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Cryptology

Abstract

Cryptology has advanced tremendously since 1976; this chapter provides a brief overview of the
current state-of-the-art in the field. Several major themes predominate in the development. One
such theme is the careful elaboration of the definition of security for a cryptosystem. A second theme
has been the search for provably secure cryptosystems, based on plausible assumptions about the
difficulty of specific number-theoretic problems or on the existence of certain kinds of functions (such
as one-way functions). A third theme is the invention of many novel and surprising cryptographic
capabilities, such as public-key cryptography, digital signatures, secret-sharing, oblivious transfers,
and zero-knowledge proofs. These themes have been developed and interwoven so that today
theorems of breathtaking generality and power assert the existence of cryptographic techniques
capable of solving almost any imaginable cryptographic problem.
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Chapter 13. Cryptology

by Ronald L. Rivest!

1 Introduction

Ten years ago Diffie and Hellman proclaimed
“We stand today on the brink of a revolution in cryptography.” [53]

Today we are in the midst of that revolution. During the last decade we have seen an explosion
of research in cryptology. Many cryptosystems have been proposed, and many have been broken.
Our understanding of the subtle notion of “cryptographic security” has steadily increased, and
cryptosystems today are routinely proven to be secure (after making certain plausible assumptions).
The fascinating relationships between cryptology, complexity theory, and computational number
theory have gradually unfolded, enriching all three areas of research.

This chapter briefly surveys the field of cryptology as it now exists, with an attempt to identify
the key ideas and contributions. Lack of space precludes a comprehensive treatment, and I regret
that much significant work must go unmentioned or be only briefly described.?

2 Basics

Cryptology is about communication in the presence of adversaries. As an example, a classic goal
of cryptography is privacy: two parties wish to communicate privately, so that an adversary knows
nothing about what was communicated.

The invention of radio gave a tremendous impetus to cryptography, since an adversary can
eavesdrop easily over great distances. The course of World War II was significantly affected by the
use, misuse, and breaking of cryptographic systems used for radio traffic [92]. It is intriguing that
the computational engines designed and built by the British to crack the German Enigma cipher
are deemed by some to be the first real “computers”; one could argue that cryptography is the
mother (or at least the midwife) of computer science.

A standard cryptographic solution to the privacy problem is a secret-key cryptosystem, which
consists of the following:

e A message space M: a set of strings (plaintext messages) over some alphabet.

e A ciphertext space C: a set of strings (ciphertexts) over some alphabet.

!This chapter prepared with support from NSF grant DCR-8607494. Author’s address: MIT Lab. for Computer
Science, Cambridge, Massachusetts 02139 USA. Author’s net address: rivest@theory.lcs.mit.edu

2The reader who wishes to explore further will find available many excellent texts, collections, and survey articles
[9, 13, 29, 45, 49, 48, 53, 54, 51, 66, 91, 99, 102, 117, 146, 150, 149, 148, 151], works of historical or political interest
[12, 69, 92, 138, 157], relevant conference proceedings (CRYPTO, EUROCRYPT, FOCS, STOC, [46, 86, 100]) and
bibliographies [14, 129].



e A key space K: a set of strings (keys) over some alphabet.
e An encryption algorithm E mapping K x M into C.

e A decryption algorithm E mapping K X C into M. The algorithms E and D must have the
property that D(K, E(K,M)) = M for all K € K, M € M.

To use a secret-key cryptosystem, the parties wishing to communicate privately agree on a key
K which they will keep secret (hence the name secret-key cryptosystem). They communicate a
message M by transmitting the ciphertext C = E(K, M). The recipient can decrypt the ciphertext
to obtain the message M using K, since M = D(K,C).

The cryptosystem is considered secure if it is infeasible in practice for an eavesdropper who
learns E(K, M), but who doesn’t know K, to deduce M or any portion of M. This is an informal
definition of security; we shall later see how this notion has been formalized, refined and improved.

As cryptography has matured it has addressed many goals other than privacy, and considered
adversaries considerably more devious than a mere passive eavesdropper. One significant new goal
is that of authentication, where the recipient of a message wishes to verify that the message he
has received has not been forged or modified by an adversary and that the alleged sender actually
sent the message exactly as it was received. Digital signatures are a special technique for achieving
authentication; they are to electronic communication what handwritten signatures are to paper-
based communication.

But we are getting ahead of our story. In the next two subsections we review two “pre-
revolutionary” (that is, pre-1976) cryptographic techniques which are “musts” for any survey of
the field: the one-time pad and the Data Encryption Standard. After that we begin our survey of
“modern” cryptology.

A note on terminology: the term cryptosystem refers to any scheme designed to work with a
communication system in the presence of adversaries, for the purpose of defeating the adversaries’
intentions. This is rather broad, but then so is the field. Cryptography refers to the art of designing
cryptosystems, cryptanalysis refers to the art of breaking cryptosystems, and cryptology is the union
of cryptography and cryptanalysis.

2.1 The One-Time Pad

The one-time pad is a nearly perfect cryptographic solution to the privacy problem. It was invented
in 1917 by Gilbert Vernam [92] for use in telegraphy and has stimulated much subsequent work
in cryptography. The one-time pad is a secret-key cryptosystem where the key is as long as the
message being encrypted. Furthermore, the key, once used, is discarded and never reused.

Suppose parties A and B wish to communicate privately using the one-time pad, and suppose
further that they have previously agreed upon a secret key K which is a string of n randomly chosen
bits. Then if A wishes to send a n-bit message M to B, she sends to B the ciphertext C' = M & K,
where C'is the bit-wise exclusive-or (mod-2 sum) of M and K. (For example, 00110101 = 0110.)
The received ciphertext can be decrypted by B to obtain M, since M = C & K. When another
message is to be sent, another key K must be used — hence the name “one-time pad”.



Russian spies have allegedly been captured with unused paper pads of printed key material
for use in a one-time pad scheme. After a message was encrypted for transmission the spy would
destroy the page of key material used to encrypt the message. The spy could then relax, since
even if the ciphertext was intercepted it is provably impossible for the interceptor to decrypt the
ciphertext and incriminate the spy. The proof is simple: the intercepted ciphertext C provides the
interceptor no information whatsoever about M since any message M could have yielded C' (if the
key K is equal to C @ M).

This one-time pad is thus provably secure in an information-theoretic sense since the inter-
ceptor never has enough information to decrypt the ciphertext, and no amount of computational
power could help him. The information-theoretic basis for cryptographic security was developed
by Shannon [146] and later refined by Hellman [90]. Gilbert, MacWilliams, and Sloane [71] have
also extended information-theoretic approaches to handle the authentication problem.

While the one-time pad provides provable security, it is awkward to use since a large key must
be generated, shared, and stored. As a consequence, the one-time pad is rarely used.

2.2 The Data Encryption Standard (DES)

This subsection describes the Data Encryption Standard, our second “pre-revolutionary” cryp-
tosystem, and one which is secure (if it is secure at all) for computational rather than information-
theoretic reasons. Modern cryptosystems use relatively short keys (56 to 1000 bits), and are secure
in a computational sense rather than in an information-theoretic sense. By this we mean that the
adversary’s task is computationally infeasible rather than information-theoretically impossible. The
Data Encryption Standard (or DES) is a good example of a secret-key cryptosystem designed to
be computationally secure. Researchers at IBM designed DES in the 1970’s, and the U.S. National
Bureau of Standards adopted DES as a standard for encrypting commercial and government un-
classified information [124]. It is widely used, particularly in the banking industry. However, its
future as a standard is unclear since it is not certain for how much longer NBS will support DES
as a standard.

We now sketch the operation of DES. The DES algorithm takes as input a 64-bit message M
and a 56-bit key K, and produces a 64-bit ciphertext C. DES first applies an initial fixed bit-
permutation IP to M to obtain M’. This permutation has no apparent cryptographic significance.
Second, DES divides M’ into a 32-bit left half Ly and a 32-bit right half Ry. Third, DES executes

the following operations for ¢ = 1,...,16 (there are 16 “rounds”):
Li=Ri: (1)
Ri=Li1® f(Ri—1,Ki_1) (2)

Here f is a function that takes a 32-bit right half and a 48-bit round key and produces a 32-bit
output. The function f is defined using eight substitution functions or S-bozes, each of which maps
a 6-bit input into a 4-bit output. FEach round key K; contains a different subset of the 56 key
bits. Finally, the pre-ciphertezt C' = (Ri6,L1s) (note that the halves are swapped) is permuted
according to TP~! to obtain the final ciphertext C. It is easy to verify that DES is invertible from
the above definition, independent of the definition of f.



In a typical application of DES, a message M is encrypted by breaking it into 64-bit blocks, and
then encrypting each block after XOR-ing it with the ciphertext for the previous block. This is known
as cipher-block chaining; it prevents repeated text in the message from yielding correspondingly
repeated sections of ciphertext. Other such modes of operation for the use of DES, as well as
proposed techniques for key management, have been published by the National Bureau of Standards.

Diffie and Hellman [50] argue that the choice of a 56-bit key makes DES vulnerable to a brute
force attack. For $20 million one might be able to build a machine consisting of 2?° chips, each
of which can test 229 keys/second, so that in 2'6 seconds (18.2 hours) the entire key space can be
searched for the key which maps a given plaintext into a given ciphertext.

Using a known-plaintext attack, Hellman shows how to break DES by performing a large pre-
computation which essentially searches the entire key space, and which saves selected results, so
that a time-memory tradeoff results for the problem of later determining an unknown key used to
encrypt the known plaintext [89].

3 The Goals and Tools of Cryptology

As cryptology has developed, the number of goals addressed has expanded, as has the number of
tools available for achieving those goals. In this section we survey some key goals and tools.

