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(57) ABSTRACT

Methods and apparatus are provided for private set mem-
bership using aggregation for reduced communications. A
determination is made as to whether at least one data
element of a client is in a data set of a server by: obtaining
a transformation of the at least one data element; receiving
aresponse from the server based on the transformation of the
at least one data element, wherein the transformation com-
prises one or more of a Bloom filter-based transformation
that employs a Bloom filter comprising a plurality of hash
functions and an encryption-based transformation; and
determining whether the at least one data element is in the
data set based on the response, wherein one or more of the
response and the determining is based on a result of at least
one aggregation of a plurality of values that depend on the
at least one data element and one or more items in the data
set.
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FIiG. 1

(' HAS AN ELEMENT z, AND
S HAS A SET X = {z4,...,2n}

A\

100
PRIVATE SET MEMBERSHIP PROCESS é

110 ~r OBTAIN A TRANSFORMATION 115 OF THE DATA ELEMENT z;

120~ RECEIVE A RESPONSE 125 FROM S BASED ON THE TRANSFORMATION
OF THE DATA ELEMENT z; AND

130 ~r~ DETERMINE WHETHER THE DATA ELEMENT z IS IN THE DATA SET X
BASED ON THE RESPONSE, WHERE THE RESPONSE AND/OR THE
DETERMINATION ARE BASED ON A RESULT OF AT LEAST ONE

AGGREGATION 135 OF A PLURALITY OF VALUES THAT DEPEND ON
THE DATA ELEMENT z AND AT LEAST ONE ITEM IN THE DATA SET X

FIG. 2
20

Protocol summary Parties: client C and server S
Possessions: C has an element z and S has a set X = {x,,...,xni
Tools(s): fully~homomorphic, public-key encryption

1. C generates the key pair (pk, sk) for a FHE scheme and sends pk
to S.
2. C encrypts z to get ¢ = Enc(pk, z) and sends ¢ to S.
3. S computes ¢ = ¢ - Enc(pk, z;) for each z; € X
4. S computes 7; = cf * Enc(pk, 7;), where ¥; is a random value
(for blinding non-zero results).

5. S computes 7 = H?ﬂ’i"i and sends 7 to (
6. C decrypts 7 to get a. lf o = O, thenz € X, else z ¢ X and @
is a random value.
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FIG. 4
400

Protocol summary Parties: client C and server S
Possessions: C has an element z and S has a set X = {zy,...,z,}
Tools(s): memory-hard hash function f

1. S computes H = {h; | h; = f(z;), z; € X}
2. C computes hy = f(z) and sends hz to S
3. S tests whether or not hy € H and sends back the response

FIG. 5
500

Protocol summary Parties: client C and server S
Possessions: C has an element z and S has a set X = {zy,..., 25}
Tools(s): Bloom filter with k hash functions hy,...,h;

1. S computes the Bloom filter B for X with m = (1/In 2)kn bits,
where |X| = n

. & sends descriptions of hy,..., hj to C

. C computes g; = hy(z) for i € [1,k]

. ' sends qq,..,q; to S to fetch the corresponding bits from B

. S computes g = A¥_, Blg;], where B[j] is the j-th bit of the Bloom

filter B and A is bit—wise AND.,
6. S sends q back to C

7.1fq =0, thenz £ X. If ¢ = 1, then z € X with high probability
(specifically, with probability 1 - 27F).

2
3
4
5
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FIG. 6 o

Parties: client C and server §

Possessions: C' has an element z and S has a set X = {x1,...,xn§
Tools(s): Bloom filter with k& hash functions hy,...,hy, (single-server,
computational) PIR scheme P

1. S computes the Bloom filter B for X with m = (1/In 2)kn bits,

where |X| = n

S sends descriptions of hy,..., hy to C.

C computes g; = hy(z) for i € [1,k]

(' uses k parallel invocations of P to refrieve bits qy,...,q;.

C computes ¢ = A¥ =1Blg;], where B[j] is the j=th bit of the Bloom

filter B and A is bit-wise AND.

6.1fq =0, thenz € X. If ¢ = 1, then 2 € X with high probability
(specifically, with probability 1 - R ).

FIG. 7 S

Protocol summary Parties: client ¢ and (non-communicating, non-colluding)
servers Sy and S,

Possessions: C has an element z, Sy has a set X = {zq,..,z,}, Sy will hold
a Bloom filter B

Tools(s): OPRF scheme F for a PRF f, Bloom filter with k hash functions
By by, derived from f

1. Sy generates a random key k uses f, (-) to create the Bloom filter B
(possibly acting as both the Sender and Receiver in the OPRF protocal,
if necessary).

2. 5y sends B to Sy keeps k.

3. € then interacts with S using F to learn ¢; = hy{z) for ¢ € [1,k].

4. C queries the Bloom filter bits in locations 91 9k directly from S,.

3. C determines membership based on bit-wise AND performed on queried
bits.
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METHODS AND APPARATUS FOR PRIVATE
SET MEMBERSHIP USING AGGREGATION
FOR REDUCED COMMUNICATIONS

FIELD

The field relates generally to private set intersection, and
more particularly to private set membership schemes.

BACKGROUND

In a private set intersection (PSI) protocol, a client having
a set X, and a server having a set X, jointly compute the
intersection of their respective private input sets in a manner
that, at the end, the client learns the intersection and the
server learns nothing. Existing private set intersection pro-
tocols require communication that is linear in the sizes of the
sets, that is, they incur communication cost of O(1X, [+IX,]).
This cost is prohibitive when the interactions between the
client and the server are frequent, especially when the server
stores a large data set. For example, the costs are particularly
prohibitive for a smart phone privately checking the validity
of a user’s credentials against a database that contains
millions of elements.

Thus, a need exists for lightweight set membership tech-
niques wherein the communication cost is sublinear in the
size of the sets held by the client and the server.

SUMMARY

Tlustrative embodiments of the present invention provide
methods and apparatus for private set membership using
aggregation for reduced communications. In one embodi-
ment, a determination is made as to whether at least one data
element of a client is in a data set of a server by: obtaining
a transformation of the at least one data element; receiving
a response from the server based on the transformation of the
at least one data element, wherein the transformation com-
prises one or more of a Bloom filter-based transformation
that employs a Bloom filter comprising a plurality of hash
functions and an encryption-based transformation; and
determining whether the at least one data element is in the
data set based on the response, wherein one or more of the
response and the determining is based on a result of at least
one aggregation of a plurality of values that depend on the
at least one data element and one or more items in the data
set.

In one exemplary embodiment, the encryption-based
transformation comprises an encrypted version of the at least
one data element, wherein the response comprises a product
aggregation of values, wherein each of the values comprises
a comparison between the encryption-based transformation
of the at least one data element and an encrypted version of
an item in the data set, and wherein the determining whether
the at least one data element is in the data set comprises
evaluating a decrypted version of the response and deter-
mining whether the result of the decryption evaluation has a
predefined value.

