
Machine Learning 2 :229  246, 1987 
@ 1987 Kluwer Academic Publishers, Boston Manufactured in The Netherlands 

Learning Decision Lists 

RONALD L. RIVEST (RIVEST@THEORY.LCS.MIT.EDU) 

Laboratory for Computer Science, Massachusetts Institute of Technology, 
Cambridge, Massachusett~ 02139, U.S.A. 

(Received: December 29, 1986) 

(Revised: August 5, 1987) 

K e y w o r d s :  Learning from examples, decision lists, Boolean formulae, polynomial-t ime 
identification. 

A b s t r a c t .  This paper  introduces a new representation for Boolean functions, called 
decision lists, and shows that  they are efficiently learnable from examples. More precisely, 
this result is established for k-DL - the set of decision lists with conjunctive clauses of 
size k at each decision. Since k-DL properly includes other well-known techniques for 
representing Boolean functions such as h-CNF (formulae in conjunctive normal form 
with at most k literals per clause), k-DNF (formulae in disjunctive normal form with 
at most k literals per term), and decision trees of depth k, our result strictly increases 
the set of functions that  are known to be polynomially learnable, in the sense of Valiant 
(1984). Our proof is constructive: we present an algorithm that  can efficiently construct 
an element of k-DL consistent with a given set of examples, if one exists. 

1. I n t r o d u c t i o n  

One goal of research in machine learning is to identify the largest possible 
class of concepts that are learnable from examples. In this paper we restrict 
our attention to concepts that can be defined in terms of a given set of n 
Boolean attributes; each assignment of t r u e  or false to the attributes can 
be classified as either a positive or a negative instance of the concept to be 
learned. 

To make precise the notion of "learnable from examples," we adopt the 
definition of polynomial learnability pioneered by Valiant (1984) and stud- 
led by a number of authors (e.g., Blumer, Ehrenfeucht, Haussler, & War- 
muth, 1986, 1987). In this model a concept to be learned is first selected 
arbitrarily from a prespecified class ~ of concepts. Then, a learning al- 
gorithm may request a number of positive and negative examples of the 
unknown concept. These examples are drawn at random according to fixed 



230 R. L. RIVEST 

but unknown probability distributions. 1 The learning algorithm then pro- 
(tuces an answer - its hypothesis about the identity of the concept being 
learned. If the learning algorithm needs relatively few examples and rel- 
atively little rmming time in order to produce a hypothesis from jr that  
is likely to be "close" to the correct answer, then the prespecified class of 
concepts is said to be polynomially learnable. (We make this notion more 
precise later.) 

A number of classes of concepts are already known to be polynornially 
learnable. For example, Valiant (1984) has shown that  k-CNF (the class 
of Boolean formulae in conjunctive normal form with at most k literals per 
clause) is polynomially learnable. 

It is also known that  certain classes of concepts are not polynomially 
learnable, unless P = N P .  For example, Kearns, Li, Pit t ,  and Valiant 
(1987) show that  Boolean threshold formulae and k-tenn-DNF (Boolean 
formulae in disjunctive normal form with k terms) for k _> 2 are not poly- 
nomially learnable, unless P = N P .  

It is a somewhat surprising fact, however, that  it is possible for a class 
~', which is not polynomially learnable, to be a subset of a class jr ,  which 
i~ polynomially learnable. That  is, enlarging the set of concepts may make 
learning easier, rather than harder. The reason is that  it may be easier for 
the learning algorithm to produce a nearly correct answer from a rich set 
of alternatives than from a sparse set of possibilities. This paper provides 
another illustration of this fact. 

The paper introduces the notion of a decision list and shows that  k-DL 
the set of decision lists with conjunctive clauses of size at most k at each 

decision is polynomially learnable. This provides a strict enlargement 
of the functions known to be polynomially learnable: we show that  k-DL 
generalizes the notions of k-CNF, k-DNF, and depth-k decision trees. 

2. Def in i t ions  

2.1 Attributes (Boolean variables) 

It is common in the machine learning literature to consider concepts 
defined on a set of objects, where the objects are described in terms of 
a set of attribute-value pairs. We adopt this convention here, with the 
understanding that  each at tr ibute is Boolean - its associated value will 
be either true or false. We assume that  there are rz Boolean attributes 
(or variables) to be considered, and we denote the set of such variables as 

~Accordingly, this model is sometimes called distribution-free learning, since the results 
do not depend upon any particular assumptions about the probability distributions. 



LEARNING DECISION LISTS 231 

Vn = {xl, x2 , . - . ,  x~}. Of course, in a par t icular  learning si tuation,  each 
variable will have a preassigned meaning.  For example, if n = 3, zl might  
denote heavy, z2 might  denote  red, and x3 might  denote  edible. We assume 
tha t  the given set of a t t r ibutes  is sufficient to precisely define the concepts 
of interest. 