Cryptology provides methods that enable a communicating party to develop trust that his
communications have the desired properties, in spite of the best efforts of an untrusted party (or
adversary). The desired properties may include:

e Privacy. An adversary learns nothing useful about the message sent.

e Authentication. The recipient of a message can convince himself that the message as received
originated with the alleged sender.

e Signatures. The recipient of a message can convince a third party that the message as received
originated with the alleged signer.

e Minimality. Nothing is communicated to other parties except that which is specifically desired
to be communicated.

e Simultaneous exchange. Something of value (e.g., a signature on a contract) is not released
until something else of value (e.g., the other party’s signature) is received.

e Coordination. In a multi-party communication, the parties are able to coordinate their ac-
tivities toward a common goal even in the presence of adversaries.

e Collaboration threshold. In a multi-party situation, the desired properties hold as long as the
number of adversaries doesn’t exceed a given threshold.

At a high level, the tools available for the attainment of these goals include:



e Randomness. Each party may use a private natural source of randomness (such as a noise
diode) to produce “truly random” bits in order to generate his own secret keys or to perform
randomized computations [72].

e Physical protection. FEach party must physically protect his secrets from the adversary. His
most important secret is usually the secret key that he has randomly generated—this key will
provide him with unique capabilities.

By contrast, design information such as equipment blueprints or cryptographic algorithm
details is usually assumed to be unprotectable, so security does not usually require the secrecy
of such design information. (Kerckhoffs second requirement [92, p. 235] of a cryptosystem
was that “compromise of the system should not inconvenience the correspondents.”)

e Channel properties. Unusual properties of the communication channel can sometimes be
exploited. For example, Alpern and Schneider [7] show how to communicate securely on
channels for which an eavesdropper cannot tell who broadcasts each bit. Wyner [160] defeats
eavesdroppers for whom reception is less reliable than for the intended receiver, or when the
channel is analog rather than digital [158, 159]. Bennett et al. exploit the peculiarities of
quantum effects in their channels [17]. And spread-spectrum channels are effectively unob-
servable to enemies who don’t know the details of their use [70]. We do not pursue these
variations further in this paper.

e Information theory. Some systems, such as the Vernam one-time pad [92] are secure in an
information-theoretic sense: the adversary is never given enough information to work with to
break the code; no amount of computational power can help him overcome this. (See Shannon
[146] and Hellman [90].)

e Computational complexity theory. The adversary’s task is more often computationally infea-
sible, rather than information-theoretically impossible. Modern cryptography uses computa-
tional complexity theory to design systems that one has reason to believe cannot be broken
with any reasonable amount of computation in practice, even though they are breakable in
principle (with extraordinary luck—by guessing a secret key—or by using inordinate amounts
of computation).

e Cryptographic operators. These computational mappings—such as encryption and decryption
functions, one-way functions, and pseudo-random sequence generators—are basic building
blocks for constructing cryptographic systems. Note that these need not be functions, since
they may use randomization, so that different computations may yield different outputs, even
for the same input. Complex operators may be created by composing simpler ones.

e Cryptographic protocols. A protocol specifies how each party is to initiate and respond to
messages, including erroneous or illegal messages. The protocol may also specify initialization
requirements, such as setting up a directory of public keys. A party following the protocol
will be protected against certain specified dangers, even if the other parties do not follow the
protocol.
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The design of protocols and the design of operators are rather independent, in the same
sense that the implemention of an abstract data type may be independent of its use. The
protocol designer creates protocols assuming the existence of operators with certain security
properties. The operator designer proposes implementations of those operators, and tries to
prove that the proposed operators have the desired properties.

4 Mathematical Preliminaries

Many recently proposed cryptographic techniques depend heavily on number-theoretic concepts. In
this section we review some basic number-theoretic and computational facts. For a more extensive
review of elementary number theory see [121], [105], or [8]. An excellent overview of the problems of
factoring integers, testing primality, and computing discrete logarithms also appears in this volume
[103].

It is apparently the case that it is dramatically easier to tell whether a given number is prime
or composite than it is to factor a given composite number into its constituent prime factors; this
difference in computational difficulty is the basis for many cryptosystems. Finding large prime
numbers is useful for constructing cryptographic operators, while for many cryptosystems the ad-
versary’s task is provably as hard as factoring the product of two large prime numbers.

There are efficient algorithms for generating random k-bit prime numbers; these algorithms
run in time polynomial in & [152, 132, 77, 5, 3] and come in two flavors: Monte Carlo probabilistic
algorithms which may err with small probability, always terminate in polynomial time and are quite
efficient in practice; and Las Vegas probabilistic algorithms which are always correct, generate
as output a deterministic polynomial time checkable proof of correctness, and run in expected
polynomial time. Not only can random primes be generated, but Bach [11] has also shown how to
create a random k-bit composite number in a factored form which which uses primality testing as
a subroutine.

On the other hand, to factor a number n seems to require time proportional to

et In(n)-InIn(n) (3)

?

where the constant c is 1 for the fastest algorithms. Factoring numbers of more than 110 decimal
digits is currently infeasible in general. Pomerance [127], Pomerance et al. [128], Riesel [135], and
Dixon [55] discuss recent factoring methods.

Let Z,, denote the set of residue classes modulo n, and let Z denote the multiplicative subgroup
of Z,, consisting of those residues which are relatively prime to n. We let ¢(n) = |Z;|; this is called
Euler’s totient function. Let @, denote the set of all quadratic residues (or squares) modulo n; that
is, © € Q, iff there exists a y such that z =42 (mod n).

The Jacobi symbol (%) is defined for any z € Z;; and has a value in {—1,1}; this value is easily
computed by using the law of quadratic reciprocity, even if the factorization of n is unknown. If
n is prime then z € Q, < () = 1; and if n is composite, z € Q, = (%) = 1. We let .J, denote
the set {z |z € Z; A (7) = 1}, and we let Q. denote the set of pseudo-squares modulo n: those
elements of .J,, which do not belong to @,. If n is the product of two primes then |Q,| = |Qn|, and
for any pseudo-square y the function f,(z) =y -2 maps @), one-to-one onto Qn.
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The quadratic residuousity problem is: given a composite n and x € J,, to determine whether x
is a square or a pseudo-square modulo n. This problem is believed to be computationally difficult,
and is the basis for a number of cryptosystems.

Squaring and extracting square roots modulo n are frequently used operations in the design of
cryptographic operators. We say that x is a square root of yy, modulo n if 22 =y (mod n). If n has
t prime factors, then x may have up to 2! square roots. Rabin [130] proved that finding square roots
modulo n is polynomial-time equivalent to factoring n; given an efficient algorithm for extracting
square roots modulo n one can construct an efficient algorithm for factoring n, and vice versa. The
following fact observed by Williams and Blum is also frequently useful: if n is the product of two
primes each congruent to 3 mod 4, then squaring modulo n effects a permutation of Q).

It is frequently useful to use exponents larger than 2: the function z® mod n is called modular
exponentiation; the modulus n may be either prime or composite. Unlike the squaring operator,
modular exponentiation is one-to-one over Z, if ged(e, p(n)) = 1 [137].

There are two ways to devise problems inverses modular exponentiation, depending on whether
e or z is to be solved for. In the first case, given z,y, and n, to compute an e (if any) such that
¢ =y (mod n) is called computing the discrete logarithm of y, modulo n (with logarithm base ).
We denote such an e as indez;,(y). We note that when n is prime there are many z such that
z¢ =y (mod n) has solutions for all y € Z; such z’s are called generators. Computing discrete
logarithms seems to be difficult in general. However, Pohlig and Hellman [126] present effective
techniques for this problem when 7 is prime and n — 1 has only small prime factors. Adleman [2]
shows how to compute discrete logarithms in the time given in equation (3), so that computing
discrete logarithms and factoring integers seem to have essentially the same difficulty, as a function
of the size of the numbers involved. It interesting to note that working over the finite field G F(2")
rather than working modulo n seems to make the problem substantially easier (see Coppersmith
[43] and Odlyzko [123]). See [44] for further improvements and general discussion.

The other way to invert modular exponentiation is to solve for z: given y, e, and n, to compute
an z (if any) such that ¢ = y (mod n) is called computing the e-th root of y modulo n. If n is
prime, this computation can be performed in polynomial time [22, 4, 133], while if n is composite,
this problem seems to be as hard as factoring n or computing discrete logarithms modulo n.

We say that a binary random variable X is e-biased if the probability that X = 0 is within €
of 1/2: that is, if P(X = 0) € [1/2 —€,1/2 4 ¢€]. This notion will be useful in our discussion of
pseudo-random bit sequences.

5 Complexity-Theoretic Foundations of Cryptography

Modern cryptography is founded on computational complexity theory. When we say that a system
has been proven secure, we mean that a lower bound has been proved on the number of compu-
tational steps required to break the system. At this time, however, the young field of complexity
theory has yet to prove a non-linear lower bound for even one NP-complete problem. Thus, the the-
ory of cryptography today is based on certain unproved but seemingly plausible assumptions about
the computational difficulty of solving certain problems, and the assumed existence of operators
like one-way functions and trapdoor functions. In this section we review these operators.
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5.1 Checksums and One-Way Functions

It is often useful to work with a function f which can take as input a long message M and produce
as output a shorter value f(M). Depending on the application, the function f we choose may
need to have different properties. Typically, verifying the correspondence between M and f(M)
allows one to verify, with high confidence, that the message M has not been altered since f(M)
was computed.

The simplest such f are checksums. For example, a simple checksum of M is obtained by
interpreting the bits of M as coefficients of a polynomial M(z) over GF(2) and taking f(M) as
the remainder when M (z) is divided by a fixed polynomial p(z). Cyclic redundancy checksums
are of this type. If the pair (M, f(M)) is transmitted over a noisy channel, transmission errors
can be detected when the received pair (z,y) doesn’t satisfy y = f(x). Such a strategy works well
against random errors, but not against malicious tampering by an adversary. Since anyone can
compute f, this procedure provides the recipient no authentication regarding the identity of the
sender. Checksums are therefore not suitable for typical cryptographic applications.