In another exemplary embodiment, the encryption-based
transformation comprises an encrypted version of d powers
of the at least one data element, wherein the at least one
aggregation comprises at least one aggregation of values for
each subset in a plurality of subsets in a partition of the data
set, wherein each of the subsets has at least two items, and
wherein the values for each of the subsets are based on one
or more comparisons of one or more of the encrypted
version of d powers of the at least one data element and an
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encrypted version of the one or more items in the subset,
wherein for each of the subsets, the at least one aggregation
comprises a sum over weighted versions of the encrypted
version of d powers of the at least one data element, wherein
the weighted versions comprise a weighted sum aggregation
of the encrypted version of the one or more items in the
subset, wherein the determining whether the at least one data
element is in the data set comprises determining whether a
decrypted version of each of the final results for one or more
of the subsets has a predefined value.

In yet another exemplary embodiment, the Bloom filter-
based transformation of the at least one data element com-
prises a mapping of the at least one data element to k hash
values by applying k hash functions to the at least one data
element, wherein the k hash functions are defined by the
Bloom filter, wherein the response is based on the result of
at least one aggregation and wherein the at least one aggre-
gation comprises performing a bit-wise aggregation of k bits
from the Bloom filter stored at the server, wherein a selec-
tion of the k bits is based on the mapping and wherein the
k bits depend on the one or more items in the data set by
employing the k hash functions, and wherein the determin-
ing whether the at least one data element is in the data set
comprises determining whether the result of the bit-wise
aggregation has a predefined value.

In a further exemplary embodiment, the Bloom filter-
based transformation of the at least one data element com-
prises a mapping of the at least one data element to k hash
values by applying k hash functions to the at least one data
element, wherein the k hash functions are defined by the
Bloom filter, wherein the response comprises k bits from the
Bloom filter stored at the server, wherein the k bits are
obtained using a private information retrieval (PIR) scheme,
wherein a selection of the k bits is based on the mapping,
wherein the k bits depend on one or more items in the data
set by employing the k hash functions, and wherein the
determining whether the at least one data element is in the
data set comprises performing a bit-wise aggregation of at
least a portion of the k bits and determining whether the
result of the bit-wise aggregation has a predefined value.

In an additional exemplary embodiment, the Bloom filter-
based transformation of the at least one data element com-
prises a mapping of the at least one data element to k hash
values by applying k hash functions to the at least one data
element, wherein the k hash functions are defined by the
Bloom filter, wherein the Bloom filter-based transformation
of the at least one data element is obtained from the server
as part of the response, wherein the response from the server
comprises the Bloom filter-based transformation of the at
least one data element and wherein the k hash functions of
the mapping each comprises an oblivious pseudo random
function (OPRF), and wherein the determining whether the
at least one data element is in the data set comprises
obtaining a bit-wise aggregation of k bits from the Bloom
filter stored at a second server and obliviously obtained from
the server, wherein a selection of the k bits is based on the
mapping and wherein the k bits depend on one or more items
in the data set by employing the k OPRF's, and determining
whether the result of the bit-wise aggregation has a pre-
defined value.

Embodiments of the invention can be implemented in a
wide variety of different applications wherein an analysis of
set membership is desired.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart illustrating an exemplary imple-
mentation of a private set membership process incorporating
aspects of the present invention;
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FIG. 2 illustrates exemplary pseudo code for an exem-
plary encryption-based protocol for a fully homomorphic
encryption scheme;

FIG. 3 illustrates exemplary pseudo code for an exem-
plary encryption-based protocol based on polynomials that
is related to the protocol of FIG. 2 and for a particular
parameterization choice;

FIG. 4 illustrates exemplary pseudo code for an exem-
plary hash-based scheme;

FIG. 5 illustrates exemplary pseudo code for an exem-
plary hash-based protocol based on Bloom filters;

FIG. 6 illustrates exemplary pseudo code for an exem-
plary hash-based protocol utilizing Bloom filters and a
private information retrieval scheme in accordance with an
aspect of the present invention;

FIG. 7 illustrates exemplary pseudo code for an exem-
plary hash-based scheme utilizing two-server Bloom filters
and an oblivious pseudo random function (OPRF) protocol
in accordance with an aspect of the present invention;

FIG. 8 illustrates an exemplary processing platform that
may be used to implement at least a portion of one or more
embodiments of the invention comprising a cloud infrastruc-
ture; and

FIG. 9 illustrates another exemplary processing platform
that may be used to implement at least a portion of one or
more embodiments of the invention.

DETAILED DESCRIPTION

Tlustrative embodiments of the present invention will be
described herein with reference to exemplary communica-
tion systems and associated servers, clients and other pro-
cessing devices. It is to be appreciated, however, that the
invention is not restricted to use with the particular illustra-
tive system and device configurations shown. Accordingly,
the term “communication system” as used herein is intended
to be broadly construed, so as to encompass, for example,
systems in which multiple processing devices communicate
with one another but not necessarily in a manner character-
ized by a client-server model.

As will be described, the present invention in one or more
illustrative embodiments provides methods and apparatus
for private set membership using aggregation techniques to
reduce the necessary communications and/or computations.
According to one aspect of the invention, a determination is
made about whether at least one data element of a client is
in a data set of a server. The data set of the server comprises
a plurality of items. The at least one data element and the
items in the data set are transformed using a Bloom filter-
based transformation that employs a Bloom filter comprising
a plurality of hash functions or an encryption-based trans-
formation. In addition, at least one aggregation is performed
of a plurality of values that depend on the at least one data
element and one or more items in said data set. Aspects of
the present invention recognize that the aggregation allows
for set membership techniques wherein the communication
and/or computation costs are sublinear in the size of the sets
held by the client and the server.

In one exemplary implementation, methods and apparatus
are provided for efficient privacy-preserving credential or
property validation, wherein a user validates a personal
credential or property with respect to some well-defined
criterion through a credential- or property-validation service
offered by a remote (e.g., enterprise or cloud-provided)
server that possesses a large database recording updated
state related to the validity criterion in consideration. The
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4

disclosed exemplary techniques simultaneously achieve the
following two desirable properties:

1. The user is able to validate his or her personal creden-
tials or properties without revealing anything about these
credentials or properties to the validation server and, con-
versely, without inferring anything about the current data-
base other than what is inferred by the credential or property
validation or failure; and

2. The interaction between the user and the server
involves minimal communication and client-side computa-
tion costs that are sub-linear or poly-logarithmic on the
server’s database size.

Thus, the disclosed techniques find numerous applications
in settings wherein thin-clients (e.g., mobile users) need to
securely, that is privately, and efficiently perform real-time
credential-validity or property-validation checks against an
online validation service. For instance, a user may privately
and efficiently check that his or her password is distinct from
the set of currently used passwords in an enterprise or the set
of passwords that are currently known to have been leaked
after a recent attack, or even check that his or her passwords
are of an appropriate minimum entropy. Alternatively, a user
may privately and efficiently check whether his or her credit
card number has been stolen by some recent attack that is
known to have compromised millions of credit card num-
bers. Similarly, a user may privately and efficiently check
whether a personal genetic or health related property relates
to the corresponding genetic or health related properties of
a large population of people kept at a property-validation
server, by checking, for instance, whether private informa-
tion from his or her genome is related to private information
from the genomes of people who are known to suffer from
or are prone to be diagnosed of having a particular disease.