2.2 Object descriptions (assignments) 

As is common in compute r  science, we identify true with 1, and false 
with 0. An assignment is a mapp ing  from Vn to {0, 1}: an assignment  
gives (or assigns) each variable in V~ a value either 1 ( t rue )  or 0 (false). 
We may also think of an assignment  as a binary string of length n whose 
i-th bit is the value of xi for tha t  assignment.  We let Xn denote  the set 
{0, 1} n of all binary strings of length n. We may think of an assignment  as 
a description of an object. For example, if n = 3 the assignment 011 (i.e., 
zl = 0, :c~ = 1, and z3 = 1) might  describe a non-heavy, red, edible object. 

2.3 Representations of concepts (Boolean formulae) 

Boolean formulae are often used as representat ions for concepts. This 
section reviews the definitions of some common classes of Boolean formulae. 

A Boolean formula can be interpreted as a mapp ing  from objects (assign- 
ments)  into {0, 1}, If the formula is 1 (true) for an object, we say tha t  the 
object is a positive example of the concept represented by the formula; oth- 
erwise we say tha t  it is a negative example. The  simplest Boolean formula 
is just  a single variable. Each variable zi is associated with two literals: xi 
itself and its negat ion Y,i. An assignment  natural ly assigns a value to ~ :  
~i = 0 if xi = 1, otherwise 5i = 1. We let Ln -- {xl, ~ , . . . ,  x,~, ~n } denote  
the set of 2n literals associated with variables in V,~. 

A term is a conjunct ion (and) of literals and a clause is a disjunction 
(or) of literals. The  t ru th  of a te rm or clause at an assignment is a simple 
function of the t ru th  of its consti tuents.  For example, the term z~3x4  is 
true if and only if x3 is false and bo th  zl  and x4 are true. Similarly, the 
disjunction (~2 V z3 V zs) is t r u e  if and only if z2 is false or either of x3 
or x5 is true. 

Tile size of a te rm or clause is the number  of its literals. We let true 
be the unique te rm of size 0, and false be the unique clause of size 0. We 
let C~ ~ denote the set of all terms (Conjunctions) of size at most  k with 
literals drawn from L~. Similarly, we let D f  denote the set of all clauses 



232 R. L. RtVEST 

(Disjunctions) of size at most k with literals drawn from L,,. Thus 

= = = O ( n k ) .  

i=0 

For any fixed k, C~ and D~ have sizes that are polynomial functions of n. 

A Boolean formula is in conjunctive normal form (CNF) if it is the 
conjunction (and) of clauses. We define k-CNF to be the set of Boolean 
fommlae in conjunctive normal form where each clause contains at most k 
literals. For example, the following formula is in 3-CNF: 

v v v v 

Siinilarly, a Boolean formula is in disjunctive normal form (DNF) if it is 
the disjunction (or) of terms. We define k-DNF to be the set of Boolean 
formulae in disjunctive normal form where each term contains at most k 
literals. For example, the following formula is in 2-DNF: 

XlX 3 V XlX4 V X3 V Z2X 7. 

We define k-term-DNF to be the set of all Boolean formulae in disjunctive 
normal form containing at most k terms, and k-clauee-CNFto be the set of 
Boolean formulae in conjunctive normal form with at most k clauses. (The 
previous examples were from 4-clause-CNF and 4-term-DNF, respectively.) 
Extending our definition of size for terms and clauses, we define the .size of 
a Boolean formula to be the number of literals it contains. 

Each Boolean formula defines a corresponding Boolean function from 
X,~ to {0, 1} in a natural manner.  In general, we do not distinguish be- 
tween formulae and the Boolean flmctions they represent. That  is, we may 
interchangeably view a tormula as a syntactic object (so that  we nfight 
consider its size) or a Boolean flmction (so that  we may consider its value 
at a particular point x E Xn). 

The four classes of functions defined above (k-CNF, k-DNF, k-clause- 
CNF, and k-term-DNF) are not independent,  as we now show. By duality 
(DeMorgan's Rules) k-DNF is the set of negations of flmctions in k-CNF. 
For example, the negation of the 2-CNF formula: 

is tile 2-DNF formula: 

v v x4)(xs) 

9;IX 2 V Z3X4 V x5- 

Similarly, k-term-DNF is the set of negations of functions in k-clause-()NF. 



LEARNING DECISION LISTS 233 

[] [] 

Figure 1. A decision tree. 

Also, by distributivity, k- term-DNF is a subset of k-CNF. For example, 
we ('an rewrite the 3-term-DNF formula: 

o:lx2 V z j ,~  V ~.~ 

as the 3-CNF formula: 

(~, v ~3 v ~,~)(:< v ~,~ v ~ ) ( x ~  v ~a v ~5)(x2 v ~ v ~ ) .  

Similarly, k-('lause-(',NF is a subset of k-DNF. 

