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Abstract  

This paper gives a survey of the relationship between the fields of cryptography 
and machine learning, with an emphasis on how each field has contributed ideas 
and techniques to the other. Some suggested directions for future cross-fertilization 
are also proposed. 

1 Introduction 
The field of computer science blossomed in the 1940's and 50's, following some theoretical 
developments of the 1930's. From the beginning, both cryptography and machine learning 
were intimately associated with this new technology. Cryptography played a major role 
in the course of World War II, and some of the first working computers were dedicated to 
cryptanalytic tasks. And the possibility that computers could "learn" to perform tasks, 
such as playing checkers, that are challenging to humans was actively explored in the 50% 
by Turing [46], Samuel [39], and others. In this note we examine the relationship between 
the fields of cryptography and machine learning, emphasizing the cross-fertilization of 
ideas, both realized and potential. 

The reader unfamiliar with either of these fields may wish to consult some of the ex- 
cellent surveys and texts available for background reading. In the area of cryptography, 
there is the classic historical study of Kahn [20], the survey papers of Diffie and Heltman 
[11] and Rivest [37], and Simmons [44], as well as the texts by Brassard [8], Denning 
[10], and Davies and Price [9], among others. The CRYPTO and EUROCP~YPT con- 
ference proceedings (published by Springer) are also extremely valuable sources. In the 
area of machine learning, there are standard collections of papers [29, 30, 23] for "AI" 
style machine learning, the seminal paper of Valiant [47] for the "computational learning 
theory" approach, the COLT conference proceedings (published by Morgan Kaufmann) 
for additional material of a theoretical nature, and the NIPS conference proceedings (also 
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published by Morgan Kaufmann) for many interesting papers. The ACM STOC and the 
IEEE FOCS conference proceedings also contain many key theoretical papers from both 
areas. The Ph.D. thesis of Kearns [21] is one of the first major works to explore the rela- 
tionship between cryptography and machine learning, and is also an excellent introduction 
to many of the key concepts and results. 

2 Initial Comparison 

Machine learning and cryptanalysis can be viewed as %ister fields," since they share many 
of the same notions and concerns. In a typical cryptanaiytic situation, the eryptanalyst 
wishes to "break" some cryptosystem. Typically this means he wishes to find the secret 
key used by the users of the cryptosystem, where the general system is already known. 
The decryption function thus comes from a known family of such functions (indexed by 
the key), and the goal of the cryptanalyst is to exactly identify which such function is 
being used. He may typically have available a large quantity of matching ciphertext and 
plaintext to use in his analysis. This problem can also be described as the problem of 
"learning an unknown function" (that is, the decryption function) from examples of its 
input/output behavior and prior knowledge about the class of possible functions. 

Valiant [47] notes that good cryptography can therefore provide examples of classes of 
functions that are hard to learn. Specifically, he references the work of Goldreich, Gold- 
wasser, and Micaii [14], who demonstrate (under the assumption that one-way functions 
exist) how to construct a family of "pseudo-random" functions Fk : {0,1} k --* {0, 1} k 
for each k > 0 such that (i) each function f~ E Fk is described by a k-bit index i, (ii) 
there is a polynomial-time algorithm that, on input i and x, computes f~(z) (so that each 
function in Fk is computable by a polynomial-size boolean circuit), and (iii) no proba- 
bilistic polynomial-time algorithm can distinguish functions drawn at random from Fk 
from functions drawn at random from the set of all functions from {0,1} k to {0, 1} k, even 
if the algorithm can dynamically ask for and receive polynomiaily many evaluations of 
the unknown function at arguments of its choice. (It is interesting to note that Section 4 
of Goldreich et al. [14] makes an explicit analogy with the problem of "learning physics" 
from experiments, and notes that their results imply that some such learning problems 
can be very hard.) 