As discussed hereinafter, the disclosed exemplary design
framework provides a new model for privacy-preserving
interactions among two mutual distrustful parties by reduc-
ing credential or property validation to the problem of
private set membership and then providing protocols that
allow for privately checking the inclusion of a query element
(e.g., a credit card number) into the server’s database set
(e.g., a list of known stolen credit card numbers from, say,
an attack against a particular retailer). Finally, the disclosed
exemplary framework allows the disclosed private set mem-
bership protocols to be applied in other computational
settings on business models wherein privacy-preserving
“credential” or “property” management is required (e.g.,
across enterprises, wherein a suspicious Internet Protocol
(IP) address is checked against the list of known malicious
IP addressed, or across financial institutions, security com-
panies and credit card issuers, wherein upon unsuccessful
validation of a credit card number in a financial transaction,
the credit card issuer is notified to take follow-up actions).

INTRODUCTION

As noted above, aspects of the present invention address
a problem of checking the validity of a credential or prop-
erty, or simply called element hereinafter, against a current
database that encodes information about credentials or prop-
erties in a privacy-preserving manner. Consider a client C,
holding an element x, interacting with a server S, holding
database X, in a secure exemplary protocol which allows C
to determine whether x satisfies a given “safety” condition
in a way so that neither x nor “whether x is safe” is revealed
to S, and X is not revealed to C, other than whether x
satisfies the given safety condition.
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The problem becomes a representative special case of
private set membership, wherein the safety test checked by
the client is whether x is a member of database X (i.e.,
whether x&X).

Clearly, private set membership can be solved using a
private set intersection (PSI) protocol, which allows C and
S to interact in a privacy-preserving manner so that C learns
the intersection X, NX,, wherein X, is a set held by client C
and X, the set held by server S. Indeed, if X,=x and X,=X,
then learning X,NX, corresponds to exactly learning
whether x€X.

All existing private set intersection protocols require
communication that is linear in the sizes of the sets, that is,
they incur communication cost of O(IX, [+1X,). This cost is
prohibitive for frequent interactions between a thin client
(e.g., a smart phone) for checking validity of credentials
against large databases, which typically contain millions of
elements. Thus, a need exists to devise lightweight set
membership protocols wherein the communication cost is
sublinear in IX,] and 1X,I.

Accordingly, although, the O(IX,I+IX,|) cost is intui-
tively “necessary,” in order to prevent the server from
learning the result of the intersection X,NX, and thereby
learning new information about X, more efficient solutions
are needed for the specific problem under consideration, the
private set membership problem which is a special case of
the private set intersection problem. Ideally, some compu-
tation should be performed at the server and have S “sum-
marize” the results (in some way) without knowing what the
summary says. This summarization should be performed
through some form of privacy-preserving transformations of
the queried element and data elements involved in the
computation, as well as some form of privacy-preserving
aggregations computed over values that depend on one or
more of the query element and data elements involved in the
computation or on their corresponding transformations.

In general, aspects of the present invention address a
special case of the private set intersection (PSI) problem in
a context wherein one party has a set that is much smaller
than the other party’s set. For example, C may just have a
single element X,={x} and C wants to know if xEX,
wherein X, is the set held by S. In general, IX,I=IX,],
wherein |+l denotes set cardinality. For simplicity, let C
denote the client, who has the small set, and S denote the
server, who has the large set.

Aspects of the present invention provide a number of
exemplary private set membership constructions that solve
the above problem both privately and efficiently. One group
of exemplary private set membership constructions employ
an encryption-based transformation, such as a homomorphic
encryption (see, for example, the section entitled “Construc-
tions Based On Encryption™). Another group of exemplary
private set membership constructions employ a hashing-
based scheme, such as a Bloom filter-based transformation
that employs a Bloom filter comprising a plurality of hash
functions (see, for example, the section entitled “Construc-
tions Based on Hashing”).

As discussed hereinafter, one or more of the disclosed
schemes can optionally be optimized utilizing a simple
partitioning scheme. In particular, the server’s set can be
deterministically partitioned into, say, p disjoint subsets and
the schemes below can be applied to individual partitions
instead of the whole set. This can significantly reduce the
computational costs. The partitioning can be done with any
public deterministic function that will distribute the set
elements uniformly among the partitions. A secure hash
function such as SHA256 could serve this purpose (e.g.,
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hash the element and then put the element into one of the
partitions by looking at the top log p bits).

FIG. 1 is a flow chart illustrating an exemplary imple-
mentation of a private set membership process 100 incor-
porating aspects of the present invention. Generally, the
exemplary private set membership process 100 determines
whether at least one data element of a client is in a data set
of a server. The exemplary private set membership process
100 is illustrated from the perspective of the client.

As shown in FIG. 1, the exemplary private set member-
ship process 100 processes an element x from the client C
and aset X={x,, ..., x,} from the server S. During step 110,
the client initially obtains a transformation 115 of the data
element x. The transformation 115 comprises either an
encryption-based transformation, as discussed further below
in conjunction with FIGS. 2 and 3, or a hash-based trans-
formation, such as a Bloom filter-based transformation that
employs a Bloom filter comprising a plurality of hash
functions, as discussed further below in conjunction with
FIGS. 4 through 7.

The client C receives a response 125 from the server S
during step 120 based on the transformation of the data
element x. The client C then determines whether the data
element x is in the data set X during step 130 based on the
response. In the various implementations discussed below in
conjunction with FIGS. 2 through 7, the response and/or the
determination are based on a result of at least one aggrega-
tion 135 of a plurality of values that depend on the data
element x and at least one item in the data set X. The
aggregation 135 provides set membership techniques
wherein the communication cost is sublinear in the sizes of
the sets held by the client and the server.

Constructions Based on Encryption

Scheme Based on Fully Homomorphic Encryption

Let E denote a fully homomorphic encryption scheme
over a field F. (Assume that the set elements are
elements of F.) The client simply encrypts each element in
X ={y1, - - s Y}, wherein X is a set held by client C, and
the client sends the ciphertexts E_.(y,), - . . , E(y,,) to S,
wherein pk is the public key of C. The server then subtracts
each x,EX,={x,, . . ., x,,} from each E,(y,) and multiplies
by a random r, EF\{0} to get E,,(x, (v,~X,)) for 1=i=m and
I=j=n. For each y,, S computes the product I',_, "B, (r; (v,~
x)=E,(IL_,"r, {y,~%,)). The server then sends the m
ciphertexts back to C. If y,&X,, that is, if y,=x; for some j,
then the resulting ciphertext is an encryption of 0 and C
knows that y, is in the intersection. If y, &X,, then the
ciphertext decrypts to a random value.

The communication cost is O(IX;l) and in the case
wherein C only has a single element, the communication is
O(1). The server, however, must perform O(mn) additions
and O(mn) multiplications on the ciphertext, which can be
expensive (especially for a fully homomorphic encryption
(FHE) scheme).

FIG. 2 illustrates exemplary pseudo code 200 for an
exemplary encryption-based protocol for a fully homomor-
phic encryption scheme, for a client C and server S, wherein
C has an element x, and S has a set X={x, . . ., x }. As
shown in FIG. 2, during step 1, C generates the key pair
(pk,sk) for a FHE scheme and sends pk to S. During step 2,
C encrypts x to get c=Enc(pk,x) and sends ¢ to S. S
computes c¢',=c-Enc(pk,x,) for each x,&X during step 3.
During step 4, S computes r=c',*Enc(pk.t,)), wherein t, is a
random value (for blinding non-zero results). During step 5,
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S computes r=I1._,"r; and sends r to C. Finally, during step
6, C decrypts r to get a. If a=0, then xEX, else x#X and a
is a random value.