2.4  D e c i s i o n  t ree s  

Another  useful way to represent a concept is as a decision tree. A decision 
tree is a binary tree where each internal node is labelled with a variable, 
and each leaf is labelled with 0 or 1. The depth of a decision tree is the 
length of the longest path from the root to a leaf. 

Each decision tree defines a Boolean flmction as fi)llows. An assignment 
determines a unique path  fl'om the root to a leaf: at each internal node 
the left (respectively right) edge to a child is taken if the variable named 
at that  internal node is 0 (respectively 1) in the assignment. The value of 
the function at the assignment is the value at the leaf reached. 

Figure 1 shows an example of a decision tree of depth 3; the concept so 
defined is equivalent to the Boolean formula: 

ZlX3 V x1~2~4 V XlX 2. 



234 R.L. RIVEST 

Table i. Truth table for example decision list function. 

000 1 1 (0) (0) 

om (o) (o1 (0) (0) 
olo  ~ 1 (o) 

i 

lOO o o o o 
m l  (o) (o) (o) (o) 
110 0 0 0 0 
111 (o) (o) (o) (o) 

We let k-DT denote the set of Boolean functions defined by decision trees 
of depth at, most k. 

2 . 5  A d d i t i o n a l  n o t a t i o n  

When we wish to emphasize the number  of variables upon which a class 
of flmctions depends, we will indicate this in parentheses after the class 
name, as in k-CNF(n) ,  k-DNF(n) ,  or k-DT(n).  We use lg(n) to denote 
the base-2 logarithm of n and ln(n) to denote the natural  logarithm of 
n. We may denote a function of one argument as f ( . ) ,  a function of two 
arguments as f( . ,  .), and so on. 

2 . 6  D e c i s i o n  l i s t s  

We now introduce a new technique for representing concepts: decision 
lists. Decision lists are a strict generalization of the concept representation 
techniques described in the previous section. And they are, as we shall see, 
easy to learn from examples. 

A decision list is a list L of pairs 

( k ,  . 1 ) , .  • • ,  ( I t ,  (1) 

where each f j  is a term in C~ ~, each vi is a value in {0, 1}, and the last func- 
tion fr is the constant  function t r u e .  A decision list L defines a Boolean 
function as follows: for any assignment x ~ X , ,  L(x) is defined to be equal 
to vj where j is the least index such that  f j (x )  = 1. (Such an item always 
exists, since the last function is always t r u e . )  

We may think of a decision list as an extended "if - t h e n  - e l se i f  - 
. . .  else  -"  rule. Or we may think of a decision list as defining a concept 



LEARNING DECISION LISTS 235 

( xlg3 ) 

false 

true 
, 0  

true 
CS~e2e5 "~j - 1 

false 

true 
X3X4 j " 1 

false 

Figure 2. Diagram of decision list corresponding to Table 1. 

by giving the general pat tern with exceptions. The exceptions correspond 
to the early items in the decision list, whereas the more general patterns 
correspond to the later items. For example, consider the decision list 

(x1~3, 0), (-xlx2xs, 1), (x j4 ,  1), (true, 0) (2) 

which has the t ruth table given in Table i. 2 For example, L(0, 0, 0, 0, 1) = 
1; this value is specified by the third pair in the decision list. The zeros 
in parentheses indicate the positions filled by the last (default) item. This 
decision list may also be diagrammed as in Figure 2. (No decision box is 
given for the last item, since it. is always t rue . )  

We remark that  decision lists always form a "linear" sequence of deci- 
sions; the "true" branch of a decision always points to either 1 or 0, never 
to another decision node. Compared to decision trees, decision lists have a 
simpler structure, but the complexity of the decisions allowed at a node is 
greater. 

We let k-DL denote the set of all Boolean functions defined by decision 
lists, where each function in the list is a term of size at most k. As k 
increases, the set k-DL becomes increasingly expressive. 

2The format of this table is that of a standard Karnaugh map as used in logical 
design; three of the input variables are used to select tile row, and the remaining two 
variables are used to select the column, of the desired value. 



236 R.L. RIVEST 

We note that  - unlike /~-DNF or k-CNF k-DL is closed under com- 
plementation (negation): if f is in k-DL, then so is the complement of f .  
The proof is trivial: merely negate the second element of each pair in the 
decision list, or equivalently - change all the l 's  to 0's and vice-versa in 
the leaves of the decision list. 

The items of a decision lists are essentially the same as the production 
rules studied by many people. For example, Quinlan (1987) has examined 
production rules as a means of simplifying decision trees. One may think 
of decision lists as a "linearly ordered" set of production rules. 

3. Re la t ionship  of decis ion lists to other classes of funct ions  

In this section we prove that  decision lists are more expressive than 
the other forms of concept representation discussed in section 2. We first 
examine the relationship of k-DL to k-CNF and k-DNF. We see that  the 
sequential if - t h e n  - else combinator  used to construct, decision lists is 
more powerflfl than the associative and commutat ive V and A operators. 