A more useful function for cryptographic applications is a one-way function. Such a function
takes a message M and efficiently produces a value f(M) such that it is computationally infeasible
for an adversary, given f(M) = z, to find any message M' whatsoever (including M’ = M) such
that f(M') = z. A slightly stronger requirement is that it should be computationally infeasible for
the adversary, given f, to come up with any pair of messages (x,y) such that f(z) = f(y); such a
function we call claw-free. (Because of the birthday paradoz, for small message spaces it may be
feasible in practice to find such a pair, even though it is infeasbile in practice to invert f at a given
point z [164].)

A publicly-available one-way function has a number of useful applications.

1. In a time-shared computer system, instead of storing a table of login passwords, one can
store, for each password w, the value f(w). Passwords can easily be checked for correctness
at login, but even the system administrator can not deduce any user’s password by examining
the stored table [59].

2. In a public-key cryptosystem (see the following sections), it may be more efficient to sign
f(M) rather than signing M itself, since M may be relatively long whereas f can be designed
to return a fixed-length result. Thus, using f(M) keeps the size of a signature bounded. In
this application f(M) is sometimes called a message digest or fingerprint for the message
M. Since no one can come up with two messages that have the same digest, the signer is
protected against an adversary altering his signed messages.

5.2 Trapdoor Functions

A trapdoor function f is like a one-way function except that there also exists a secret inverse
function f~! (the trapdoor) that allows its possessor to efficiently invert f at any point of his
choosing. It should be easy to compute f on any point, but infeasible to invert f on any point
without knowledge of the inverse function f~'. Moreover, it should be easy to generate matched
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pairs of f’s and corresponding f~1’s. One such a matched pair is generated, the publication of f
should not reveal anything about how to compute f~' on any point.

Trapdoor functions have many applications, as we shall see in the next sections. They are
the basis for public-key cryptography. The ability to invert a particular trapdoor function f will
uniquely identify a given party. That is, each party will publish his own trapdoor function f, and
only the party who publishes a given trapdoor function f will be able to invert that function.

5.3 One-Way (and Trapdoor) Predicates

A one-way predicate, first introduced in [79, 78], is a boolean function B : {0,1}* — {0, 1} such
that

1. On input v € {0,1} and 1*, in expected polynomial time one can choose an z such that
B(z) = v and |z| < k, randomly and uniformly from the set of all such z.

2. For all ¢ > 0, for all k sufficiently large, no polynomial-time adversary given z € {0,1}* such
that |z| < k can compute B(z) with probability greater than 1 + -%. (The probability is
taken over the random choices made by the adversary and z such that |z| < k.)

A trapdoor predicate is a one-way predicate for which there exists, for every k, trapdoor information
tr whose size is bounded by a polynomial in £ and whose knowledge enables the polynomial-time
computation of B(z), for all z such that |z| < k.

These primitives are the basis for the probabilistic constructions for privacy and pseudo-random
number generation discussed in later sections. Each party publishes his own trapdoor predicate B,
and keeps private the associated trapdoor information which enables him alone to compute B(x).

5.4 Making Appropriate Complexity-Theoretic Assumptions

Computational complexity theory works primarily with asymptotic complexity—what happens as
the size of the problem becomes large. In order to apply notions of computational complexity
theory to cryptography we must typically envisage not a single cryptosystem or cryptographic
function but a family of them, parameterized by a security parameter k. That is, for each value
of the security parameter k£ there is be a specific cryptosystem or function. Or, there may be a
family of cryptosystems or functions for each value of k. We can imagine that a cryptosystem
with security parameter k has inputs, outputs, and keys which are all strings of length & (or some
suitable polynomial function of k). As the security parameter k& becomes large, the complexity of
the underlying mathematical problems embedded in the cryptosystem should become sufficiently
great that one can hope that cryptographic security is obtained. Since we don’t know for sure
that P #£ NP, a “proof” of security is necessarily dependent on the assumption that certain
computational problems are difficult as the inputs become large.

As an example, the assumption that factoring integers is hard might be formalized as: for any
probabilistic polynomial-time (factoring) algorithm A, for all constants ¢ > 0 and sufficiently large
k, the chance that A can produce a nontrivial divisor of its input (where the input is the product of
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two randomly chosen k-bit primes) is at most 1/k°. Note that A may be a probabilistic algorithm,
since any adversary worth his salt can also flip coins.

Then a careful proof of security would show that the ability of the adversary to defeat the
cryptographic system a significant fraction of the time would contradict the assumed difficulty of
the hard problem (e.g., factoring). This generally takes the form of a reduction, where it is shown
how to solve the hard problem, given the ability to break the cryptographic system.

When formally defining the above primitives (one-way and trapdoor functions and predicates)
one must carefully choose what computational power to give to the adversary attempting to break
(i.e., invert) the primitive. The computational model should be strong enough to capture the
computational power of real-life adversaries. To this end, we let the polynomial-time adversary
be not only probabilistic but also non-uniform. The latter is appropriate since cryptosystems are
often designed with a fixed size (that is, security parameter) in mind. Moreover, the most mean-
ingful proofs of security are necessarily those proved with respect to the most powerful adversary.
Thus, the adversary is modeled as an infinite family of probabilistic circuits (one for every security
parameter k), whose size grows as a polynomial in k. However, the extent to which allowing an
adversary to be non-uniform is really meaningful remains to be seen, since making this assumption
normally just means that the assumption that (say) factoring is difficult, when formalized, has to
be reformulated to say that factoring is even difficult for a non-uniform factoring procedure.

6 Privacy

The goal of privacy is to ensure that an adversary who overhears a given transmission learns
nothing useful about the message transmitted. There are several ways of achieving this goal, which
are sketched in this section.

6.1 Secret-key cryptosystems

A simple method to achieve privacy is to use a conventional secret-key cryptosystem such as DES.
The parties wishing to communicate must initally arrange to share a common secret key K this key
is then used to encrypt all messages transmitted. An adversary who does not possess the shared
secret key will not be able to decrypt any encrypted messages he happens to overhear. The difficulty
with secret-key cryptosystems is that it is often awkward to establish the initial distribution of the
secret shared key, a problem we now discuss.

A simple solution to the initialization problem is to use a courier to distribute the keys. This
method requires that the courier visit each party who must be given the secret key. The courier
must be trusted to ensure that the key is only given to the appropriate parties.

Sometimes it is known (or assumed) a priori that an adversary will be passive—that is, the
adversary may eavesdrop on transmitted messages but will not transmit any messages himself. In
such a case two parties can establish a shared secret key using exponential key exchange; an elegant
technique proposed by Diffie and Hellman [53]. Let A and B be the two parties, and suppose that
A and B agree (via a public dialogue that anyone can overhear) on a large prime p and a generator
g of the multiplicative group Z7. Then A and B choose respective large secret integers a and b, and
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they exchange with each other the values ¢ mod p and ¢® mod p. Now A can compute ¢** mod p
(from a and ¢°), and B can compute the same value (from b and g%). Thus A and B can use the
value ¢* mod p as their shared secret key. An adversary who wants to determine this key is left
with the problem of computing ¢* mod p from g mod p and ¢® mod p; an apparently intractable
problem.

6.2 Deterministic Public-Key Encryption

The notion of a public-key cryptosystem was first published by Diffie and Hellman in 1976 [52, 53],
although Merkle had earlier developed some of the conceptual framework [115]. The central idea
is that of a trapdoor function, as defined earlier. According to Diffie and Hellman, a public-key
cryptosystem should contain the following parts:

e A key generation algorithm. This is a randomized polynomial-time algorithm G, which, on
input & (the security parameter) produces a public key F, and a corresponding private key
D.

e An encryption algorithm. This algorithm takes as input a public key F and a message M,
produces a ciphertext C, which we denote E(M). This operation is one-to-one.

e A decryption algorithm. This algorithm takes as input a private key D and a ciphertext C,
and produces a corresponding message M = D(C).

These algorithms have the following properties:
e For every message M, D(E(M)) = M.
e For every message M, E(D(M)) = M.

e The key-generation, encryption, and decryption algorithms run in time polynomial in the
length of their inputs. The key-generation algorithm is a randomized algorithm; the encryp-
tion and decryption algorithms are deterministic.

e Given the public key E, but not the private key D, the chance that a polynomial-time
adversary can decrypt a random ciphertext C' = E(M) is less than any polynomial fraction.
(Here M is chosen at random from the set of all messages, and we may take “polynomial
fraction” to mean at least £~¢ for some constant ¢ and all sufficiently large k.) This implies
that F is a trapdoor function.

We might also call the encryption algorithm a trapdoor one-way permutation, since it provides
a permutation of the message space and since you can only go one way (from message to ciphertext
but not vice-versa) without knowledge of the secret trapdoor information D.

If user A of a communication network publishes her public key E4 in a directory of public keys,
then anyone can send A private mail by encrypting a message M with A’s public key. Only A
possesses the decryption key D4, so only A can decrypt such a message.
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6.2.1 RSA

In 1977 Rivest, Shamir, and Adleman [137] proposed a public-key cryptosystem satisfying the
requirements proposed by Diffie and Hellman. In their scheme, each user’s public key is a pair
(e,n) of integers, such that n is the product of two large primes p and ¢ and ged(e, ¢(n)) = 1. The
encryption operation is then

C=M°® (modn). (4)

The corresponding private key is the pair (d,n), where d-e =1 (mod ¢(n)), and the decryption
operation is

M =C¢ (mod n). (5)

There are several reasons to believe that RSA is secure. For example, it is provably as hard
to derive the private key from the public key as it is to factor n. Furthermore, the RSA system
is multiplicative: E(X) - E(Y) = E(X -Y). For this reason, if an adversary could decrypt any
polynomial fraction of the ciphertexts in polynomial time, then he could decrypt all ciphertexts in
random polynomial time: to decrypt E(X) it suffices to find (by random trial and error) a Y such
that E(X-Y") (which is the same as E(X)E(Y')) can be decrypted (yielding XY), and then dividing
the result by Y to obtain X. One might interpret this as saying that either RSA is uniformly secure
or it is uniformly insecure.