Thus, for the exemplary encryption-based protocol of
FIG. 2, in conjunction with the embodiment of FIG. 1, the
transformation 115 in step 2 comprises an encrypted version
of the at least one data element x and the response 125 in
step 5 is based on a result of at least one aggregation 135
(i.e., a product) of a plurality of r, values computed by the
server in step 5. The r, values are based on comparisons
between the encryption-based transformation of the data
element and an encrypted version of each item in the data
set, computed during step 3. The determination 130 of
whether the data element x is in the data set X requires the
client C to decrypt the response r 125 during step 6 and to
determine whether the decrypted response has a predefined
value.

More Efficient Scheme Based on Polynomials

It is possible to do less computation at the expense of
additional communication while only requiring that the
encryption scheme E be additively homomorphic. Consider
the case wherein C has only a single element x. For
notational simplicity, let X be the set held by S. The server
divides X into a partition of p equal-sized subsets X, . . .,
X,,, wherein |X,|=d. For each subset X, S then computes the
polynomial qi(t):ij EXl_rl.(t—xj):Zj:O""ui . for some random
r;, and saves the coeflicients u, ;. Note that g, has degree d.

C computes the values x* for 1=i=d, encrypts the results
with an additively homomorphic cipher, and sends the
ciphertexts to S. Now, S has the ciphertexts E_,(x), . . .
B, (x%) and can use the additive homomorphism property of
E to evaluate E,,;(q,(x))=2 jzodul. A (&) for each 1<i=p. Recall
that since u, ; is unencrypted, the product u, B ,(¥’) amounts
to adding E,,(3) to itself u,; times. S then sends back
B (q,(X), - - -, B(q,(x)). C decrypts each ciphertext and
if the decrypted value is O for any of q;, then C knows that
xEX (C knows that x is in the partition). If X is not in a given
subset X, in the partition, then the decrypted value is
random.

FIG. 3 illustrates exemplary pseudo code 300 for an
exemplary encryption-based protocol based on polynomials
that is related to the protocol 200 of FIG. 2. The exemplary
pseudo code 300 of FIG. 3 has communication complexity
O(d+p). The variation requires d exponentiations and
encryptions from the client, as well as p decryptions. The
server must generate p polynomials of degree d and perform
p evaluations each taking d multiplications and additions,
for a total evaluation cost of approximately O(dp)=O(IXI).
Total communication complexity is minimized for the spe-
cific parameterization choice when d=p=VXI. Fundamen-
tally, this is p parallel invocations of oblivious polynomial
evaluation with the polynomials all evaluated at the same
point, applied to set membership.

As shown in FIG. 3, during step 1, C generates a key pair
(pk,sk) for an additively homomorphic encryption scheme
and sends pk to S. During steps 2 and 3, S partitions X into
v equal-sized subsets X, . . ., X and S sends the number
of partitions Vn to C. For each subset X,, S interprets the
elements X,={x,,, . . . , X, 5} during step 4 as the roots of
a polynomial p,(X)=tI1_,"(X-x, ) (wherein f, is a random
value for blinding) and computes the coefficients of p,(X),
Zios -+ s Ziysy in @ group defined by pk.

C computes the powers of x during step 5: 1,x, x>, . . .,
x"! and sends Enc(pk,x’) for i€[0,¥n-1]. S uses the homo-
morphic properties of the cipher during step 6 to compute
ei:Enc(pi(x)):ijoﬁ'lZjEnc(pk,xj) for each subset. S sends
e, ..., ey to Cduring step 7 and C decrypts each e, during
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step 8, if any are 0, then xEX, else the decrypted values are
random (via the t, term in each p,).

Thus, for the exemplary encryption-based protocol of
FIG. 3, in conjunction with the embodiment of FIG. 1, the
transformation 115 in step 5 comprises an encryption-based
transformation that generates an encrypted version of pow-
ers of the data element x (i.e., Enc(pk.x’) for i€[0,yn-1]). In
addition, the response 125 (e, . . ., ey;) is computed by the
server S during step 6 based on a result of an aggregation
135 of values for each subset in a partition of the data set X,
wherein each subset has at least two items, and wherein the
values for each subset are based on comparisons of the
encrypted versions of d powers of the data element and/or
encrypted versions of the items in the subset. For each
subset, the aggregation 135 optionally comprises a weighted
sum over a weighted version of the encrypted versions of d
powers of the data element. The exemplary weight com-
prises a randomized weighted sum aggregation of the
encrypted versions of one or more items in the subset. The
determination 130 of whether the data element is in the data
set comprises evaluating a decrypted version of each of the
results for one or more subsets and determining whether
each of the results of the decryption evaluations has a
predefined value.

The response for each subset allows an incremental
determination of whether the data element is in the data set.

Constructions Based on Hashing

Hashing-Based Scheme

Consider loosening the requirements of the set-member-
ship protocol and allowing the server to learn the queried
value x only if it is in the server’s set X. This corresponds
to the scenario wherein a client is querying membership in
a set, and would like to do so privately, but if the client’s
element is in the set then the client would like to perform
some action and (possibly) interact further with the server.
For example, if the set is a collection of stolen credit card
numbers, a client would not want to reveal an uncompro-
mised number; but if their number is stolen, then the server
(which is assumed to be honest-but-curious) can possibly aid
the client (e.g., by facilitating contact with credit monitoring
agencies).

One method of doing this is for the server to hash all of
the elements in its set and for the client to submit the hash
of its own request. The server then compares the client’s
hash against its set of hashes and returns the answer.
However, this scheme succumbs to an honest-but-curious
server since the client’s hash can be attacked with a brute
force analysis. Adding a random salt to the client’s hash
mitigates this risk, but increases the server’s computational
costs since the server would need to recompute the hash for
every element using the client-chosen salt. Moreover, the
server would need to do this for every client query.

Instead, a sequential, memory-hard function (first defined
in Colin Percival, Stronger Key Derivation Via Sequential
Memory-Hard Functions, http://www.tarsnap.com/scrypt/
scrypt.pdf, 2009, incorporated by reference herein) is uti-
lized for the computation of the hash. Intuitively, a memory-
hard function is one that utilizes (almost) as many memory
locations as there are total operations in the function. A
memory-hard function is sequential if it does not admit a
parallel implementation that significantly reduces the time-
memory product of the function. More specifically, if a
memory-hard function f uses T(n) time and S(n) space (so
S(n)=O(T(n)" %)) on input of size n, then ¥ is a sequential if
there is no parallel version using time T*(n) and space S*(n)
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such that T*(n)S*(n)<O(T(n)*™) for any x>0. Intuitively,
this means that, even utilizing specialized hardware and
many parallel central processing unit (CPU) cores, a parallel
algorithm has the same cost as the naive sequential algo-
rithm. These functions were designed to exploit the fact that
CPU speeds have been growing faster than memory speeds,
so increases in CPU speed do not directly translate to
more-power to compute a memory-hard function. As an
alternative, a time-lock puzzle (described in Ronald L.
Rivest et al., “Time-Lock Puzzles and Timed-Release
Crypto,” Technical Report MIT-LCS-TR-684, Cambridge,
Mass., USA, 1996. http://publications.csail.mit.edu/lcs/
pubs/pdf/M1T-LCS-TR-684.pdf, incorporated by reference
herein) can be used to ensure that a certain minimum amount
of time must pass (relative to an estimate of current and
future computational power) before the computation can
complete.