We now turn to a brief comparison of terminology and concepts, drawing some natural 
correspondences, some of which have already been illustrated in above example. 
Secret  Keys  and Target  Funct ions  

The notion of "secret key" in cryptography corresponds to the notion of "target func- 
tion" in machine learning theory, and more generally the notion of "key space" in cryp- 
tography corresponds to the notion of the "class of possible target functions." For crypto- 
graphic (encryption) purposes, these functions must also be efficiently invertible, while no 
such requirement is assumed in a typical machine learning context. There is another as- 
pect of this correspondence in which the fields differ: while in cryptography it is common 
to assume that the size of the unknown key is known to the cryptanalyst (this usually 
falls under the general assumption that "the general system is known"), there is much 
interesting research in machine learning theory that assumes that the complexity (size) of 
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the target hypothesis is not known in advance. A simple example of this phenomenon is 
the problem of fitting a polynomial to a set of data points (in the presence of noise), where 
the degree of the true polynomial is not known in advance. Some method of trading off 
"complexity of hypothesis" for "fit to the data," such as Pdssanen's Minimum Descrip- 
tion Length Principle [36], must be employed in such circumstances. Further research in 
cryptographic schemes with variable-length keys (where the size of key is not known to 
the cryptanalyst) might benefit from examination of the machine learning literature in 
this area. 
A t t a c k  T y p e s  and  Lea rn ing  P ro toco l s  

A critical aspect of any cryptanalytic or learning scenario is the specification of how 
the cryptanalyst (learner) may gather information about the unknown target function. 

Cryptographic attacks come in a variety of flavors, such as ciphertext only, known 
plaintext (and matching ciphertezt), chosen plaintezt, and chosen ciphertezt. Cryptosys- 
terns secure against one type of attack may not be secure against another .  A classic 
example of this is Rahin's signature algorithm [35], for which it is shown that a "passive" 
attack--forging a signature knowing only the public signature verification key--is  prov- 
ably as hard as factorization, whereas an "active a t tack ' - -querying the signer by asking 
for his signature on some specially constructed messages--is devastating and allows the 
attacker to determine the factorization of the signer's modulus--a  total break. 

The machine learning community has explored similar scenarios, following the pio- 
neering work of Angluin [2, 3]. For example, the learner may be permitted "member- 
ship queries"--asking for the value of the unknown function on some specified input---or 
"equivalence queries '--asking if a specified conjectured hypothesis is indeed equivalent 
to the unknown target hypothesis. (If the conjecture is incorrect, the learner is given 
a "counterexample"--an input on which the conjectured and the target functions give 
different results.) For example, Angluin [2] has shown that a polynomial number of mem- 
bership and equivalence queries are sufficient to exactly identify any regular set (finite 
automaton), whereas the problem of learning a regular set from random examples is 
NP-complete [1]. 

Even if information is gathered from random examples, cryptanalytic/learning sce- 
narios may also vary in the prior knowledge available to the attacker/learner about the 
distribution of those examples. For example, some cryptosystems can be successfully 
attacked with only general knowledge of the system and knowledge of the language of 
the plaintext (which determines the distribution of the examples). While there is some 
work within the machine learning community relating to learning from known distribu- 
tions (such as the uniform distribution, or product distributions [40]), and the field of 
"pattern recognition" has developed many techniques for this problem [12], most of the 
modern research in machine learning, based on Valiant's PAC-tearning formalization of 
the problem, assumes that random examples are drawn according to an arbitrary but fixed 
probability distribution that is unknown to the learner. Such assumptions seem to have 
little relevance to cryptanalysis, Mthough techniques such as those based on the "theory 
of coincidences" [25, Chapter VII] can sometimes apply to such situations. In addition, 
we have the difference between the two fields in that PAC-learning requires learning for 
all underlying probability distributions, while cryptographic security is typically defined 
as security no matter  what the underlying distribution on messages is. 
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Exac t  versus  A p p r o x i m a t e  In fe rence  

In the practical cryptographic domain, an attacker typically aims for a "total break," 
in which he determines the unknown secret key. That is, he exactly identifies the unknown 
cryptographic function. Approximate identification of the unknown function is typically 
not a goal, because the set of possible cryptographic functions used normally does not 
admit good approximations. On the other hand, the theoretical development o ! cryptog- 
raphy has focussed on definitions of security that exclude even approximate inference by 
the cryptanalyst. (See, for example, Goldwasser and Micali's definitions in their paper on 
probabilistic encryption [15].) Such theoretical definitions and corresponding results are 
thus applicable to derive results on the difficulty of (even approximately) learning, as we 
shall see. 

