environ-
ment,” in VLSI 81, Very Large Scale Integration,
(Academic Press 1981), 183-192.

[Br77] Breuer, M.A., “Min-Cut Placement,” Journal of
Design Automation and Fault- Tolerant Computing, Vol.
1, No. 4, (1977), 343-362.

[FM82] Fiduccia, C. and R. Mattheyses, “A Linear-Time
Heuristic for Improving Network Partitions,” Proc.
19th Design Automation Conference, (Las Vegas, 1982)

[IS71] Hashimoto, A. and J. Stevens, “Wire Routing by
Optimizing Channel Assignment within Large Aper-
tures,” Proc. 8-th Design Aulomalion Workshop, IEEE
(1971), 214-224.

[Hi74] Hightower, D., “The Interconnection Problem: A
Tutorial,” Computer 7,4 (April 1974), 18-32.

[Ko81] Koschella, J., “A Placement/Interconnect Chan-
nel Router: Cutting your PI into Slices,” Bachelor’s
Thesis. MIT Department of Electrical Engineering and
Computer Science. (May 1981).

aa IM@Iﬂllllﬂ!IIHIIIIIIIIIIIllllllﬂllllﬂlﬂ
l llllllllmsl Il IHHIIl|IIIllIIIIIIHMIIIIHIIIIIIHNlllllllflm |

“m‘ Illl"mlﬂIIMIIIIl§|I(llllI(II|IIIIIII|I|IIII| ", !IIIIIHIIIIIIIMINHHIIII
|
|

i
I

N N
HIW ﬁIIIINIHIIIIIIHHIIIHIIIIHIQIHIIII|III"I|IIHIIII IIIIIHIIllllIllli““IllllllﬂlllIHIIIIIHIIHIIIIIIII[
N IlullllﬂllIIQIIHIIIIIIHIHIIIIHIIIIIIIII‘HIIIIIIIHIHIIIIIII!II l
R R R A lmlllill“llmml"l|||I||||IllIﬂllIIIIHIK%IIIIHIHIHIHllllll “IlllllllllIIHIEIMIIIIIIHIIHIIHIlI[IIIIlIlII"Il
lllmllllllllllalIIII!I"IIIIIlII|||illlﬂlmlllml|lllllllll I, IIMIIQHIlﬂllllmllﬂmlﬂﬂll ||IIIIuﬂﬂll*lllml(llﬂllll|lMIilIlllllll!ﬂIlllllllllwlllll;
lllllllllylllIllllllIIIllIIJIIRIIIllllllllllllllllllllllll IIlIIlIIH“IIIIIII|llIIIIIIIIIEIH!HHQINIIIlllillllllllllﬂlllllll IIIIlIIIIHIIHHHHIIIHIII|I|II|||lIIHI|l|||Wllllllllqlllmlllﬂ IR
Wi i IIIHIIIIIHHIIIII!lilIlI]IMlHHlllIIlIIIlIII&lIIIIIHIwIIIHlIIII i
S L !1HIIIIllIIIIIlIIIIlIIIIIIllll’aullIlIlmhlllIIIIIINIHIIIIIIIIIIII lIllIIIIIIIINIBJIII|l||1||IIHIHIIIIIIHIIIIllﬂllllllllllﬁlll&ll"ll T ’
IlIIIIIlIIIIIIIQIIIIIIIIIIIHIIIIIIIEIUI IlIIlINIlIIIIIIIIllllIIHIIIIRIIIIIlll@l]llHIIIIIIIIIIHII!IIIIHII IlI!lllIIIIHI@HIIIllIIIIHIlIHIlII||||IIlllgllllllllllgllllﬂllll IIIIIIIIHIIIIIIHIHHIHIIIIIIIEIIHH

[La79] Lauther, U., “A Min-Cut Placement Algorithm for
General Cell Assemblies Based on a Graph Repre-
sentation,” Proc. of the 16th Design Automation Con-
ference, IEEE (1979), 1-10.

[Le61] Lee, C. Y., “An algorithm for path connections
and its applications,” IRE Trans. on Electronic Com-
puters, (Sept. 1961), 346-365.

[MC80] Mead, C., and L. Conway. Introduction to VLSI
Systems. Addison-Wesley (1980).