While these solutions increase the resilience of the simple
hashing-based scheme to brute force analysis, they come at
the cost of more expensive computation for clients. This is
problematic for client devices, such as smart phones.

The above-referenced work of Colin Percival proposes
the function scrypt that is sequential and memory-hard in the
Random Oracle model. The function takes as input two cost
parameters and so it can be used to drastically increase the
cost of computing the function, for instance, by a factor of
2°. In the present setup, the client would perform a single
computation of cost €2(2°) and the server would perform a
single search for the hash in its set (which can be done in
constant time via hash table or logarithmic time using a
balanced binary try). The server would incur a one time cost
of O(IXI2°) to compute the hashes for its set, but these
hashes can be reused for all client queries. If the original cost
to analyze the client’s hash with brute force was O(2%), the
cost is now O(2™). However, the server can attempt to
pre-compute the hash values for the entire universe, but the
cost of this is increased by a factor of O(2%), which can be
adjusted to be prohibitively expensive.

One weakness of this scheme comes from its strength.
Namely, the cost of O(2°) to prevent server from a successful
brute force analysis may be too expensive for a computa-
tionally-poor client. For instance, if the client is a smart-
phone, performing O(2%) memory operations is a great-deal
more expensive than it is for a high-powered server to do the
same. That is, an asymmetry in client-server computational
power can undermine the security of the scheme as smaller
values for s would need to be selected. In the next section,
another scheme is proposed that does not suffer from this
problem but achieves the same properties as this scheme.

FIG. 4 illustrates exemplary pseudo code 400 for an
exemplary hash-based scheme. As shown in FIG. 4, S
initially computes H={h,/h,=f(x,), x,£X} during step 1. C
computes h =f(x) during step 2 and sends h_to S. S tests
whether or not h,&H during step 3 and sends the response
back to C.

Bloom Filter-Based Scheme

A suite of solutions is provided using Bloom filters.

Background on Bloom Filters.

A Bloom filter is a probabilistic data structure that gives
a compact representation of a set such that there are no false
negatives and the false positive rate can be controlled.
Consider a set X of n elements wherein each element could
be quite large. The Bloom filter is constructed by creating an
array M of m bits (all initialized to 0) and using k hash
functions h;: X—[1,m]. For each element x in X, compute
h;(x), . . ., hy (x) to get k positions in the m bit array. Set
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each M[h,(x)] to 1, wherein M[{] is the i-th bit of M. The
Bloom filter is the final bitmask M.

For an element y, query whether or not it is in X by simply
computing the value h,(y) for each 1=i<k and querying each
of the M[h,(y)] bits. Then, take the AND of all of the bits to
get the result b. If b is O, then y is not in the set X. If it were,
then all of the corresponding bit positions would have been
set and b would be 1. If b is 1, then it is likely that y is in
X, but not guaranteed. In particular, because the hash
functions are random, it is possible that all of the bit
positions h,(y), . . ., h(y) were set by some subset of
elements in X. This false positive happens with probability
at most &, wherein ¢ is a function of the number of bits in the
filter m and the number of hash functions k. In particular,
(1 -~y

Given n and m, the optimal number of hash functions is
k=(m/n) In 2 and to achieve a false positive rate of &,
k=log,1/e. Thus, m=n(In 2)(log,1/¢).

FIG. 5 illustrates exemplary pseudo code 500 for an
exemplary hash-based protocol based on Bloom filters. The
exemplary Bloom filter has k hash functions h,, . . ., h,. S
initially computes the Bloom filter B for X during step 1
with m=(1/In 2)kn bits, wherein IX|=n. S then sends descrip-
tions of h;, . . ., h, to C during step 2. During step 3, C
computes q,=h,(x) for i€[1,k] ... Csends q;, ..., q,t0 S
during step 4 to fetch the corresponding bits from B. S
computes q=/\,_,"B|q,] during step 5, wherein BJ[j] is the
j-th bit of the Bloom filter B and /\ is bit-wise AND. S sends
q back to C during step 6. During step 7, if g=0, then x&#X.
It g=1, then xEX with high probability (specifically, with
probability 1-275).

Thus, for the exemplary Bloom filter-based protocol of
FIG. 5, in conjunction with the embodiment of FIG. 1, the
transformation 115 in step 3 comprises a Bloom filter-based
transformation that maps the data element to k hash values
by applying k hash functions to the data element, wherein
the k hash functions are defined by the Bloom filter. The
response 125 sent by the server S in step 6 is based on a
result of a bit-wise aggregation 135 in step 5 of k bits from
the Bloom filter, wherein a selection of the k bits is based on
the mapping and wherein the k bits depend on one or more
items in the data set by employing the k hash functions. The
determination 130 of whether the data element is in the data
set comprises determining whether the result of the bit-wise
aggregation has a predefined value.

In a variation of the the exemplary Bloom filter-based
protocol of FIG. 5, the aggregation can be performed by the
client C. In such a client-side aggregation, the response 125
comprises k bits retrieved from the Bloom filter correspond-
ing to a mapping of the data element x to k hash values by
applying k hash functions to the data element x, wherein the
k hash functions are defined by the Bloom filter, and wherein
the determination of whether the data element x is in the data
set X includes a bit-wise aggregation of at least a portion of
the k bits.

Naive Bloom Filter Construction.

In one construction based on Bloom filters, the Bloom
filter is constructed for the set X the server has and it is
divided into b fixed-sized blocks of consecutive bits. When
a client C wants to query whether or not item x is in X, the
client simply hashes x using each of the hash function to
retrieve the bit indices for x. C then requests the k blocks
containing the bit indices of x. Note that in this construction,
the server knows the positions in the Bloom filter to which
the hashes of the client input x get mapped, and thus can
infer information about the value of x if xEX. In this
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manner, the client retrieves the k blocks of bits from the
Bloom filter and the client performs the aggregation locally
itself.

For the exemplary naive Bloom filter construction, the
response 125 comprises k blocks of bits retrieved from the
Bloom filter based on the Bloom filter-based transformation
of the data element x and wherein the determination 130 of
whether the data element is in the data set performs a
bit-wise aggregation 135 of selected bits from one or more
of the k blocks of bits retrieved from the Bloom filter. The
bit selection is based on a mapping of the data element to k
hash values by applying k hash functions to the data ele-
ment, wherein the k hash functions are defined by the Bloom
filter.

Among other benefits, the exemplary naive Bloom filter
construction permits an incremental determination of
whether the data element is in the data set.

Adding Chaff Values.

Chaff values can be added to each request (i.e., request
additional blocks of the Bloom filter) in order to hide which
blocks the client input is mapped to. It can be shown that
unless the amount of requested chaff is large (close to the
size of the full Bloom filter), this solution provides only
limited amount of privacy protection to the client.

Note that the set X can be updated over time and thus the
client can make multiple queries over time with the same
element x. If C chooses random chaff blocks for each query,
then the server can simply take the intersection of the queries
and quickly determine the k blocks desired by the client.
Thus, C must query the same chaff each time. However, this
assumes that the Bloom filter is not resized. If it must be
resized, e.g., due to a false positive rate that is too high, then
as part of the resizing, k new hash functions are selected
(because the previous ones had a different output range) and
the client must select new chaff blocks.