3.1 Decision lists generalize k-CNF and k-DNF formulae 

Theorem 1 For 0 < k < n, k-CNF(n) and k-DNF(n) are proper subsets 
of k-DL(n) 

Proofi To see that  k-DNF is a subset of k-DL, observe tha t  we can easily 
transform a given formula in k-DNF into a decision list representing the 
same flmction. Each term of a DNF fi)rmula is converted into an item of 
a decision list with value 1. For example, the term ~192 would yield the 
item (xlg2, 1). The last (default) i tem of the decision list has the value 0. 

To see that  k-CNF is a subset of k-DL, recall that  every k-CNF formula 
is the complement of some k-DNF formula, and that  k-DL is closed under 
complementation.  

The subset relations are proper, since neither k-CNF nor k-DNF is a 
subset of the other if 0 < k < n. • 

Corollary 1 For 0 < k < n, k-elause-CNF(n) and k-term-DNF(n) are 
proper subsets of k-DL(n). 

Proof: This follows from the previous theorem and the previously noted 
facts that  k-clause-CNF(n) is a subset of k-DNF(n),  and that  k-term- 
DNF(n)  is a subset of k-CNF(n).  • 

We can strengthen the above result to show that  not only is k-DL a 
generalization of k-CNF and k-DNF; it is also a generalization of their 



LEARNING DECISION LISTS 237 

union (i.e., the set of functions that  have either a k-CNF representation or 
a k-DNF representation) for n > 2. 

T h e o r e m  2 For 0 < k < n and n > 2, (k-CNF(n) [_) k-DNF(n)) i.s a 
proper sub,~'et of k-DL(n). 

P r o o f :  Our proof makes essential use of the notion of the prime implicant8 
of a Boolean function f.  An implieant of f is any term that  logically implies 
f .  A prime implicant is an implicant all of whose literals are essential: if 
any literal is:dropped it is no longer an implicant. For example, for the 
flmction represented by Table 1, ~1~J4  is a prime implicant. We will also 
use tile fact that if a flmction f has a prime implicant of size t, then f 
has no k-DNF representation if k < t. It follows from this that if the 
negation of a flmction f has a prime implicant of size t. then f has no 
k-CNF representation if k < t. 

We break our proof into the cases k = 1 and 1 < k < n. For k = 1, we 
claim that  the following decision list from I-DL(n) represents a flmction f 
that  is not in 1-CNF(n) [.J 1-DNF(n): 

(xl, 0), (x:, 1), (x3~ 1), (true, 0). (3) 
To see that  f is not in I-DNF(n),  note that  ~ x 2  is a prime implicant of 
f .  Similarly. to see that f is not in 1-CNF(n); note that  ~2~a is a prime 
implicant of the negation of f .  

For 1 < k < n, we consider the decision list: 

(~g~k+l ,1) , (x lx~+L,O), (x l®x~O. . -®xk,1)( true ,  O). (4) 

This is not a proper decision list according to our definition, since the 
third item does not have a term as its first part, but rather the "exclusive- 
or" of x l , . . . , z k ,  where "®" denotes the exclusive-or (rood 2 addition) 
operator. However, it is simple to convert tile flmction into a proper k-DL 
representation, since we are only taking the exclusive-or of k variables. The 
conversion would involve replacing the third item above with a sequence 
of 2 k-I items whose first parts are all possible terms of length k involving 
variables x l , . . . ,  xk having an odd number of unrwgated variables, and 
whose second parts are always 1. 

The function f represented above has the prime implicant 

zlz2za"zkzk+ , (5) 

so that  it hag no k-DNF representation. Similarly, its negation f has the 
prime implicant 

z , z 2 z 3 " " z k z k + l ,  (6) 
so that f has no k-CNF representation either. • 



238 R . L .  RIVEST 

3.2 Decision lists generalize decision trees 

Theorem 3 k-DT(n) is a proper sub,yet of k-DL(n), for 0 < k < n. 

Proof: By theorem 1 it suffices to observe that 

k-DT(n) C k-DNF(n), (7) 

since one can create a k-DNF(n) formula equivalent to a given decision tree 
in k-DT(n) by creating one term for each leaf labelled with "1". One could 
also create a k-CNF(n) formula equivalent to the given tree by creating 
one clause for each leaf labelled with "0"; this additional fact suffices to 
prove that k-DT(n) C k-CNF(n) N k-DNF(n). • 

4. P o l y n o m i a l  l earnab i l i ty  

We are interested in algorithms for learning concepts from examples, 
where the notion of "concept" is identified with that of "Boolean function." 
In this section we review the notion of the "polynomial learnability" of a 
class of concepts, as pioneered by Valiant (1984). 

4.1 Examples and samples 

An example is a description of an object, together with its classification 
as either a positive or a negative instance of the concept f being learned. 
More formally, an example of f is a pair (x, v) where x is an assignment, 
and v E {0, i}. The example is considered to be a positive example if v = 1, 
and a negative example otherwise. 