Even stronger results have been proven. For example, it has been shown [81, 6, 18] that if a
polynomial fraction of RSA ciphertexts can’t be decrypted in polynomial time, then neither can
just the least significant bit of the message be guessed from the ciphertext with better than an €
bias.

Hastad [88] shows that it is unwise to use a low encryption exponent e, such as 3, if it is likely
that a user may send the same message (or the same message with known variations) to a number
of other users.

6.2.2 Knapsacks

A number of public-key cryptosystems have been proposed which are based on the knapsack (or
— more properly — the subset sum) problem: given a vector a = (a1,as,...,ay) of integers, and a
target value C, to determine if there is a length-n vector x of zeroes and ones such that a-x = C.
This problem is NP-complete [68].

To use the knapsack problem as the basis for a public-key cryptosystem, you create a public
key by creating a knapsack vector a, and publish that as your public key. Someone else can send
you the encryption of a message M (where M is a length-n bit vector), by sending you the value
of the inner product C' = M - a. Clearly, to decrypt this ciphertext is an instance of the knapsack
problem. To make this problem easy for you, you need to build in hidden structure (that is, a
trapdoor) into the knapsack so that the encryption operation becomes one-to-one and so that you
can decrypt a received ciphertext easily. It seems, however, that the problem of solving knapsacks
containing a trapdoor is not NP-complete, so that the difficulty of breaking such a knapsack is no
longer related to the P = N P question.
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In fact, history has not been kind to knapsack schemes; most of them have been broken by
extremely clever analysis and the use of the powerful L? algorithm [104] for working in lattices.
See [114, 140, 142, 1, 144, 100, 32, 122].

Some knapsack or knapsack-like schemes are still unbroken. The Chor-Rivest scheme [39], and
the multiplicative versions of the knapsack [114] are examples. McEliece has a knapsack-like public-
key cryptosystem based on error-correcting codes [113]. This scheme has not been broken, and was
the first scheme to use randomization in the encryption process.

6.3 Probabilistic Public-Key Encryption

With the introduction of randomized or probabilistic cryptographic techniques, it becomes possible
to propose satisfactory definitions of the mathematical security of a cryptographic system, and
to prove that certain cryptosystems are secure under this definition (under suitable complexity-
theoretic assumptions, as usual).

These probabilistic cryptosystems will make use of the one-way function and trapdoor functions
primitives in a much more complex fashion than their earlier deterministic counterparts which
(although quite useful and secure in practice) will not be able to satisfy the security definitions
given here.

The pioneering work in this direction was performed by Goldwasser and Micali [79, 78]. Al-
though the use of randomized techniques was itself not new (for example, [113]), using randomiza-
tion to achieve a provable level of security was novel.

We begin by examining the rather subtle notion of cryptographic security.

6.3.1 Attacks Against a Cryptosystem

When proving that a cryptographic system is secure, it is important to carefully specify what sort
of “attacks” the adversary may mount. It is not uncommon for a system to be secure against a
weak attack (such as passive eavesdropping) but to be insecure against a more powerful attack
(such as active eavesdropping and manipulation of the communication line).

In the simplest form of attack, the passive adversary merely observes legitimate users using
the cryptographic system. He may see ciphertext only, or he may be able to see some plain-
text/ciphertext pairs (a known plaintezt attack). In a public key setup he can always generate a
polynomial number of pairs of plaintext/ciphertext himself, using the public key.

A potentially more powerful attack, which has been considered and is probably more realistic
in practice, is that of an adversary who is a legitimate user of the system himself. The adversary
is then able to perform all of the actions permitted by a legitimate user before trying to break
(decipher) ciphertexts sent between pairs of users.

More generally, we might assume that an adversary can manipulate the communications between
any pair of legitimate users, and can even temporarily run their cryptographic equipment (but can’t
take it apart to see its secret keys). For example, in a chosen ciphertext attack the adversary is
assumed to be able to see the plaintext corresponding to ciphertexts of his choice.
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6.3.2 The Goals of the Adversary

“Success” for the adversary should be defined in the most generous manner, so that a proof of
security rules out even the weakest form of success.

A modest goal to aim for in the design of a cryptosystem is that for most messages the adversary
can not derive the entire message from its ciphertext. This is too modest a goal, since it does not
preclude the following problems:

e The cryptosystem is not secure for some probability distributions on the message space (e.g.,
the message space consists of only a polynomial number of messages which are known to the
adversary).

e Partial information about messages may be easily computed from the cipher text.

e It may be easy to detect simple but useful facts about traffic of messages, such as when the
same messages is sent more than once.

Note that deterministic public key cryptosystems as proposed by Diffie and Hellman achieve
the above modest goal and yet suffer from the above problems:

e If m is drawn from a highly structured sparse message space, then f(m) may be easy to invert
(e.g., for the RSA function f(0) and f(1) are easily detectable).

e Some information about m is always easy to compute from f(m) for any f, such as “the
parity of f(m)” (or worse: for one-way candidate f(z) = ¢® mod p where p is prime and g is
a generator, the least significant bit of z is easily computable from f(z)).

A much more ambitious goal is to require that for all probability distributions over the message
spaces, the adversary can not predict from the ciphertext with significantly increased accuracy any
bit of information about the corresponding messages.

Essentially, this coincides with the existing formal security notions. Achieving it rules out all
of the problems listed above.

6.3.3 Definition of Security: Polynomial-Time Security

Several definitions of security for probabilistic encryption schemes have been proposed and studied
in [79, 163, 78]. All definitions proposed so far have been shown to be equivalent in [78, 118]. We
provide one definition in detail, due to Goldwasser and Micali [78].

Definition: We say that a probabilistic encryption scheme is polynomial-time secure if for all
sufficiently large security parameters k, any probabilistic polynomial-time procedure that takes as
input k (in unary) and a public key, and that produces as output two messages mg and mq, can not
distinguish between a random encryption of mgy and a random encryption of m; with probability
greater than 1/2 + 1/k¢ for all c.
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6.3.4 Probabilistic Encryption

We begin by describing the probabilistic encryption technique proposed in [79, 78].

Alice creates a public key consisting of two parts: an integer n which is the product of two large
primes p and ¢, and a pseudo-square y € Qn. We assume that the quadratic residuousity problem is
hard, so that Alice (who knows the factorization of n) can distinguish squares from pseudo-squares
modulo n, but Bob (who knows only n) can not decide in probabilistic polynomial time whether z
in J, is a square or not mod n. The following theorem due to Goldwasser and Micali shows that
if this decision problem is hard at all then it is everywhere hard.

Theorem 1 (Goldwasser-Micali[79, 78]) Let S C {n|n = pq, |p| = |q|}. If there exists a prob-
abilistic polynomial-time algorithm A such that for n € S,

1
P(A(n,z) decides correctly whether x € Qulx € J,) > 3 +e, (6)
where this probability is taken over the choice of x € J,, and A’s random choices, then there exists a
probabilistic algorithm B with running time polynomial in ¢ 1,6~' and |n| such that for alln € S,
for all x € Jy,

P(B(z,n) decides correctly whether © € Qplz € J,) >1—19 , (7)
where this probability is taken over the random coin tosses of B.

Namely, a probabilistic polynomial-time bounded adversary can not do better (except by a
smaller than any polynomial advantage) than guess at random whether z € J,, is a square mod n,
if quadratic residuosity problem is not in BPP.

To send a message M to Alice using a probabilistic encryption scheme, Bob proceeds as follows.
Let M = mymy ... my; in binary notation. For 1 = 1,...,k, Bob:

1. Randomly chooses an integer r from Z,.
2. If m; = 0, sends ¢; = 72 mod n to Alice; if m; = 1, sends ¢; = y - 72 mod n to Alice.

When m; = 0, Bob is sending a random square to Alice, whereas if m; = 1, B is sending a random
pseudo-square. (Alice needs to include y in her public key just so that Bob will be able to generate
random pseudo-squares.) Since Alice can distinguish squares from pseudo-squares modulo n, she
can decode the message.

Although decryption is easy for Alice, for an adversary the problem of distinguishing whether
a given piece of ciphertext ¢; represents a 0 or a 1 is precisely the problem of distinguishing squares
from pseudo-squares that was assumed to be hard.

A natural generalization of the scheme based on any trapdoor predicate follows from [78]. Recall,
that a trapdoor predicate is a boolean function B : {0,1}* — {0, 1} such that it is easy in expected
polynomial time on input 1* and bit v to choose an z randomly such that B(z) = v and |z| < k;
and no polynomial-time adversary given random z € X such that |z| < k can compute B(z) with
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probability greater than 1/2 4+ 1/k¢, for all ¢ > 0 and for all sufficiently large k; if the trapdoor
information is known however, it is easy to compute B(z).

Fix a trapdoor predicate B. Let the security parameter of the system be k. Alice’s public key
contains a description of B, and her secret key contains the trapdoor information. Now Bob can

send Alice a private message M = mymy ... my (this is M in binary notation) as follows. For
1=1,...,k, Bob:

1. Randomly chooses a binary string z; of length at most £ such that B(z) = m;,.
2. Sends z; to Alice.

To decrypt, Alice, who knows the trapdoor information, computes m; = B(x;) foralli =1, ..., k.

Theorem 2 (Goldwasser-Micali[78]) If trapdoor predicates exist, then the above probabilistic
public-key encryption scheme is polynomial-time secure.

Implementation of trapdoor predicates based on the problem of factoring integers, and of in-
verting the RSA function can be found in [6]. We outline the RSA-based implementation. Let n
be the public modulus, e the public exponent, and d the secret exponent. Let B(z) be the least
significant bit of £ mod n for z € Z%. Then, to select uniformly an = € Z such that B(z) = v
simply select a y € Z whose least significant bit is v and set = y* mod n.

Yao, in a pioneering paper [163], showed that the existence of any trapdoor length-preserving
permutation implies the existence of a trapdoor predicate. Recently, Goldreich and Levin simplified
Yao’s construction as follows.