There is a generic attack that the server can perform on
client queries to find out information about the client input
x. First, assume the server has a set X of n elements, k hash
functions, m=n(ln 2)(log,1/e), and that the Bloom filter is
divided into b blocks of 1 bits each (so m=bl). Assume that
in addition to k blocks that x maps to, the client requests ¢
additional chaff blocks, randomly generated. The server
enumerates all elements in the set X and the whole universe
U (of size u) to identify a candidate set Y= U to which x
belongs. If Y is small, then the server identifies the client
input x with high probability.

Proposition 1.

With the above parameterization, if c-randomly generated
chaff blocks are added to each query, the expected size of the
candidate set Y is upper-bounded by:

k+cy .
1.E[Y]51+n(T] ,if x € X;

k+c
2. E[Y]su( 5

3
],ifxe [7AV.@

Consider the following parameterization: n=2°", g=2""2%,
so k=128, m=2%, 1=21°, b=2%* and c=128. With these
parameters,
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2561128 1 4128 1
S T E S
224 216 22048

giving an expected size of Y upper-bounded by

Jeor T 1

It can be observed that the server has an overwhelming
probability of guessing the client input x.

How much of the Bloom filter must be requested by the
client to prevent the server from learning that XX can be
quantified. Specifically, how much of the Bloom filter must
be sent to have the expected size of candidate set Y be
greater than or equal to some function f. Given a y-fraction
of'the Bloom filter where, the probability that all k hashes for
a given element XX are in that y-fraction is v*. Let Y be the
set formed by the server after performing the “universe
enumeration” on just the set X. Then, the expected size of
the set 1Y is 1+4ny~.

To have 1+ny*=f(n) for some function f, then:

L+ny = fn)
Y=(fm-1D/n
y=¥Gmw-D/n

To obtain, say, E[IYI]=f(n)=C, for some constant C, then

y=VNC=-D/n,

which requires that

m¥(C=Djn = 1.4 k=Y C - D)

bits are sent. For parameters wherein k=32, n=2° and C=2*°
(for example),

144525 £ (225)C1PD RYD10 o 144502922 191082 530

bits would need to be sent. Since the Bloom filter has
1.44%2%%2%=1 44%23° bits, approximately a
1/1.44~0.694—{raction of the Bloom filter would need to be
sent.

Generating Chaff from Valid Inputs.

To somewhat mitigate the above attack, a different chaff
generation method is proposed. Rather than choosing the ¢
chaff blocks at random, z valid inputs are generated from the
universe U and c are the blocks corresponding to hashes of
these inputs. With this method, intuitively the client obtains
z-anonymity in that its input is hidden among the set of z
inputs. The following bounds follow immediately:

Proposition 2.

If the chaff is generated from the positions of z elements
chosen form universe U (and thus c=kz), then the expected
size of the candidate set Y is upper-bounded by:
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k+cy
1.E[Y]51+n(T] ,if x € X;

k+cy
2. E[Y]su(u—z)(T] Lif x € UNX.

In light of the above analysis, there are several mitigations
that can be added to the scheme to limit the amount of
information the server learns about the client input. The
client should query the same set of blocks each time when-
ever querying the same element x to prevent the server from
taking a simple intersection and learning the k blocks
wanted by the client. The ratio of chaff blocks ¢ to the total
number of blocks b should not be too small. Otherwise, the
expected number of set items whose k blocks are in the c+k
set is small. The chaff blocks should be selected by gener-
ating fake, properly formatted set items and adding their
respective k blocks to the query. Accordingly, if there are z
fake items, then the client has z-anonymity in the universe
U.

Credit Card Application.

One possible application of this scheme is for users to
check if their credentials, such as credit card numbers, have
been stolen. Consider the feasibility of the above brute force
attack with respect to credit card numbers. For the universe
of credit card numbers, ostensibly there are 10*® possible
credit cards with 16-digit card numbers. However, credit
card numbers have a specific format wherein the first 6 digits
are the issuer identification number, the next 9 digits are the
account number, and the last digit is a checksum digit. So,
already, there is a 10-fold decrease in the search space. For
a given issuer, there can be at most 10° (just under 2°°) cards
issued, which is feasible to obtain via a brute force analysis.
Since Visa™ and MasterCard™ are the largest providers, a
brute force analysis of just those two ranges will likely cover
most client queries.

Credit cards also contain additional information beyond
the 16-digit number that can be used to undermine a brute
force analysis. (Indeed, the magnetic stripe on the card,
which is often what is stolen, contains much more informa-
tion.) In particular, each credit card has an expiration date,
the card holder’s name, and many have a 3-digit CVV (card
verification value) code on the back as well. While adding
these dimensions to the data increases the size of U, the set
is still not exponentially large. According to the United
States Census Bureau, for example, as of 2000 there are just
over 150000 surnames in the United States that occur over
100 times. Moreover, these 150000 surnames covered nearly
90% of the total population with over half covered by the top
3300 names. In the 1990 census, there were approximately
5500 first names (male and female) in use in the United
States. Furthermore, card validity periods are typically a
handful of years with expiration dates at the granularity of
months. This gives at most a few dozen to a few hundred
additional possibilities.

Putting these all together, for a given issuer, the search
space is approximately 2°°*217#213%27=257 possibilities (as-
suming 27 possible expiration dates), which is just past the
edge of “feasibility.” But, intelligent pruning can reduce this,
for example, taking the top 3300 surnames reduces the
search space by a factor of 45 giving a size of approximately
2613 If the server knows the client’s name (e.g., if the server
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requires registration to use the service) then the search space
is just 237 (with perhaps an additional multiplicative factor
for the middle initial). This implies that the brute force
analysis of the entire credit card space, for a single issuer, is
right at the edge of feasibility for the server if the name on
the card is not known. If the name is known (e.g., the client
must register before making queries) then it is entirely
feasible for the server to obtain the number via brute force.

Privacy for the Server.

The dual concern stated above is that the server would like
to keep the set private from overly curious clients. In
particular, a client may try to learn about additional elements
that are in the server’s set X. When interacting with the
server, the client retrieves k+c random blocks (out of b)
possible, each containing 1 bits. The client can then perform
the generic attack described above with the server but,
instead, enumerates the universe U of possible set elements
to learn the contents of X. Using the above analysis, the
client will have (on average)

c+ kK
|U|( ]
b

elements and a e-fraction will be false positives.

Bit-Level Chaff.

Instead of querying blocks of bits, the client can query
individual bits from the Bloom filter. To maintain privacy of
the server with respect to preventing leakage to the client of
the additional chaff bits queried by the client, an additively
homomorphic encryption scheme can be used as follows:
The client can encrypt a binary value of 1 for each “real”
index being queried and encrypt a binary value of O for any
chaff such index, and provide these encrypted values to the
server to be used as mask values. For each queried Bloom-
filter bit b (corresponding to some index i), the server
computes b*c,, where c, is the unique ciphertext to be used
as mask for the bit b in index i and which was provided by
the client to the server as part of the query. If ¢, is an
encryption of 1, then when the client decrypts, the plaintext
will be the bit b. If ¢, is an encryption of 0, then the
decrypted plaintext will also be 0, thus the client does not get
to learn the chaff bits that were queried, and correspondingly
the server does not get to learn which of the queried bits
were real and which were chaff. The client can simply ignore
all ciphertexts for the chaff queries, and hence only requires
k decryptions for the response, where k is the number of real
bit queries. If the cipher permits re-randomization, then the
cost for the client to generate the queries is just 2 encryptions
and k+c-2 re-randomizations, where c is the number of chaff
bit queries.