The machine learning literature deals with both exact inference and approximate in- 
ference. Because exact inference is often too difficult to perform efficiently, much of the 
more recent research in this area deals with approximate inference. (See, for example, 
the key paper on learnability and the Vapnik-Chervonenkis dimension by Blumer et al. 
[7].) Approximate learning is normally the goal when the input data consists of randomly 
chosen examples. On the other hand, when the learner may actively query or experiment 
with the unknown target function, exact identification is normally expected. 
C o m p u t a t i o n a l  C o m p l e x i t y  

The computational complexity (sometimes called "work factor" in the cryptographic 
literature) of a cryptanalytic or learning task is of major interest in both fields. 

In cryptography, the major goal is to "prove" security under the broadest possible 
definition of security, while making the weakest possible complexity-theoretic assumptions. 
Assuming the existence of one-way functions has been a common such weakest possible 
assumption. Given such an assumption, in the typical paradigm it is shown that there 
is no polynomial-time algorithm that can "break" the security of the proposed system. 
(Proving, say, exponential-time lower bounds could presumably be done, at the expense of 
making stronger initial assumptions about the difficulty of inverting a one-way function.) 

In machine learning, polynomial-time learning algorithms are the goal, and there exist 
many clever and efficient learning algorithms for specific problems. Sometimes, as we shall 
see, polynomial-time algorithms can be proved not to exist, under suitable cryptographic 
assumptions. Sometimes , as noted above, a learning algorithm does not know in advance 
the size of the unknown target hypothesis, and to be fair, we allow it to run in t ime 
polynomial in this size as well. Often the critical problem to be solved is that of finding 
a hypothesis (from the known class of possibile hypotheses) that is consistent with the 
given set of examples; this is often true even if the learning algorithm is trying merely to 
approximate the unknown target function. 

For both cryptanalysis and machine learning, there has been some interest in minimiz- 
ing space complexity as well as time complexity. In the cryptanalytic domain, for example, 
Hellman [18] and Schroeppel and Shamir [42] have investigated space/time trade-offs for 
breaking certain cryptosystems. In the machine learning literature, Schapire has shown 
the surprising result [41, Theorem 6.1] that if there exists an efficient learning algorithm 
for a class of functions, then there is a learning algorithm whose space complexity grows 
only logarithmically in the size of the data sample needed (as e, the approximation pa- 
rameter, goes to 0). 
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Unic i ty  D i s t ance  and S a m p l e  C o m p l e x i t y  
In his classic paper on cryptography [43], Shannon defines the "unicity distance" of a 

cryptosystem to be H(K)/D, where H(K) is the entropy of the key space K (the number 
of bits needed to describe a key, on the average), and where D is redundancy of the 
language (about 2.3 bits/letter in English). The unicity distance measures the amount 
of ciphertext that must be intercepted in order to make the solution unique; once that 
amount of ciphertext has been intercepted, one expects there to be a unique key that will 
decipher the ciphertext into a~cceptable English. The unicity distance is an "information- 
theoretic" measure of the amount of data that a cryptanalyst needs to succeed in exactly 
identifying the unknown secret key. 