Theorem 3 (Goldreich-Levin[75]) If trapdoor length-preserving permutations exist, then B is
a trapdoor predicate, where B is defined as follows. Let f : {0,1}* — {0,1}* be a trapdoor length-
preserving permutation. Let B(f(z),y) = xy mod 2 (the inner-product of x and y).

Now, to encrypt a single bit v, Alice simply selects at random a pair z,y of values from {0, 1}*
such that zy mod 2 = v and obtains the ciphertext as ¢ = f(x)y, the concatentation of f(z) and y.

How efficent are the probabilistic schemes? In the schemes described so far, the ciphertext
is longer than the cleartext by a factor proportional to the security parameter. However, it has
been shown [23, 27] using later ideas on pseudo-random number generation how to start with
trapdoor functions and build a probabilistic encryption scheme that is polynomial-time secure for
which the ciphertext is longer than the cleartext by only an additive factor. The most efficient
probabilistic encryption scheme is due to Blum and Goldwasser [27] and is comparable with the
RSA deterministic encryption scheme in speed and data expansion.

6.4 Composition of Cryptographic Operators and Multiple Encryption

Sometimes new cryptographic operators can be obtained by composing existing operators. The
simplest example is that of multiple encryption.

Does multiple encryption increase security? Not always: consider the class of simple substitution
ciphers, where the plaintext is turned into the ciphertext by replacing each plaintext letter with

21



the corresponding ciphertext letter, determined according to some table. (Newspaper cryptograms
are usually of the sort.) Since composing two simple substitution ciphers yields another simple
substitution cipher, multiple encryption does not increase security.

On the other hand, multiple encryption using DES probably does increase security somewhat
(see [95, 147]).

It is worth noting that the composition of two cryptosystems with n-bit keys can be bro-
ken in time O(2") and space O(2"), using a meet-in-the-middle attack. Given a matching plain-
text/ciphertext pair for the composed system, one can make a table of size 2" of all possible
intermediate values obtainable by encrypting the plaintext with the first system, and a second
table of size 2™ of all possible intermediate values obtainable by decrypting the ciphertext with the
second system. By sorting the two tables (which can be done in linear time using a bucket sort),
and looking for overlaps, one can identify a pair of keys that take the given plaintext to the given
ciphertext. Thus the composed system has difficulty proportional to 2", rather than proportional
to 227, as one would naively expect.

One very intuitive result, due to Even and Goldreich [60] (see also [10]), is that the composition
of encryption schemes A and B is no weaker than A or B individually—security is not lost by
composition. They assume that the two encryption keys are chosen independently and that the
adversary can request the encryption of arbitrary text (that is, he can use a chosen-plaintext
attack).

Luby and Rackoff [112, 111] prove a more powerful result, which shows that the composition
generally increases security. Define an encryption scheme A to be (1 — €)-secure if no polynomial-
time procedure has a chance greater than (1 + €)/2 of distinguishing encryption functions from
scheme A from truly random functions over the same domain (see [112] for a more precise definition
and details). Then the composition of a (1 — €)-secure encryption scheme with a (1 — §)-secure
encryption scheme is (€d(2 — max(e, d)))-secure. This is an improvement whenever max(e, d) < 1.

In a similar vein, a number of researchers [78, 163, 106] have developed and refined proofs
that the bit-wise XOR of several independent pseudo-random bit sequence generators is harder to
predict (by a quantifiable amount) than any of the component generators.

7 Generating Random or Pseudo-Random Sequences and Func-
tions

We now examine in some detail the problem of generating random and pseudo-random sequences.
One motivation for generating random or pseudo-random sequences is for use in the one-time pad,
as described previously.

7.1 Generating Random Bit Sequences

Generating a one-time pad (or, for that matter, any cryptographic key) requires the use of a
“natural” source of random bits, such as a coin, a radioactive source or a noise diode. Such sources
are absolutely essential for providing the initial secret keys for cryptographic systems.
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However, many natural sources of random bits may be defective in that they produce biased
output bits (so that the probability of a one is different than the probability of a zero), or bits which
are correlated with each other. Fortunately, one can remedy these defects by suitably processing
the output sequences produced by the natural sources.

To turn a source which supplies biased but uncorrelated bits into one which supplies unbiased
uncorrelated bits, von Neumann proposed grouping the bits into pairs, and then turning 01 pairs
into 0’s, 10 pairs into 1’s, and discarding pairs of the form 00 and 11 [156]. The result is an unbiased
uncorrelated source, since the 01 and 10 pairs will have an identical probability of occurring. Elias
[58] generalizes this idea to achieve an output rate near the source entropy.

Handling a correlated bit source is more difficult. Blum [26] shows how to produce unbiased
uncorrelated bits from a biased correlated source which produces output bits according to a known
finite Markov chain.

For a source whose correlation is more complicated, Santha and Vazirani [139] propose modelling
it as a slightly random source, where each output bit is produced by a coin flip, but where an
adversary is allowed to choose which coin will be flipped, from among all coins whose probability
of yielding “Heads” is between 0 and 1 — §. (Here ¢ is a small fixed positive quantity.) This
is an extremely pessimistic view of the possible correlation; nonetheless U. Vazirani [153] shows
that if one has two, independent, slightly-random sources X and Y then one can produce “almost
independent” e-biased bits by breaking the outputs of X and Y into blocks x,y of length k& =
Q(1/6%log(1/5)log(1/€)) bits each, and for each pair of blocks x,y producing as output the bit
x -y (the inner product of x and y over GF'(2)). This is a rather practical and elegant solution.
Chor and Goldreich [37] generalize these results, showing how to produce independent e-biased bits
from even worse sources, where some output bits can even be completely determined.

These results provide effective means for generating truly random sequences of bits—an essential
requirement for cryptography—from somewhat defective natural sources of random bits.

7.2 Generating Pseudo-Random Bit or Number Sequences

The one-time pad is generally impractical because of the large amount of key that must be stored.
In practice, one prefers to store only a short random key, from which a long pad can be produced
with a suitable cryptographic operator. Such an operator, which can take a short random sequence
z and deterministically “expand” it into a pseudo-random sequence y, is called a pseudo-random
sequence generator. Usually z is called the seed for the generator. The sequence y is called “pseudo-
random” rather than random since not all sequences y are possible outputs; the number of possible
y’s is at most the number of possible seeds. Nonetheless, the intent is that for all practical purposes
y should be indistinguishable from a truly random sequence of the same length.

It is important to note that the use of pseudo-random sequence generator reduces but does not
eliminate the need for a natural source of random bits; the pseudo-random sequence generator is a
“randomness expander”, but it must be given a truly random seed to begin with.

To achieve a satisfactory level of cryptographic security when used in a one-time pad scheme,
the output of the pseudo-random sequence generator must have the property that an adversary who
has seen a portion of the generator’s output y must remain unable to efficiently predict other unseen
bits of y. For example, note that an adversary who knows the ciphertext C' can guess a portion of
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y by correctly guessing the corresponding portion of the message M, such as a standarized closing
“Sincerely yours,”. We would not like him thereby to be able to efficiently read other portions of
M, which he could do if he could efficiently predict other bits of y. Most importantly, the adversary
should not be able to efficiently infer the seed x from the knowledge of some bits of y.

How can one construct secure pseudo-random sequence generators?

7.2.1 Classical Pseudo-random Generators are Unsuitable

Classical techniques for pseudo-random number generation [98, Chapter 3] which are quite useful
and effective for Monte Carlo simulations are typically unsuitable for cryptographic applications.
For example, linear feedback shift registers [85] are well-known to be cryptographically insecure;
one can solve for the feedback pattern given a small number of output bits.
Linear congruential random number generators are also insecure. These generators use the
recurrence
Xiy1 =0aX; +b (mod m) (8)

to generate an output sequence { Xy, X1, ...} from secret parameters a, b, and m, and starting point
Xo. It is possible to infer the secret parameters given just a few of the X; [125]. Even if only a
fraction of the bits of each X; are revealed, but a, b, and m are known, Frieze, Hastad, Kannan,
Lagarias, and Shamir show how to determine the seed X (and thus the entire sequence) using the
marvelous lattice basis reduction (or “L3”) algorithm of Lenstra, Lenstra, and Lovdsz [65, 104].

As a final example of the cryptographic unsuitability of classical methods, Kannan, Lenstra,
and Lovasz [96] use the L? algorithm to show that the binary expansion of any algebraic number y
(such as v/5 = 10.001111000110111...) is insecure, since an adversary can identify y exactly from
a sufficient number of bits, and then extrapolate y’s expansion.

7.2.2 Provably Secure Pseudo-Random Generators

The first pseudo-random sequence generator proposed which was provably secure (assuming that it
is infeasible to invert the RSA function (see section 6.2.1)) is due to Shamir [143]. However, this
scheme generates a sequence of numbers rather than a sequence of bits, and the security proof shows
that an adversary is unable to predict the next number, given the previous numbers output. This
is not strong enough to prove that, when used in a one-time pad scheme, each bit of the message
will be well-protected.

Blum and Micali [28] introduced the first method for designing provably secure pseudo-random
bit sequence generators, based on the use of one-way predicates. Let D denote a finite domain, let
f: D — D a permutation of D, and let B denote a function from D to {0,1} such that (i) it is
easy to compute B(y), given z = f~!(y), and (i) it is difficult to compute B(y), given only y.

Given a seed g € D, we can create the sequence zg, 21, . . ., T, using the recurrence ;11 = f(z;).
To produce an output binary sequence by, ...,b,_1 of length n, define b; = B(z,_;). Note the
reversal of order relative to the z sequence; we must compute xg, ..., 2z, first, and then compute by
from z,,_1, b1 from x,_o, ..., and b,_1 from xy.
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If a pseudo-random bit sequence generator has the property that it is difficult to predict b;;
from by, ...,b; with accuracy greater than (1 4 €)/2 in time polynomial in 1/e and the size of the
seed, then we say that the generator passes the “next-bit” test.