[PDS77] Persky, G., D. Deutsch, and D. Schweikert, “LTX
— A Minicomputer-Based System for Automated LSI
Layout,” Journal of Design Automation and Fault-
Tolerant Computing 1,3 (May 1977), 217-255.

[RF82] Rivest, R., and C. Fiduccia, “A ‘Greedy’ Channel
Router,” Proc. 19th Design Automation Conference,
(Las Vegas, 1982)

[So81] Soukup, J., “Circuit Layout,” Proc. of the IEEE,
Vol. 69, No. 10(Oct. 1981), 1281-1304.

[WM81] Weinreb, D., and D. Moor.. Lisp Machine Manual.
(Fourth edition.) MIT Artificial Intelligence Laboratory

(1981).
aaal U@HII!H!IllHIIIIlIIIIINlIIIIHII|||I|IIlllllllll!ll!llllllll]
MR

lHIIIIllIlIIllIIQIIlIIlII|IHIIIIII!IIIIIIIIIIHIIIIHII

R

NI

m X R
Bz

T m—————]
' I |

S ——%

l

-

L & “ a
| { | - | m\un IRl Hﬁlu|n1mu||m|a||umglmﬁm%mummﬂm%l

N

KU’"‘"""""“'"""’"'"""' e

M.%

\

@IﬂlIII|IlHi!llIIII||IIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIHI i \' H\M i

Figure 7. Performance of PI on a small example.

Paper 30.1
481

ISSN 0146-7123

IEEE Catalog No. 82CH1759-0
Library of Congress No. 76-150348
IEEE Computer Society Order No. 416

Nineteenth
Design Automation

Conference
Proceedings

Caesars Palace Las Vegas, Nevada
June 14-16, 1952

o, ,,,l' -W“‘l“

{i’\\\\
N,

hl
“““ Il“‘_—/
1700 ==/ 7 =N
NEFH A A e
i\ NVE &R R
| ‘\ 2 I S ”/,"._ 3
N, {1 ~ oA || W 78,1l
h “ ‘a = v/ ,“4‘ A /';\ .\‘5 o
2 ARy " o . 74
I
N

=t
N
A
“4\1 I\I’| : \
W
L 7
\‘

i

- .

e ’ 7 =
. T == - == - -
— == - == = /
I
e e —— . —— s
— L IEEE COMPUTER

SIGDA SOCIETY.DATC

PROCEEDINGS OF THE DESIGN AUTOMATION CONFERENCE

9th (1972) Contains
10th (1973) Contains
11th (1974) Contains
12th (1975) Contains
13th (1976) Contains
14th (Contains
15th (1978) Contains

47 Papers 379 Pages
36 Papers 288 Pages
47 Papers 379 Pages
57 Papers 448 Pages
63 Papers 501 Pages
70 Papers 507 Pages
72 Papers 493 Pages

16th (1979) Contains 94 Papers 586 Pages
17th (1980) Contains 81 Papers 656 Pages
18th (1981) Contains 134 Papers 917 Pages

)
)
)
)
)
1977)
)
)
)
)
19th (1982) Contains 125 Papers 928 Pages

Prices (1982) ACM or IEEE Members:
All Others:

$39.00 prepaid
$52.00 prepaid

ACM Order Number 477820
IEEE Catalog No. 82CH1759-0
Library of Congress No. 76-150348
IEEE Computer Society Order No. 416
ISSNO146-7123

Additional copies of the 1982 or prior Proceedings may be ordered prepaid from:

ACM

Order Department
P.O. Box 64145
Baltimore, MD 21264

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

IEEE Computer Society
Order Department

10662 Los Vaqueros Circle
Los Alamitos, CA 90720

These organizations should be contacted before placing an order to determine
availability and cost of past proceedings.

ISBN 0-89791-020-6

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for
private use of patrons those articles in this volume that carry a code at the bottom
of the first page, provided the per-copy fee indicated in the code is paid through the
Copyright Clearance Center, 21 Congress Street, Salem, MA 01970. Instructors are
permitted to photocopy isolated articles for noncommercial classroom use without
fee. For other copying, reprint or republication permission, write to Director, Publish-
ing Services, IEEE, 345 E. 47 St., New York, NY 10017. All rights reserved. Copy-
right © 1982 by The Institute of Electrical and Electronics Engineers, Inc.

il