We will be interested in learning algorithms which produce as answers 
Boolean functions that do not contradict any of the given training data; in 
this case we say that the answer produced is consistent with the training 
data. More formally, we say that a Boolean function f is consistent with 
an example (x, v) if f (x)  = v. 

A sample is a set of examples. We say that a function is consistent with a 
sample if it is consistent with each example in the sample. If f is a Boolean 
function, then a sample of f is any sample consistent with f.  

4.2 Hypothesis  space 

The learning algorithms we consider will have a hypothesis space ~ a 
set of concepts that contains the concept being learned. The goal of the 
learning algorithm is to learn which concept in jr is actually being used to 
classify the examples it has seen. 



LEARNING DECISION LISTS 239 

We partition the hypothesis space ~" according to the number n of vari- 
ables upon which the concept depends. Typically the learning algorithm 
will be told at the beginning that  the concept to be learned depends on a 
given set E~ of variables. Let f;, denote the subset of 2. that depends on 
Vr~, fbr any integer n > 1, so that  .7 oo = U~,=I F, .  (We assume that  each 
function in F depends on a finite set of variables.) 

Of course, the difficulty of learning a concept that  has been selected fl'om 
F~ will depend on the size IF~[ of F,~. We let 

= lg(IP. t )  (s)  

denote the logarithm of the size of F,~; this may be viewed as the number 
of bits needed to write down an arbitrary element of F. ,  using an optimal 
encoding. 

We are interested in c.haracterizing when a class jr of functions is "easily 
learnable from examples." Clearly this is a characteristic of the set 5 r and 
not of any particular member of .7; identifying any particular function from 
examples would be trivial if there were no alternatives. 

4.3  D i s c u s s i o n  - l e a r n a b i l i t y  f r o m  e x a m p l e s  

Inflmnally, to say that a class 7 of flmctions is "learnable from examples" 
is to say that  there exists a corresponding learning algorithm A such that  
for any flmction f in 2", as A is given more and more examples consistent 
with f ,  A will converge upon f as the time(ion it has "learned" from the 
examples. 

However, any class Jr of Boolean functions is clearly learnable from ex- 
amples in principle, since each flmetion f E F,~ is defined on a finite domain 
(the 2 n assignments X~). The algorithm A need only wait until it sees an 
example corresponding to each element of Xn; then A knows the complete 
truth table for f .  

Thus, the interesting quest.ion is not whether a class ~r is learnable fl'om 
examples, but whether it is "easily" learnable from examples. This in- 
volves two aspects, since a learning algorithln has two resources available: 
examples and computational time. We say that  a learning algorithm is 
economical if it requires few examples to distinguish the correct answer 
from other alternatives, and say that  it is ej~cient if it. requires little com- 
putational effort to identify the correct answer K o m a  sufficient number of 
examples. We would like our learning algorithms to be both economical 
and efficient. 

We observe that each example provides at most one bit of information 
to the learning algorithm. Since A,. bits are required to describe a typical 



240 R .L .  RIVEST 

concept in Fn, we see that any learning algorithm will have to examine at 
least )~,~ examples on the average, if it is to make a correct identification. 

4.4 Polynomial-time identifiability 

Our first formal notion of learnability is "polynomial-time identifiabil- 
ity," which captures the notion of efficiency but not economy. We say that 
J" is polynomial-time identifiable if there exists an identification algorithm 
A and a polynomial p(A, m) such that algorithm A, when given the integer 
n and a sample S of size m, will produce in time p(~,~, m) a function f E F,~ 
consistent with S (if one exists, otherwise it will output "impossible"). 

To say that a set F is polynomial-time identifiable is not necessarily 
very interesting. For example, the class DL of all decision lists is clearly 
polynomial-time identifiable: it is easy to construct a decision list con- 
sistent with a given sample of size m in time polynomial in A~ and m, 
by turning each example into an item of the decision list. These deci- 
sion lists are uninteresting because they are as long as the data itself. A 
"good" identification procedure should produce an answer that is consid- 
erably shorter than the data, if possible. Answers which are not short may 
be poor predictors for future data (see Pearl, 1978, or Rissanen, 1978). 

4.5 Polynomial learnability 

Valiant (1984) introduced a more elegant notion of learnability, which 
makes explicit the notion that the concept acquired by the learner should 
closely approximate the concept being taught, in this sense that the ac- 
quired concept should perform well on new data. To do so, he presumed 
the existence of an arbitrary probability distribution Pn defined on the set 
X•; the learning algorithm's examples are drawn from Xn according to 
the probability distribution Pn. When it has produced its answer f,  one 
measures the quality of its answer by measuring the probability that a new 
example drawn according to Pn will be incorrectly classified by f. 