Blum and Micali prove that their generator passes the next-bit test as follows. Suppose oth-
erwise. Then we derive a contradiction by showing how to compute B(y) from y. Because [ is
a permutation, there is an zy such that y = x, ;1 in the sequence generated starting from zg.
Given y = zp_;—1, we can compute Tp_;, Tn—i+1,---, 2y as well, using f, and thus we can compute
by, ...,b; from y. If we can then predict b;11 = B(z,—i—1) = B(y) efficiently, we have contradicted
our assumption that B(y) is difficult to compute from y alone. (The above proof sketch is made
rigorous in [28]; the phrases “easy” and “hard” are made precise, and the definition of computing
B(y) from y is generalized to include being able to predict B(y) with an accuracy greater than
1/2.)

Blum and Micali then proposed a particular generator based on the difficulty of computing
discrete logarithms and the above method, as follows. Define B(z) = By, () to be 1 if index, ,(z) <
(p —1)/2, and 0 otherwise, where p is a prime, g is a generator of Z;, and = € Z;, and define
f(z) = fgp(z) = ¢* mod p. If computing discrete logarithms modulo p is indeed difficult, then the
sequences produced will be unpredictable.

Blum, Blum, and Shub [23] propose another generator, called the 22 mod n generator, which is
simpler to implement and also provably secure (assuming that the quadratic residuousity problem
is hard). This generator follows the Blum-Micali general method, with B(z) = 1 iff z is odd, and
f(z) = 22 mod n. Alexi, Chor, Goldreich, and Schnorr [6] show that the assumption that the
quadratic residuosity problem is hard can be replaced by the weaker assumption that factoring is
hard. A related generator is obtained by using the RSA function 2 mod n where ged(e, ¢(n)) =1
[154, 6]. Kaliski shows how to extend these methods so that the security of the generator depends
on the difficulty of computing elliptic logarithms; his techniques also generalize to other groups
(94, 93].

To improve efficiency, it is desirable to obtain as many random bits as possible from each
application of f. That is, B(x) should return more than one bit of information. Long and Wigderson
[109] show how to extract cloglogp pseudo-random bits from each x; instead of just one bit as in
the Blum-Micali generator. A similar result has been shown for the RSA generator [6].

Yao [163] shows that the pseudo-random generators defined above are perfect in the sense that
no probabilistic polynomial-time algorithm can guess with probability greater than 1/2+ ¢ whether
an input string of length k& was randomly selected from {0, 1}* or whether it was produced by one
of the above generators. One can rephrase this to say that a generator that passes the next-bit test
is perfect in the sense that it will pass all polynomial-time statistical tests. The Blum-Micali and
Blum-Blum-Shub generators, together with the proof of Yao, represent a major achievement in the
development of provably secure cryptosystems. Levin [106] shows that perfect pseudo-random bit
generators exist if and only if there exists a one-way function f that can not be inverted easily at
points of the form f!(z), the t-th iterate of f applied to a random point z € {0, 1}*.
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7.2.3 Pseudo-Random Functions and Permutations

More generally, one can imagine having a family f;(-) of (pseudo-random) functions. The index j
can be thought of as the key selecting which function is in use.

Such a family of functions can be used for authentication. If two users share a secret key j, then
they can authenticate their messages to each other by appending the tag f;(M) to a message M.
It should be infeasible for an adversary, seeing f;(Mi),..., fj(M,), to produce a valid tag f;(M)
for any other message M with a probability of success greater than random guessing.

Gilbert, MacWilliams, Sloane [71] present techniques which make it information-theoretically
impossible for an adversary to forge a valid tag with probability greater than random guessing.

Goldreich, Goldwasser, and Micali [74] show how to construct a family of pseudo-random func-
tions from a cryptographically secure pseudo-random bit sequence generator, such that an adversary
can not distinguish between f;(M) and a randomly chosen string of the same length, even if the
adversary is first allowed to examine f;(z;) for many ;’s of his choice, and is allowed to even
pick M (as long as it is different from every x; he previously asked about). Knowledge of the
index j allows efficient computation of f;(z) for any . To the adversary (who doesn’t know j),
the function f; is indistinguishable in polynomial time from a truly random function (that is, one
picked at random from the set of all functions mapping {0,1}" into itself). Since permutations
are invertible, the Goldwasser-Goldreich-Micali construction provides a probabilistic private-key
cryptosystem, one that is provably secure even against an adaptive chosen ciphertext attack. To
send a message M, the sender picks an r at random from the domain of the previously agreed-upon
secret pseudo-random function f;, and then sends the pair (r, M & f;(r)).

Luby and Rackoff [112] have extended the previous result by showing how to construct a family
of pseudo-random permutations which is secure in the same sense and under the same assumptions.
Curiously, their construction is based on the structure of DES.

8 Digital Signatures

The notion of a digital signature may prove to be one of the most fundamental and useful inventions
of modern cryptography. A signature scheme provides a way for each user to sign messages so that
the signatures can later be verified by anyone else. More specifically, each user can create a matched
pair of private and public keys so that only he can create a signature for a message (using his private
key), but anyone can verify the signature for the message (using the signer’s public key). The verifier
can convince himself that the message contents have not been altered since the message was signed.
Also, the signer can not later repudiate having signed the message, since no one but the signer
possesses his private key.

Diffie and Hellman [53] propose that with a public-key cryptosystem, a user A can sign any
message M by appending his digital signature D4 (M) to M. Anyone can check the validity of
this signature using A’s public key E4 from the public directory, since E4(D4(M)) = M. Note
also that this signature becomes invalid if the message is changed, so that A is protected against
modifications after he has signed the message, and the person examining the signature can be sure
that the message he has received that was originally signed by A.
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By analogy with the paper world, where one might sign a letter and seal it in an envelope, one
can sign an electronic message using one’s private key, and then seal the result by encrypting it
with the recipient’s public key. The recipient can perform the inverse operations of opening the
letter and verifying the signature using his private key and the sender’s public key, respectively.
These applications of public-key technology to electronic mail are likely to be widespread in the
near future.

The RSA public-key cryptosystem allows one to implement digital signatures in a straightfor-
ward manner. The private exponent d now becomes the signing exponent, and the signature of a
message M is now the quantity M? mod n. Anyone can verify that this signature is valid using
the corresponding public verification ezponent e by checking the identity M = (M%) (mod n). If
this equation holds, then the signature M9 must have been created from M by the possessor of
the corresponding signing exponent d. (Actually, it is possible that the reverse happened and that
the “message” M was computed from the “signature” M? using the verification equation and the
public exponent e. However, such a message is likely to be unintelligible. In practice, this prob-
lem is easily avoided by always signing f (M) instead of M, where f is a standard public one-way
function.)

If the directory of public keys is accessed over the network, one needs to protect the users from
being sent fraudulent messages purporting to be public keys from the directory. An elegant solution
is the use of a certificate — a copy of a user’s public key digitally signed by the public key directory
manager or other trusted party. If user A keeps locally a copy of the public key of the directory
manager, he can validate all the signed communications from the public-key directory and avoid
being tricked into using fraudulent keys. Moreover, each user can transmit the certificate for his
public key with any message he signs, thus removing the need for a central directory and allowing
one to verify signed messages with no information other than the directory manager’s public key.
Needham and Schroeder [120] examine some of the protocol issues involved in such a network
organization, and compare it to what might be accomplished using conventional cryptography.

Just as some cryptographic schemes are suited for encryption but not signatures, some proposals
have been made for signature-only schemes. Some early suggestions were made that were based
on the use of one-way functions or conventional cryptography [101, 134]. For example, if f is a
one-way function, and Alice has published the two numbers f(z¢) = yo and f(z1) = y1, then she
can sign the message 0 by releasing zy and she can similarly sign the message 1 by releasing the
message 1. Merkle [116] introduced some extensions of this basic idea, involving building a tree
of authenticated values whose root is stored in the public key of the signer.

Rabin [130] proposed a method where the signature for a message M was essentially the square
root of M, modulo n, the product of two large primes. Since the ability to take square roots
is provably equivalent to the ability to factor n, an adversary should not be able to forge any
signatures unless he can factor n. This argument assumes that the adversary only has access to
the public key containing the modulus n of the signer. In practice, an enemey may break this
scheme with an active attack by asking the real signer to sign M = z? mod n, where z has been
chosen randomly. If the signer agrees and produces a square root y of M, there is half a chance
that ged(n, xz —y) will yield a nontrivial factor of n — the signer has thus betrayed his own secrets!
Although Rabin proposed some practical techniques for circumventing this problem, they have the
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effect of eliminating the constructive reduction of factoring to forgery.

In general, knapsack-type schemes are not well-suited for use as signatures schemes, since the
mapping M - a is not “onto”, and no effective remedy has been proposed. A review of signature
schemes can be found in [84].

8.1 Proving Security of Signature Schemes

A theoretical treatment of digital signatures security was started by Goldwasser, Micali and Yao
in [82] and continued in [84, 15],and recently [119]. We first address what attacks are possible on
digital signature schemes.

8.1.1 Attacks Against Digital Signatures

We distinguish three basic kinds of attacks, listed below in the order of increasing severity.

e Key-Only Attack: In this attack the adversary knows only the public key of the signer and
therefore only has the capability of checking the validity of signatures of messages given to
him.

e Known Signature Attack: The adversary knows the public key of the signer and has seen
message/signature pairs chosen and produced by the legal signer. In reality, this the minimum
an adversary can do.

e Chosen Signature Attack: The adversary is allowed to ask the signer to sign a number of
messages of the adversary’s choice. The choice of these messages may depend on previously
obtained signatures. For example, one may think of a notary public who signs documents on
demand.

For a finer subdivision of the adversary’s possible attacks see [84].