Similar information-theoretic notions play a role in machine learning theory, although 
there are differences arising from the fact that in the standard PAC-learning model there 
may be infinitely many possible target hypotheses, but on the other hand only an ap- 
proximately correct answer is required. The Vapnik-Chervonenkis dimension [7] is a key 
concept in coping with this issue. 
O t h e r  differences 

The effect of noise in the data on the cryptanalytic/learning problem has been studied 
more carefully in the learning scenario than the cryptanalytic scenario, probably because 
a little noise in the cryptanalytic situation can render analysis (and legitimate decryption) 
effectively hopeless. However, there are cryptographic systems [48~ 28, 45] that can make 
effective use of noise to improvesecurity, and other (analog) schemes [49, 50] that a t tempt  
to work well in spite of possible noise. 

Often the inference problems studied in machine learning theory are somewhat more 
general than those that occur naturally in cryptography. For example, work has been 
done on target concepts that "drift" over time [19, 24]; such variability is rare in cryptog- 
raphy (users may change their secret keys from time to time, but this is dramatic change, 
not gradual drift). In another direction, some work [38] has been done on learning "con- 
cept hierarchies"; such a framework is rare in cryptography (although when breaking a 
substitution cipher one may first learn what the vowels are, and then learn the individual 
substitutions for each vowel). 

3 Cryptography's impact on Learning Theory 

As noted earlier, Valiant [47] argued that the work of Goldreich, Goldwasser, and Micali 
[14] on random functions implies that even approximately learning the class of functions 
representable by polynomial-slze boolean circuits is infeasible, assuming that one-way 
functions exist, even if the learner is allowed to query the unknown function. So re- 
searchers in machine learning have focussed on the question of identifying which simpler 
classes of functions are learnable (approximately, from random examples, or exactly, with 
queries). For example, a major open question in the field is whether the class of boolean 
functions representable as boolean formulas in disjunctive normal form (DNF) is efficiently 
learnable from random examples. 

The primary impact of cryptography on machine learning theory is a natural (but 
negative) one: showing that certain learning problems are computationally intractable. Of 
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course, there are other ways in which a learning problem could be intractable; for example, 
learning the class of all boolean functions is intractable merely because the required 
number of examples is exponentially large in the number of boolean input variables. 

A certain class of intractability results for learning theory are representation dependent: 
they show that given a set of examples, finding a consistent boolean function represented 
in a certain way is computationally intractable. For example, Pitt and Valiant [32] show 
that finding a 2-term DNF formula consistent with a set of input/output pairs for such 
a target formula is an NP-complete problem. This implies that learning 2-term DNF 
is intractable (assuming P r NP), but only if the learner is required to produce his 
answer in the form of a 2-term DNF formula. The corresponding problem for functions 
representable in 2-CNF (CNF with two literals per clause, which properly contains the 
set of functions representable in 2-term DNF) is tractable , and so PAC-!earning the class 
of functions representable in 2-term DNF is possible, as long as the learner may output 
his answers in 2-CNF. Similarly, Angluin [1] has shown that it is NP-complete to find 
a minimum-size DFA that is consistent with a given set of input/output examples, and 
Pitt and Warmuth [33] have extended this result to show that  finding an approzimately 
minimum-size DFA consistent with such a set of examples is impossible to do efficiently. 
These representation-dependent results depend on the assumption that P ~ NP. 

In order to obtain hardness results that are representation-independent, Kearns and 
Valiant [22, 21] turned to cryptographic assumptions (namely, the difficulty of inverting 
RSA, the difficulty of recognizing quadratic residues modulo a Blum integer, and the 
difficulty of factoring Blum integers). Of course, they also need to explain how learning 
could be hard in a representation-independent manner, which they do by requiring the 
learning algorithm not to output a hypothesis in some representation language, but rather 
to predict the classification of a new example with high accuracy. 

Furthermore, in order to prove hardness results for learning classes of relatively simple 
functions, Kearns and Valiant needed to demonstrate that the relevant cryptographic 
operations could be specified within the desired function class. This they accomplished by 
the clever technique of using an "expanded input" format, wherein the input was arranged 
to contain suitable auxiliary results as well as the basic input values. They made use of 
the distribution-independence of PAC-learning to assume that the probability distribution 
used would not give any weight to inputs where these auxiliary results were incorrect. 