Bloom Filters-Based Scheme with PIR

In light of the above discussions, the difficulty of provid-
ing strong privacy to both the client and server is evident
(indeed, these two efforts are opposed to each other). To
mitigate client privacy concerns, instead of fetching the bits
directly, a private information retrieval scheme (PIR) is
applied to fetch the desired k bits without revealing to the
server which bits were fetched.

For a discussion of exemplary PIR schemes, see, for
example, Calors Aguilar-Melcho and Philippe Gaborit, “A
Lattice-Based Computationally-Efficient Private Informa-
tion Retrieval Protocol,” Second Western European Work-
shop on Research in Cryptology (WEWoRC), Vol. 4945 of
Lectures Notes in Computer Science (2007); Casey Devet et
al., “Optimally Robust Private Information Retrieval,” Proc.
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of the 21st USENIX Conference on Security Symposium,
Security *12, Berkeley, Calif., USA (2012); Yael Gertner et
al,, “Protecting Data Privacy in Private Information
Retrieval Schemes,” Proc. of the 30th Annual ACM Sym-
posium on Theory of Computing, STOC ’98, pages 151-160,
New York, N.Y., USA (1998); or Eyal Kushilevitz and Rafail
Ostrovsky, “Replication is Not Needed: Single Database,
Computationally-private Information Retrieval,” Proc. of
the 38th Annual Symposium on Foundations of Computer
Science, FOCS °97, page 364, Washington, D.C., USA
(1997).

FIG. 6 illustrates exemplary pseudo code 600 for an
exemplary hash-based protocol utilizing Bloom filters and
PIR in accordance with an aspect of the present invention,
for an exemplary Bloom filter having k hash functions
h,, ..., h, and a (single-server, computational) PIR scheme
P. During step 1, S computes the Bloom filter B for X with
m=(1/In 2)kn bits, wherein |X|=n. S sends descriptions of
h,, ..., h; to C during step 2. During step 3, C computes
q~h; (x) for i€[1,k]. C uses k parallel invocations of P
during step 4 to retrieve bits q;, . . ., q,. During step 5, C
computes q=/\,_,“B[q,], wherein B[j] is the j-th bit of the
Bloom filter B and /\ is bit-wise AND. During step 6, if q=0,
then x&#X. If g=1, then XX with high probability (specifi-
cally, with probability 1-27%).

Thus, for the exemplary Bloom filter and PIR-based
protocol of FIG. 6, in conjunction with the embodiment of
FIG. 1, the transformation 115 in step 3 comprises a map-
ping of said at least one data element to k hash values by
applying k hash functions to said at least one data element,
wherein said k hash functions are defined by said Bloom
filter. The determination 130 of whether the data element is
in the data set is based on a result of a bit-wise aggregation
135 during step 5 and an evaluation of a value of the bit-wise
aggregation 135 of k bits from the Bloom filter based on the
mapping. The client C obtains the response 125 during step
4 using a private information retrieval (PIR) scheme. The
response 125 comprises k bits from the Bloom filter, wherein
the k bits are obtained using a private information retrieval
(PIR) scheme. A selection of the k bits is based on the
mapping, and the k bits depend on one or more items in the
data set by employing the k hash functions. The determina-
tion 130 of whether the data element is in the data set
comprises performing a bit-wise aggregation of at least a
portion of the k bits and determining whether the result of
the bit-wise aggregation has a predefined value.

Among other benefits, the exemplary the exemplary
Bloom filter and PIR-based protocol of FIG. 6 permits an
incremental determination of whether the data element is in
the data set.

Previous work has explored the application of other
cryptographic primitives (e.g., oblivious transfer) in combi-
nation with Bloom filters to guarantee clients’ privacy.
However, known prior scheme have linear communication
costs for privately performing set membership test. The
application of PIR protocols in one or more embodiments of
the present invention enables sublinear communication cost
to be achieved for the first time. With recent advances in PIR
design based on lattice cryptography, the computational
costs of the disclosed scheme is not prohibitive for practical
deployment.

As an optimization, batch codes (see, e.g., Yuval Ishai et
al., “Batch Codes and Their Applications,” Proc. of the
Thirty-sixth Annual ACM Symposium on Theory of Comput-
ing, STOC °04, pages 262-271, New York, N.Y., USA
(2004)) allow for amortization of the PIR costs, In particular,
the server divides its Bloom filter B into k blocks and
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encodes it with a batch (m,k,b) batch codes. The result is m
blocks wherein the client must read at most b bits from each
block to recover any k bits of the original Bloom filter. This
allows m PIRs to be performed on segments of the filter
instead of k PIRs on the entire Bloom filter.

PIR schemes, while they protect the client, offer no
privacy guarantees for the server. Indeed, many PIR
schemes are vulnerable to overly-curious clients that may
fetch extra bits. PIR schemes the also provide privacy for the
server are called symmetric PIRs (see, e.g., Yael Gertner et
al,, “Protecting Data Privacy in Private Information
Retrieval Schemes,” Proc. of the 30th Annual ACM Sympo-
sium on Theory of Computing, STOC *98, pages 151-160,
New York, N.Y., USA (1998)). Fortunately, the above analy-
sis implies that if the client does not retrieve a large portion
of'the Bloom filter, then it is very unlikely that the client will
learn anything about the server’s set X.

Two-Server Bloom Filters-Based Scheme with OPRF

In the case of multiple servers, the use of PIR schemes are
not needed. In particular, with two servers S, and S,, leakage
from the plain Bloom filter scheme above (i.e., no PIR) can
be prevented by having S, construct the Bloom filter using
keyed hash functions but keeping the keys secret. In par-
ticular, S, would choose several secret keys, one for each of
the k hash functions and then use the hash functions for
constructing the Bloom filter. Once the Bloom filter is
constructed, it is sent to S,, but the keys are kept secret.

When a client C wishes to determine if its element s is in
the servers’ set X, C then engages in an OPRF protocol with
S, to learn the k bit-indices associated with x. The client C
then simply queries the corresponding bits from S,.

Since the Bloom filter is constructed using keyed, secure
hash functions, S, cannot “reverse-engineer” C ’s query. S,
still learns the result of the query, but that is all. The server
S, learns nothing about the element x due to the security of
the OPRF scheme.

Note that the k invocations of the OPRF protocol can be
replaced with a single invocation. The result of that can be
fed (by the client) into a key-derivation function to derive
the k keys for the hash functions. (This, of course, requires
the server to use the same key-derivation process.)

Use Case:

Major credit card providers, having their own PRF and
having built a Bloom filter of compromised cards (or some-
thing else), send their Bloom filters to a central database
(DB) that users can query. In this basic setup, the central DB
would have a separate Bloom filter for each provider.
Instead, the Bloom filter can be constructed to be the optimal
filter for the union of the providers sets (this can be done by
the providers simply sending the size of their set). Each
provider still uses a PRF with a secret key but then interacts
with the DB to set the appropriate bits.