8.1.2 What does it mean to successfuly forge a signature?

We distinguish several levels of success for an adversary, listed below in the order of increasing
success for the adversary.

e FEuxistential Forgery: The adversary succeeds in forging the signature of one message, not
necessarily of his choice.

e Selective Forgery: The adversary succeeds in forging the signature of some message of his
choice.

e Universal Forgery: The adversary, although unable to find the secret key of the signer, is able
to forge the signature of any message.

e Total Break : The adversary can compute the signer’s secret key.
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Clearly, different levels of security may be required for different applications. Sometimes, it
may suffice to show that an adversary who is capable of a known signature attack can not succeed
in selective forgery, while for other applications (for example when the signer is a notary-public or
a tax-return preparer) it may be required that an adversary capable of a chosen signature attack
can not succeed even at existential forgery with non-negligible probability.

8.2 Probabilistic Signature Schemes

Probabilistic techniques have also been applied to the creation of digital signatures. This approach
was pioneered by Goldwasser, Micali, and Yao [82], who presented signature schemes based on the
difficulty of factoring and on the difficulty of inverting the RSA function for which it is provably
hard for the adversary to existentially forge using a known signature attack.

Goldwasser, Micali, and Rivest [84] have strengthened this result by proposing a signature
scheme which is not existentially forgeable under a chosen message attack. Their scheme is based
on the difficulty of factoring, and more generally on the existence of claw-free trapdoor permutations
(that is, pairs fo, fi of trapdoor permutations defined on a common domain for which it is hard to
find z,y such that fo(z) = f1(y)).

We briefly sketch their digital signature scheme. Let (fo, f1) and (g9, g1) be two pairs of claw-
free permutations. Let b = by...b; be a binary string, and define F, " (y) = fbk71(...(f(,271(f,;1(y))),
and Gy~ (y) = g5, (--(95, (g5, (1))

The signer makes public (z, fo, f1, 90, 91) where z is a randomly chosen element in the domain
of fo, f1, and keeps secret the trapdoor information enabling him to compute Fb_1 and Gb_l. The
variable history is kept by the signer in memory as well, but need not be private. (For simplicity
of exposition we assume a prefix-free message space.)

The signature of the ith message m; is created as follows. The signer:

1. Picks r; at random in the domain of g9, g1 and sets history = history - r; where - denotes
concatenation.

2. Computes [; = F,;; () and ¢; = G;L} (75)-

tory
3. Produces the signature of m; as the triplet (history,l;,t;) .

To check the validity of the signature (h,l,t) of message m, anyone with access to the signer’s
public key can check that:

1. Fy(l) = x where z is in the public file.
2. Gy (t) = r where r is a suffix of h.

If both conditions hold the signature is valid.

The scheme as we describe it, although attractive in theory, is quite inefficient. However, it can
be modified to allow more compact signatures, to make no use of memory between signatures other
than for the public and secret keys, and even to remove the need of making random choices for every
new signature. In particular, Goldreich [73] has made suggestions that make the factoring-based
version of this scheme more practical while preserving its security properties.
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Bellare and Micali in [15] have shown a digital signature scheme whose security can be based
on the existence of any trapdoor permutation (a weaker requirement than claw-freeness).

A major leap forward has been recently made by Naor and Yung [119] who have shown how,
starting with any one-way permutation, to design a digital signature scheme which is not existen-
tially forgeable by chosen message attack.

9 Two-Party Protocols

In this section we sketch a number of cryptographic protocol problems that have been addressed
in the literature; see [47] for additional examples.

9.1 Examples
9.1.1 User Identification (Friend-or-Foe)

Suppose A and B share a secret key K. Later, A is communicating with someone and he wishes
to verify that it is B. A simple challenge-response protocol to achieve this identification goes as
follows:

e A generates a random value r and transmit r to the other party.

e The other party (assuming it is B) encrypts r using the shared secret key K and transmits
the resulting ciphertext back to A.

e A compares the received ciphertext with the result he obtains by encrypting = himself using
the secret key K. If they agree, knows that the other party is B; otherwise he assumes that
the other party is an impostor.

This protocol is generally more useful than the transmission of an unencrypted shared password
from B to A, since an eavesdropper could learn the password and then pretend to be B later. With
the challenge-response protocol an eavesdropper presumably learns nothing about K by hearing
many values of r encrypted with K as key.

9.1.2 Mental Poker

How might one play a game of cards, such as poker, over the telephone? The difficulty, of course,
is in dealing the cards. Shamir, Rivest, and Adleman [145] proposed the following simple strategy
(here Alice and Bob are the two players):

e The players jointly select 52 distinct messages My, ..., Ms59 to represent the cards, and a large
prime p.

e The players secretly choose exponents e4 and ep respectively, so that Alice has a secret
encryption function F4(M) = M® mod p (similarly for Bob). Each player computes the
corresponding decryption exponents d 4, dp defining decryption functions D 4(C) = C% mod
p (and similarly for Bob).
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e Alice (the dealer) encrypts the cards Mj, ..., M5y, shuffles them (permutes their order), and
sends the resulting list to Bob.

e Bob selects five of the cards and returns them to Alice; she decrypts these for her hand.

e Bob selects five of the remaining cards for his own hand, encrypts them with his encryption
function, and sends the result to Alice. Note that each such card has the form Eg(FE4(M;)) =
E4(Eg(M;)) since E4 and Epg commute.

e Alice decrypts the five cards with D 4, and returns the result to Bob, who decrypts them with
Dpg to obtain his hand.

At the end of the play, the parties can reveal their secret keys so they can assure themselves
that the other hasn’t cheated.

This technique requires the use of commutative encryption functions. The particular scheme
as proposed may be less satisfactory than desired (depending on the coding of the cards) since, as
pointed out by Lipton [108], M will have Jacobi symbol 1 if and only if E4(M) does — the function
E 4 leaks a bit. Another attack has been proposed by Coppersmith [42]. A number of authors have
proposed extensions and variations of this protocol.

9.1.3 Coin Flipping

Blum [24] has proposed the problem of coin flipping over the telephone. If Alice and Bob don’t
trust each other, then if they wish to flip a coin they need a procedure that will produce an outcome
(head or tails) that can not be biased by either party.

Using probabilistic encryption, Alice could send encrypted versions of the messages “Heads”
and “Tails” to Bob. Bob picks one of the ciphertexts, and indicates his choice to Alice. Alice
then reveals the secret encryption key to Bob. There are a number of interesting variations and
subtleties to this problem (see, for example, [79, 40]).

9.1.4 Oblivious Transfer

An oblivious transfer is an unusual protocol wherein Bob transfers a message M to Alice in such a
way that

e With probability 1/2, Alice receives the message, and with probability 1/2, Alice receives
garbage instead.

e At the end of protocol Bob doesn’t know whether or not Alice received the message.

This strange-sounding protocol has a number of useful applications (see, for example [131, 21]).
In fact, Kilian has recently shown [97] that the ability to perform oblivious transfers is a sufficiently
strong primitive to enable any two-party protocol to be performed.
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9.1.5 Other examples

The problem of contract signing is that of simultaneously exchanging digital signatures to a con-
tract. That is, we assume that an ordinary digital signature scheme is available, and want to
arrange a two-party protocol so that the signatures are effectively simultaneous — neither party
obtains the other’s signature before giving up his own. Several interesting solutions to the problem
have been proposed (see [62] or [19]).

The certified electronic mail problem is similar to the contract-signing problem above. The goal
is to achieve a simultaneous exchange of an electronic letter M and a signed receipt for M from
the recipient.

Another exchange problem is the simultaneous exchange of secrets. This has been studied in
[25, 155, 110, 161].

9.2 Zero-Knowledge Protocols

The previous section listed a number of cryptographic protocol applications. In this section we
review the theory that has been developed to prove that these protocols are secure, and to design
protocols that are “provably secure by construction”.

9.2.1 Zero-Knowledge Interactive Proofs

An elegant way to prove a cryptographic protocol secure is to prove that it is a zero-knowledge
protocol. Informally, a protocol is a zero-knowledge protocol if one party learns nothing (zero)
from the protocol above and beyond what he is supposed to learn. This theory was originated
by Goldwasser, Micali, and Rackoff [80], and has been extended by many others, including Galil,
Haber, and Yung [67], Chaum [34], Goldwasser and Sipser [83], and Brassard and Crepeau [31].

Zero-knowledge protocols are two-party protocols; one party is called the prover and the other
the verifier. The prover knows some fact and wishes to convince the verifier of this fact. The verifier
wants a protocol that will allow the prover to convince him of the validity of the fact, if and only if
the fact is true. More precisely, the prover (if he follows the protocol) will be able (with extremely
high probability) to convince the verifier of the validity of the fact if the fact is true, but the prover
(even if he attempts to cheat) will not have any significant chance of convincing the verifier of the
validity of the fact if the fact is false. However, the prover doesn’t wish to disclose any information
above and beyond the validity of the fact itself (for example, the reason why the fact holds). This
condition can be very useful in cryptographic protocols, as we shall see.

Examples of nontrivial NP languages for which there exist zero-knowledge protocols include
quadratic residuosity and graph-isomorphism. (Curiously, the complements of both of these lan-
guages also possess zero-knowledge proofs.)

More generally, it has been shown by Goldreich, Micali, and Wigderson [76] that every language
in NP possesses a zero-knowledge protocol, on the assumption that there secure encryption is
possible. (Probabilistic encryption schemes work fine here.)

As a concrete example of a zero-knoledge protocol, suppose I wish to convince you that a certain
input graph is three-colorable, without revealing to you the coloring that I know. I can do so in a
sequence of |E|? stages, each of which goes as follows.
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I switch the three colors at random (e.g., switching all red nodes to blue, all blue nodes to
yellow, and all yellow nodes to red).

e [ encrypt the color of each node, using a different probabilistic encryption scheme for each
node, and show you all these encryptions, together with the correspondence indicating which
ciphertext goes with which vertex.

e You select an edge of the graph.

e [ reveal the decryptions of the colors of the two nodes that are incident to this edge by
revealing the corresponding decryption keys.

e You confirm that the decryptions are proper, and that the two endpoints of the edge are
colored with two different but legal colors.