By these means, Kearns and Valiant were able to show that PAC-learning the following 
classes of functions is intractable (here p(n) denotes some fixed polynomial): 

1. "Small" boolean formulae: the class of boolean formula on n boolean inputs whose 
size is less than p(n). 

2. The class of deterministic finite automata of size at most p(n) that accept only 
strings of length n. 

3. For some fixed constant natural number d, the class of threshold circuits over n 
variables with depth at most d and size at most p(n). 

They show that if a learning algorithm could efficiently learn any of these classes of 
functions, in the sense of being able to predict with probability significantly greater than 
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1/2 the classification of new examples, then the learning algorithm could be used to 
"break" one of the cryptographic problems assumed to be hard. 

The results of Kearns and Valiant were also based on the work of Pitt  and Warmuth 
[34], who develop the notion of a "prediction-preserving reducibility." The definition 
implies that if class A is so reducible to class B, then if class B is efficiently predictable, 
then so is class A. Using this notion of prediction-preserving reducibility, they show a 
number of classes of functions to be "prediction-complete" for various complexity classes. 
In particular, the problem of prediction the class of alternating DFAs is shown to be 
prediction-complete for P, and ordinary DFAs are as hard to predict as any function 
computable in log-space, and boolean formula are prediction-complete for NO 1. These 
results, and the notion of prediction-preserving reducibility, were central to the work of 
Kearns and Valiant. 

The previous results assumed a learning scenario in which the learner was working 
from random examples of the input/output behavior of the target function. One can ask 
if cryptographic techniques can be employed to prove that certain classes of functions 
are unlearnable even if the learner may make use of queries. Angluin and Kharitonov 
[5] have done so, showing that (modulo the usual cryptographic assumptions regarding 
RSA, quadratic residues, or factoring Blum integers), that there is no polynomial-time 
prediction algorithm, even if  membership queries are allowed, for the following classes of 
functions: 

1. Boolean formulas, 

2. Constant-depth threshold circuits, 

3. Boolean formulas in which every variable occurs at most 3 times, 

4. Finite unions or intersections of DFAs, 2-way DFAs, NFAs, or CFGs. 

These results are based on the public-key cryptosystem of Naor and Yung [31], which is 
provably secure against a chosen-ciphertext attack. (Basically, the queries asked by the 
learner get translated into chosen-ciphertext requests against the Naor-Yung scheme.) 

4 Learning Theory's impact on Cryptography 

Since most of the negative results in learning theory already depend on cryptographic 
assumptions, there has been no impact of negative results on learning theory on the 
development of cryptographic schemes. Perhaps some of the results and concepts and 
Pitt and Warmuth [34] could be applied in this direction, but this has not been done. 

On the other hand, the positive results in learning theory are normally independent 
of cryptographic assumptions, and could in principle be applied to the cryptanalysis of 
relatively simple cryptosystems. Much of this discussion will be speculative in nature, 
since there is little in the literature exploring these possibilities. We sketch some possi- 
ble approaches, but leave their closer examination and validation (either theoretical or 
empirical) as open problems. 
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Figure h In cipher-feedback mode, each plaintext message bit m is encrypted by exclusive- 
oring it with the result of applying the function f to the last n bits of ciphertext, where 
n is the size of the shift register. The ciphertext bit c is transmitted over the channel; the 
corresponding decryption process is illustrated on the right. 

Cryptanalysis of cipher-feedback systems 
Perhaps the most straightforward application of learning results would be for the 

cryptanalysis of nonlinear feedback shift-registers operating in cipher-feedback mode. See 
Figure 1. The feedback function f is known only to the sender and the receiver; it 
embodies their shared "secret key." 

If the cryptanalyst has a collection of matching plaintext/ciphertext bits, then he has 
a number of corresponding input/output pairs for the unknown function f .  A learning 
algorithm that can infer f from such a collection of data could then be used as a crypt- 
analytic tool. Moreover, a chosen-ciphertext attack gives the cryptanalyst the ability to 
query the unknown function f at arbitrary points, so a learning algorithm that can infer 
f using queries could be an effective cryptanalytic tool. 