To formalize this, we define the discrepancy f 0 g between two functions 
f and g in Fn as the probability (according to Pn) that f and g differ: 

f(Dg= ~ Pn(X). (9) 
xlY(x)Cg(x) 

The discrepancy will always be a number between 0 and 1, inclusive. We 
also define the error of a flmction g to be f (~ g, where f is the "correct" 
flmction. A hypothesis g with error at most ~ will incorrectly classify 
at most a h'action ~ of the objects drawn according to the probability 
distribution Pn- 



LEARNIN(~ DECISION LISTS 241 

We would like our learning algorithm A to be able to produce an answer 
whose error is less than an arbitrary prespecified accuracy parameter ~. 
(Here 0 < ( < 1.) However, we cannot expect A to be sutficiently accurate 
always, since it may suffer from ~ba(t luck" in drawing examples according 
to P,~. Thus, we will also supply A with a confidence parameter ~ (here 
0 < g < 1), and require that the probability that A produces an accurate 
answer be at least. 1 -/~. Of course, as c and ~ approach zero. we should 
expect A t.o require more examples and computat ion time. 

We now make this fl)rmal. We say that  a set of Boolean flmctions 2" 
is polynomially learnable if there exists an algorithm A and a polynomial 
.~(.,., .) such that  for all n, (, and ~, all probability distributions Pn on X~, 
and all functions f E F~, A will with probability at least 1 - ~, when given 
a sample of f of size m = s(A,~,,,! ½) drawn according to P**, output  a 
g E F,~ such that g @ f < c. Furthermore, A's running time is polynomially 
bounded in n and rn. 

Thus, if 2" is polynomially learnable, then it is possible to get "~close" 
to the right answer in a reasonable amount  of time, independent of the 
probability distribution that  is used to generate tile examples. Here, as is 
only fair, the same probability distribution Pn that  is used to generate the 
examples is used to judge the error of the program's answer. 

There are several variations on the above definition in the literature. In 
Valiant's original paper (1984), the probability distribution pn was con- 
strained so that  only positive examples were shown to the learning algo- 
rithm. In other papers (e.g.; Kearns et al., 1987), the algorithm may choose 
whether it would like to see a positive example or a negative example. (In 
this case there are two unknown probability distributions, one for each 
type of example.) The formulation we have adopted here, using a single 
probability distribution, is identical to that  used by Blumer et al. (1986, 
1987). It is possible to prove that  the model we use here is in fact formally 
equivalent to the two-distribution model used by Kearns et al. (1987); we 
use the single-distribution model because it is simpler. 

A number of important  classes of Boolean functions have been proved 
to be polynomially learnable. For example, Valiant (1984) proved that 
k-CNF is polynomially learnable from positive examples only. It follows 
that  k-DNF is also polynomially learnable (using an algorithm that  makes 
use of the negative examples only). Pi t t  and Valiant (1986) have shown 
that k-CNF U k-DNF is polynomially learnable, but that k-term-DNF and 
k-clause-CNF are not polynomially learnable unless P = N P .  (To identify 
a k-term-DNF formula that  is consistent with the examples is NP-hard 
in general, so the problem is efficiency. However, since k-term-DNF is a 
subset of k-CNF, it is easy to learn a k-CNF formula equivalent to the 
unknown h-term-DNF formula. Enlarging the set of fornmlae helps.) 



242 R . L .  RIVEST 

4.6 Proving polynomial learnability 

Although proving that a class Y of formulae is polynomially learnable 
can be difficult in general, Blmner et al. (1986, 1987) have developed 
some elegant methods for doing so. They show how one can prove poly- 
nomial learnability by proving polynomial-time identifiability, if the class 
5" is polynonfial-sized (i.e., if An = O(n t) for some t). For the reader's 
convenience we repeat a key theorem and its proof from Blumer et al. 
(1987). 

T h e o r e m  4 Given a function f E Fn and a sample S of f of size rn drawn 
accordin9 to Pn, the probability is at most 

IFnl(1 - e )  "~ 

that there exists a hypothesis g E Fn such that 

• the error of g is greater than ~, and 

• g is consistent with S. 

Proofi If ~ is a single hypothesis in F,~ of error greater than e, the chance 
that g is consistent with a randomly drawn sample S of size rn is less than 
(1 -e)m. Since Fn has IFnl members, the chance that there exists any 
member of Fn satisying both conditions above is at most IFnl(1 - e)m. • 

Since 
m > l(In(IF~,l)e + ln(})) (10) 

implies that 
Ir l(l - <_ 5, (11) 

if m satisfies equation (10) the chance is less than 5 that a hypothesis in 
Fn which is consistent with S will turn out to have error greater than e. 
Thus to achieve the bounds in the definition of polynomial learnability, 
the learning algorithm need only examine enough examples (as given by 
equation (10)), and then return any hypothesis consistent with the sample. 
We note that if jr is polynomial-sized, then the bound of equation (10) is 
bounded by a polynomial in n, 1 and ~. Thus, if jr is polynomial-sized 
and polynomial-time identifiable, then it is polynomially learnable in the 
sense of Valiant (see Blumer et al. (1987) for a fuller discussion). 