If the graph is indeed three-colorable (and T know the coloring), then you will never detect any
edge being incorrectly labelled. However, if the graph is not three-colorable, then there is a chance
of at least |E| ™! on each stage that T will be caught trying to fool you. The chance that I could
fool you for |E|? stages without being caught is exponentially small.

Note that the history of our communications—in the case that the graph is three-colorable—
consists of the concatenation of the messages sent during each stage. It is possible to prove (on
the assumption that secure encryption is possible) that the probability distribution defined over
these histories by our set of possible interactions is indistinguishable in polynomial time from a
distribution that you can create on these histories by yourself, without my participation. This fact
means that you gain zero (additional) knowledge from the protocol, other than the fact that the
graph is three-colorable.

The proof that graph three-colorability has such a zero-knowledge interactive proof system can
be used to prove that every language in NP has such a zero-knowledge proof system.

9.2.2 Applications to User Identification

Zero knowledge proofs provide a revolutionary new way to realize passwords [80, 64]. The idea is
for every user to store a statement of a theorem in his publicly readable directory, the proof of
which only he knows. Upon login, the user engages in a zero-knowledge proof of the correctness of
the theorem. If the proof is convincing, access permission is granted. This guarantees that even
an adversary who overhears the zero-knowledge proof can not learn enough to gain unauthorized
access. This is a novel property which can not be achieved with traditional password mechanisms.
Recently, Fiat and Shamir [64] have developed variations on some of the previously proposed zero-
knowledge protocols [80] which are quite efficient and particularly useful for user identification and
passwords.

10 Multiparty Protocols

In a typical multi-party protocol problem, a number of parties wish to coordinate their activities to
achieve some goal, even though some (sufficiently small) subset of them may have been corrupted
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by an adversary. The protocol should guarantee that the “good” parties are able to achieve the goal
even though the corrupted parties send misleading information or otherwise maliciously misbehave
in an attempt prevent the good parties from succeeding.

10.1 Examples
10.1.1 Secret Sharing

In 1979 Shamir [141] considered the problem of sharing a secret, defined as follows. Suppose n
people wish to share a secret (such as a secret cryptographic key) by dividing it into pieces in such
a way that any subset of k people can recreate the secret from their pieces, but no subset of less
than k people can do so. Here k is a given fixed positive integer less than n.

Shamir proposed the following elegant solution to this problem. Let the secret be represented
as an integer s, which is less than some large convenient prime p. The secret can be “divided into
pieces” by

1. Generating k coefficients ag,aq,...,ar_1, where ag = s but all the other coefficients are
randomly chosen modulo p.

2. Defining the polynomial f(x) to be 3 o<, a;z" mod p.
3. Giving party i the “piece” f(i), for 1 <7 <n.

Now, given any k values for f, one can interpolate to find f’s coefficients (including the secret
ap = s). However, a subset of £ — 1 values for f provides absolutely no information about s, since
for any possible s there is a polynomial of degree k — 1 consistent with the given values and the
possible value for s.

Shamir’s scheme suffers from two problems. If the dealer of the secret is dishonest, he can give
pieces which when put together do not uniquely define a secret. Secondly, if some of the players
are dishonest, at the reconstruction stage they may provide other players with different pieces than
they received and again cause an incorrect secret to be reconstructed.

Chor, Goldwasser, Micali, and Awerbuch [38] have observed the above problems and showed
how to achieve secret sharing based on the intractability of factoring which does not suffer from
the above problems. They call the new protocol verifiable secret sharing since now every party can
verify that the piece of the secret he received is indeed a proper piece. Their protocol tolerated
up to O(logn) colluders. Benaloh [16], and others [76, 63] showed how to achieve verifiable secret
sharing if any one-way function exists which tolerates a minority of colluders. In [20] it has been
recently shown how to achieve verifiable secret sharing against a minority of colluders using error
correcting codes, without making cryptographic assumptions.

10.1.2 Anonymous Transactions

Chaum has advocated the use of anonymous transactions as a way of protecting individuals from
the maintenance by “Big Brother” of a database listing all their transactions, and proposes using
digital pseudonyms to do so. Using pseudonyms, individuals can enter into electronic transactions

34



with assurance that the transactions can not be later traced to the individual. However, since the
individual is anonymous, the other party may wish assurance that the individual is authorized to
enter into the transaction, or is able to pay. [35, 33].

10.1.3 Voting

Cryptographic technology can be used to manage an election so that every voter’s vote remains
private, but yet every voter can be sure that the vote-counting was not manipulated. (See Cohen
and Fischer [41].)

10.2 Multiparty Ping-Pong Protocols

One way of demonstrating that a cryptographic protocol is secure is to show that the primitive
operations that each party performs can not be composed to reveal any secret information.

Consider a simple example due to Dolev and Yao [57] involving the use of public keys. Alice
sends a message M to Bob, encrypting it with his public key, so that the ciphertext C is Ep(M)
where Ep is Bob’s public encryption key. Then Bob “echos” the message back to Alice, encrypting
it with Alice’s public key, so that the ciphertext returned is C' = E4(M). This completes the
description of the protocol.

Is this secure? Since the message M is encrypted on both trips, it is clearly infeasible for a
passive eavesdropper to learn M. However, an active eavesdropper X can defeat this protocol.
Here’s how: the eavedropper X overhears the previous conversation, and records the ciphertext
C = Ep(M). Later, X starts up a conversation with Bob using this protocol, and sends Bob the
encrypted message Ep(M) that he has recorded. Now Bob dutifully returns to X the ciphertext
Ex (M), which gives X the message M he desires!

The moral is that an adversary may be able to “cut and paste” various pieces of the protocol
together to break the system, where each “piece” is an elementary transaction performed by a
legitimate party during the protocol, or a step that the adversary can perform himself.

It is sometimes possible to prove that a protocol is invulnerable to this style of attack. Dolev
and Yao [57] pioneered this style of proof; additional work was performed by Dolev, Even, and
Karp [56], Yao [162], and Even and Goldreich [61]. In other cases a modification of the protocol
can eliminate or alleviate the danger; see [136] as an example of this approach against the danger
of an adversary “inserting himself into the middle” of a public-key exchange protocol.

10.3 Multiparty Protocols When Most Parties are Honest

Goldreich, Micali, and Wigderson [76] have shown how to “compile” a protocol designed for honest
parties into one which will still work correctly even if some number less than half of the players try
to “cheat”. While the protocol for the honest parties may involve the disclosure of secrets, at the
end of the compiled protocol none of the parties know any more than what they knew originally,
plus whatever information is disclosed as the “official output” of the protocol. Their compiler
correctness and privacy is based on the existence of trapdoor functions.
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Ben-Or, Goldwasser and Wigderson [20] and Chaum, Creapau, and Damgard [36] go one step
further. They assume secret communication between pairs of users as a primitive. Making no
intractability assumption, they show a “compiler” which, given a description (e.g., a polynomial
time algorithm or circuit) of any polynomial time function f, produces a protocol which always
computes the function correctly and gurantees that no additional information to the function value
is leaked to dishonest players . The “compiler” withstands up to 1/3 of the parties acting dishonestly
in a manner directed by a worst-case unbounded-computation-time adverasry.

These “master theorems” promise to be very powerful tool in the future design of secure pro-
tocols.

11 Cryptography and Complexity Theory

Some cryptographic operators are secure in an information-theoretic sense; examples are the Ver-
nam one-time pad, the secret-sharing scheme of Shamir, and the authentication scheme of Gilbert
et al.. In these cases the adversary never obtains enough information to enable him to set up a
problem having a unique solution. As a consequence no amount of computational power can help
him resolve this intrinsic uncertainty.

However, most practical cryptographic schemes are not information-theoretically secure. While
the adversary is given enough information to determine a unique solution, the problem of actually
computing this solution is deemed to be computationally intractable. We may term this computa-
tional security. Computational security depends critically on the existence and careful exploitation
of “hard” computational problems.

While one goal of computational complexity theory is to be able to precisely characterize the
computational difficulty of arbitrary problems, the state of this theory is such that we can currently
only derive some tools and suggestive guidelines.

For example, we may observe that if it turns out to be the case that P = NP (see [68]), then
computational security would be unachievable, since the adversary’s problem is easily seen to be
in NP. (The adversary can just guess the secret keys, check their correctness against some known
plaintext /ciphertext pairs, and thereby “break” the system.)

If we assume that P # N P, then it would seem natural to try to design cryptographic systems
such that the problem of breaking them is NP-complete. However, this is difficult to arrange, since
cryptographic problems usually have unique solutions, whereas NP-complete problems may have
many solutions. It is not easy to reduce a problem with many solutions to a problem having a unique
solution. Grollman and Selman [87] show that one-way functions exist if and only if P # U P, where
UP is the class of languages accepted by a nondeterministic Turing machine which has at most one
accepting computation for any input. They also show that secure public-key cryptosystems exist
only if P # UP. Lempel and Yacobi [102] present a curious cryptographic system for which the
cryptanalytic problem is NP-complete in general, even for chosen-plaintext attacks, but which is
likely to be easily breakable in practice.

The Lempel/Yacobi example illustrates another difficulty with attempting to use the traditional
notions of computational complexity in the design of cryptographic systems: the traditional notions
relate to the worst-case complexity of the problem, whereas cryptographic security more realistically
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depends on the average-case complexity of the problem. There is much yet to be learned about the
average-case complexity of problems. However, Levin [107] has introduced a formal notion of what
it means for a problem to be “complete” in the sense of its average-case complexity.

Brassard [30] has shown that in certain relativized models of computation secure cryptography
is possible.

Yao [163] develops the theory of trapdoor functions and pseudorandom bit sequence generators,
and shows that if a strong one-way function exists, then

R C (| DTIME(2"), (9)
>0

since any algorithm in R can be adapted to use a pseudo-random bit sequence generator with a
seed of size n° instead of a true random bit generator. (Note that all seeds have to be tried.)
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