We note that a definition of learnability that permits "approximate" learning is a good 
fit for this problem: if the cryptanalyst can learn an approximation to f that agrees with 
f 99% of the time, then he will be able to decrypt 99% of the plaintext. 

Suppose first that we consider a known plaintext attack. Good cryptographic design 
principles require that f be about as likely to output 0 as it is to output 1. This would 
typically imply that the shift register contents can be reasonably viewed as a randomly 
drawn example of {0, 1} n, drawn accovdin9 to the uniform distribution. (We emphasize 
that it is this assumptiorl that makes are remarks here speculative in nature; detailed 
analysis or experimentation is required to verify that this assumption is indeed reasonable 
in each proposed direction.) There are a number of learning-theory results that assume 
that examples are drawn from {0,1}" according to the uniform distribution. While this 
assumption seems rather unrealistic and restrictive in most learning applications, it is 
a perfect match for such a cryptographic scenario. What cryptographic lessons can be 



435 

drawn from the learning-theory research? 
Schapire [40] shows how to efficiently infer a class of formula he calls "probabilistic 

read-once formula" against product distributions. A special case of this result implies that 
a formula f constructed from AND, OR, and NOT gates can be exactly identified (with 
high probability) in polynomial time from examples drawn randomly from the uniform 
distribution. (It is an open problem to extend this result to formula involving XOlt gates 
in a useful way; some modification would be needed since the obvious generalization isn't 
true.) Perhaps the major lesson to be drawn here is that in the simplest formula for f 
each shift register bit should be used several times. 

Linial, Mansour, and Nisan [27] have shown how to use spectral (Fourier transform) 
techniques to learn functions f chosen from A C  O (constant depth circuit of AND/OR/NOT 
gates having arbitrarily large fan-in at each gate) from examples drawn according to the 
uniform distribution. Kushelevitz and Mansour [26] have extended these results to the 
class of functions representable as decision trees. Furst, Jackson, and Smith [13] have 
elaborated and extended these results in a number of directions. We learn the lesson that 
the spectral characteristics of f need to be understood and controlled. 

Hancock and Mansour [17] have similarly shown that monotone k# DNF formulae 
(that is, monotone DNF formulae in which each variable appears at most k times) are 
learnable from examples drawn randomly according to the uniform distribution. Although 
monotone formula are not really useful in this shift-register application, the negation of 
a monotone formula might be. We thus have another class of functions f that should be 
avoided. 

When chosen-ciphertext attacks axe allowed, function classes that are learnable with 
membership queries should be avoided. For example, Angluin, Hellerstein, and Karpinski 
[4] have shown how to exactly learn any/~-formula using members and equivalence queries. 
Similarly, Hancock [16] shows how to learn 2g DNF formula (not necessarily monotone), 
as well as k# decision trees, using queries. 

We thus see a potential "pay-back" from learning theory to cryptography: certain 
classes of inferrable functions should probably be avoided in the design of non-linear 
feedback shift registers used in cipher-feedback mode. Again, we emphasize that verifying 
that the proposed attacks are theoretically sound or empirically useful remains an open 
problem. Nonetheless, these suggestions should provide some useful new guidelines to 
those designing such cryptosystems. 

Other  possibilities 

\Ve have seen some successful applications of continuous optimization techniques (such 
as gradient descent) to discrete learning problems; here the neural net technique of "back 
propagation" comes to mind. Perhaps such techniques could also be employed successfully 
in cryptanalytic problems. 

Another arena in which cryptography and machine learning relate is that of data com- 

pression. It has been shown by Blumer et al. [6] that pac-learning and data compression 
are essentially equivalent notions. Furthermore, the security of an encryption scheme is 
often enhanced by compressing the message before encrypting it. Learning theory may 
conceivably aid cryptographers by enabling ever more effective compression algorithms. 
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