The previous theorem shows that polynomial-sized classes of functions 
are economically learnable, in the sense that after a polynomial number of 
examples are seen, any hypothesis consistent with the observed data will 
be "close enough" to the correct answer with high probability. Further- 
more, polynomial-time identifiability implies efficient learnability: such a 



LEARNIN(;  DECISION LISTS 243 

consistent answer can be found quickly. Together, these imply learnability 
in the sense of Valiant. 

5. k-DL is po lynomial ly  learnable 

From the previous section we conclude that to prove that k-DL is poly- 
nomially learnable in the sense of Valiant, it suffices to prove that k-DL is 
polynomial-sized and that it is polynomial-time identifiable. The following 
two subsections provide these proofs. 

5.1 k-DL is polynomial-sized 

To show that k-DL is polynomial-sized, we begin by noting that 

Ik-DL(n)[ = O(31c;l(IC~[)!). (12) 

This follows because each term in C~ can either be missing, paired with 0, 
or paired with 1 in the decision list, and the order of the elements of the 
decision list is arbitrary. This implies that 

lg(Ik-DL(n){ ) = O(n t) (13) 

tbr some constant t; i.e., k-DL is polynomial-sized. (Recall that lg(x) is 
the base-two logarithm of x.) 

5.2 k-DL is polynomially identifiable 

In this subsection we show that a "greedy" algorithm works for con- 
structing decision lists consistent with a given set of data. We begin with 
the trivial observation that if a function is consistent with a sample S, then 
it is consistent with any subset of S. 

The algorithm proceeds by identifying the elements of the decision list 
in order. That is to say, we may select as the first element of the decision 
list any element of Cr~ x {0, 1} that is consistent with the given set of data. 
The algorithm can then proceed to delete fl'om the given data set any data 
points that are explained by the chosen element of the decision list, and 
then to construct the remainder of the decision list in the same way to be 
consistent with the remaining data. Choosing a particular function in C~ 
"doesn't hurt", in the sense that explaining a certain subset of the data with 
this first item does not prevent or interfere with the ability of the remaining 
elements of C~ ' to explain the remaining data. If the original sample could 
be represented by an element of k-DL, then so can the remaining portion of 
the sample. Thus the greedy algorithm will find a function k-DL consistent 
with the sample if and only if such a flmction exists. 



244 R.L. RIVEST 

We now specify our algorithm more precisely. Let 5 denote a non-empty 
input sample of an unknown function f E F,~, and let j denote an auxiliary 
variable that is initially i. 

1. If S is empty, halt. 

2. Exanfine each term in C~ in turn until a term t is found such that  all 
examples in S which make t true are of the same type (i.e., all positive 
examples or all negative examples). If no such term can be found, 
report "The given sample S is not consistent with any k-DL function" 
and halt. Otherwise proceed to step 3. 

3. Let T denote those examples in S which make t true. Let v = 1 if T is 
a set of positive examples; otherwise let v = 0. Output  the item (t, v) 
as the j - th  item of the decision list being constructed, and increment 
j by one. 

4. Set S to 5' - T, and return to step 1. 

That  this algorithm is polynomial-time is easily seen from the fact that  the 
size of (;'~ is polynomial in n (for fixed k). This completes our proof that  
k-DL is polynomially learnable. 

5.3 Variat ions  and extens ions  

It. is interesting to note that  the proof here really only depends on the 
fact that  the size of (2~ is polynomial in n; we could replace Cf  with any 
family of flmctions of polynomial size as long as it is possible to evaluate 
the functions quickly for any given example. 

There is certainly some flexibility in step 2 of the algorithm that could be 
used to advantage, in an a t tempt  to yield a shortest possible decision list. 
For example, one could choose t so that  it "explained" the largest number 
of examples (i.e., so the corresponding set T was as large as possible). This 
would be analogous to the strategy used by Quinlan's (1986) ID3 system for 
constructing decision trees. However, it is NP-hard in general to compute 
the shortest decision list consistent with a given sample S; this result can 
be derived fl'om the results of Masek (1976) or Kearns et al. (1987). 

6. O p e n  p r o b l e m s  

Before closing, we should briefly describe four open problems regarding 
the learning of decision lists. 

P r o b l e m  i: Can the functions in k-DL be learned from positive examples 
only, in the aense of Pitt and Valiant (1986}? In this model the learn- 
ing algorithm is not allowed to see any negative examples; instead it h a s  



LEARNING DECISION LISTS 245 

access to a supply of positive examples, (h'awn according to the unknown 
t)robability distribution restricted to the set of positive examples. 

P r o b l e m  2: Can one devise arl. cj]icient incremental (i.e., on-line) PcF- 
,sion of our alqorithm for learning functions in k-DL'/ In this mo(M the 
algorithm re('('ives examples one at a time. and after each example must 
t)roduce an updated hyt)othesis consistent with all examt)h's seen so far. 

P r o b l e m  3: ('m~ the function,~ in k-DL be learned cj]icicntly when the 
,~upplicd czamples arc "'noi,~'9"? In this model the classifications of the 
given exmnt)les may 1)e erroneous with some small prob~d)ility fl: we may 
sut)t)os(' that the algorithm is given fl as t)art of its input. 

P r o b l e m  4: (:at ,  one  learn function,~ in k-DL cj]iciently when the ezamplc,~ 
m(ty only partially &.scribe an ob.)'cct'? A partial as,ffgn'mcnt is a mapping 
from K, to {0, 1, *} where "*'" denotes "m~si)ecified'" or "'unknown". Quin- 
lan (1986) has discussed this prol)lem of "'unknown at tr ibute values," ~s 
w(ql as techniques for COiling with it when frying to learn a decision tree. 
W(' may also think of a partial assigmnent as a string in {0.1. , } ' .  A t)artial 
assignment is ;~ partial specification of an obje('t some attr ibutes are not 
si)('cifi('d. A t)artial ('xamI)le is a t)artial description of an object (i.e., a t)ar - 
tial assigmnent), together with its classification. More formally, a partial 
~:zamplc is a pair (x, v) where x is a t)artial assignment and l, E {0.1 }. An 
assigmn(,nt x is said to t)(, an eztcnsion of partial assigmnenl y if" z,. = y, 
whenev(w Yi 7 ~ "*"- We s:-ty that f is consistent with a partial examt)le if 
.f(y) = ~, fl)r all assigmnents ~ that  at(, extensions of J:. 

We say that: .7 is polynomial-time identifiable from partial examples if 
the definition of i)olynomial i(tentifia|)ility holds even when 5' lnay ('oil- 
rain partial examt)les. Our previous greedy algorithm does m)t apply in a 
straightforward way to learning from partial exami)h~s, and we leave it as 
an ot)cn question as to whether  k-DL is 1)olynomial-time identifiat)le from 
I)arI ial examl)l('s. 

7. C o n c l u s i o n s  

We have twosented a now class of Boolean concepts the class k-DL: 
concei)ts ret)resen/al)le 1)y decision lists with a term of size at most k at 
each decision. Decision lists aro interpreted sequentially, and the fir,~t term 
in the decision list that is satisfied by the ilq)llt determines how the hit)lit 
is lo be classified. 

Wo have shown that  decision lists represent a strict generalization of ~he 
clas~es of l/oolean flmct ions tn'evionsly known to be polynomial-time i(len- 
tifiable from examt)les and polynomially learnable in the sense of Valiant. 



246 R.L. RIVEST 

in particular, k-DL generalizes the formula classes k-CNF and k-DNF, as 
well as decision trees of depth k. 

The algorithm for determining an element of k-DL that  is consistent 
with a given set of examples is particularly simple; it is basically a greedy 
algorithm that constructs the decision list one element at a time until all 
of the examples have been accounted for. When learning a concept in the 
class k-DL, our algorithm will, with high probability, produce as output  
an answer that  is approximately correct; the running time is polynomial 
in the number of input variables, the parameter k, and the inverses of the 
accuracy and confidence levels that  are desired. 

Acknowledgements 

This paper was prepared with support  from NSF grant DCR-8607494, 
ARO Grant DAAL03-86-K-0171, and a grant from the Siemens Corpora- 
tion, We wish to thank David Haussler, Barbara Moore, and the referees 
for their very helpful comments on an earlier version of this paper. 

References 
Blumer, A.~ Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1986). Classifying 

learnable geometric concepts with the Vapnik-Chervonenkis dimension. Pro- 
ceedings of the Eighteenth Annual ACM Symposium on Theory of Computing 
(pp. 273 282). Berkeley, CA. 

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Oceam's 
Razor. Information Processing Letters, 2~, 377 380. 

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987). On the learnability of Boolean 
formulae. Proceedings of the Nineteenth Annual A CM Symposium on Theory 
of Computing (pp. 285 295). New York, NY. 

Masek, W. (1976). Some NP-complete set-covering problems. Unpublished manu- 
script, Laboratory for Computer Science, Massachusetts Institute of Technol- 
ogy, Cambridge, MA. 

Pearl, ,1. (1978). On the connection between the complexity and credibility of 
inferred models. Journal of General Systems, ~, 255 264. 

Pitt, L., & Valiant, L. G. (1986). Computational limitations on learning from 
examples (Technical Report). Cambridge, MA: Harvard University, Aiken 
Computation Laboratory. 

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106. 
Quinlan, J. R. (1987). Generating production rules from decision trees. Proceed- 

ings of the Tenth International Joint Conference on Artificial Intelligence 
(pp. 304 307). Milan, Italy: Morgan Kaufmann. 

Rissanen. J. (1978). Modeling by shortest data description. Automatica, 1~, 
465 471. 

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 
27. 1134 1142. 