Another use case comprises privately checking whether
private personal data of a person (e.g, sensitive information)
is in a private dataset of collected private personal data of a
population of persons that are related to a specific private
(sensitive) property. For example, a person’s genome can be
checked against a database of genomes (of patients) related
to a particular disease.

In one exemplary implementation, the database can be
calibrated to have an input set the size of the union of the sets
and everyone has the same number of hash functions. The
result is the superposition of “underfull” Bloom filters for
each provider. That is, if there are three providers with n
element sets, then the filter is configured for a 3n element set
and the final result is a superpositioning of three Bloom
filters, each of which are only one third full. Alternatively,
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the Bloom filter can be constructed to have 3k hash functions
instead. Then, the resulting Bloom filter is the result of each
provider only using a subset of the possible functions.

FIG. 7 illustrates exemplary pseudo code 700 for an
exemplary hash-based scheme utilizing two-server Bloom
filters and OPRF in accordance with an aspect of the present
invention. The implementation of FIG. 7 assumes that the
two servers S, and S, are non-communicating and non-
colluding with one another. Server S, has a set
X={x,, ..., X,}, and server S, will hold a Bloom filter B.
The exemplary OPRF scheme F is for a PRF f, and the
Bloom filter has k hash functions h,, . . ., h,, derived from
f.

Server S, generates a random key k and uses f, (*) to
create the Bloom filter B during step 1 (possibly acting as
both the Sender and Receiver in the OPRF protocol, if
necessary). During step 2, S, sends B to S, but keeps k. C
then interacts during step 3 with S, using F to learn q,=h,(x)
for i€[1,k]. Finally, during step 4, C queries the Bloom filter
bits in locations q;, . . . , q directly from S,. Bit-wise
aggregation is then performed by the second server (or the
client itself) in the manner described above.

Thus, for the exemplary Bloom filter and OPRF-based
protocol of FIG. 7, in conjunction with the embodiment of
FIG. 1, the transformation 115 in step 3 comprises a map-
ping of the data element to k hash values by applying k hash
functions to the data element, wherein the k hash functions
are defined by the Bloom filter. The Bloom filter-based
transformation of the data element is obtained from the
server S, as part of the response 125. Thus, the response 125
from the server comprises the Bloom filter-based transfor-
mation of the data element. Each of the k hash functions of
the mapping comprises an oblivious pseudo random func-
tion (OPRF). The determination 130 of whether the data
element is in the data set comprises obtaining a bit-wise
aggregation of k bits from the Bloom filter stored at server
S, and obliviously obtained from said server S, and deter-
mining whether said result of said bit-wise aggregation has
a predefined value. A selection of the k bits is based on the
mapping and the k bits depend on one or more items in the
data set by employing the k OPRFs.

In a variation of the the exemplary Bloom filter-based
protocol of FIG. 5, the aggregation can be performed by the
client C. In such a client-side aggregation, the response 125
comprises k bits retrieved from the Bloom filter correspond-
ing to a mapping of the data element x to k hash values by
applying k hash functions to the data element x, wherein the
k hash functions are defined by the Bloom filter, and wherein
the determination of whether the data element x is in the data
set X includes a bit-wise aggregation of at least a portion of
the k bits.

Among other benefits, the exemplary Bloom filter and
OPRF-based protocol of FIG. 7 allows an incremental
determination of whether the data element is in the data set.

The exemplary protocol 700 assumes that S, cannot see
any of the communications between the client and S,
(implicit in the non-collusion of the servers). The OPRF step
can be optimized to perform a single invocation of the
protocol to obtain a secret key k. corresponding to x (which
would be different for each x). This key can then be used in
a key-derivation function to compute keyed-hashes for
hy, ..., h.

The disclosed PIR-based scheme can be improved using
batch codes (see, e.g., Yuval Ishai et al., “Batch Codes and
Their Applications,” Proc. of the Thirty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’04, pages
262-271, New York, N.Y., USA (2004)) that amortize the
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cost of PIR. In addition, using multiple servers allows for
using information-theoretic PIR schemes (such as those
described in Casey Devet et al., “Optimally Robust Private
Information Retrieval,” Proc. of the 21st USENIX Confer-
ence on Security Symposium, Security '12, Berkeley, Calif.,
USA (2012)) that can be more efficient than single-server
computational schemes (see, e.g., Femi Olumofin and Ian
Goldberg, “Revisiting the Computational Practicality of
Private Information Retrieval,” Proc. of the 15th Interna-
tional Conference on Financial Cryptography and Data
Security, FC ’11, pages 158-172 (February 2011).

CONCLUSION

The foregoing applications and associated embodiments
should be considered as illustrative only, and numerous
other embodiments can be configured using the techniques
disclosed herein, in a wide variety of different cryptography
applications.

For example, both the split server and the auxiliary-
channel handling methods described herein can be extended
in the case of more than two servers, assuming a token-side
design that supports such extensions. For instance, if a
passcode comprises of three protocode parts, say red, blue
and green, then vertical splitting can be considered into three
corresponding parts. Splitting into more parts than the
number of protocodes is also possible if the appropriate
pseudorandom information is appropriately disseminated
among the servers. Similarly, auxiliary-channel handling
can be supported in multi-server settings.

It should also be understood that split-server verification,
as described herein, can be implemented at least in part in
the form of one or more software programs stored in
memory and executed by a processor of a processing device
such as a computer. As mentioned previously, a memory or
other storage device having such program code embodied
therein is an example of what is more generally referred to
herein as a “computer program product.”

The embodiments described herein can provide a number
of significant advantages relative to conventional practice.
For example, these embodiments can advantageously pro-
vide improved scalability and support of auxiliary channels.
Also, a wide variety of different one-time passcode (OTP)
verification protocols can be implemented using the dis-
closed techniques.

Authentication processes in other embodiments may
make use of one or more operations commonly used in the
context of conventional authentication processes. Examples
of conventional authentication processes are disclosed in A.
J. Menezes et al., Handbook of Applied Cryptography, CRC
Press, 1997, which is incorporated by reference herein.
These conventional processes, being well known to those
skilled in the art, will not be described in further detail
herein, although embodiments of the present invention may
incorporate aspects of such processes.

The communication system may be implemented using
one or more processing platforms. One or more of the
processing modules or other components may therefore each
run on a computer, storage device or other processing
platform element. A given such element may be viewed as
an example of what is more generally referred to herein as
a “processing device.”

Referring now to FIG. 8, one possible processing platform
that may be used to implement at least a portion of one or
more embodiments of the invention comprises cloud infra-
structure 800. The cloud infrastructure 800 in this exemplary
processing platform comprises virtual machines (VMs) 802-
1, 802-2, . . . 802-M implemented using a hypervisor 804.
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The hypervisor 804 runs on physical infrastructure 805. The
cloud infrastructure 800 further comprises sets of applica-
tions 810-1, 810-2, . . . 810-M running on respective ones of
the virtual machines 802-1, 802-2, . . . 802-M under the
control of the hypervisor 804.

The cloud infrastructure 800 may encompass the entire
given system or only portions of that given system, such as
one or more of client, servers, controller, authentication
server or relying server in the system.

Although only a single hypervisor 804 is shown in the
embodiment of FIG. 8, the system may of course include
multiple hypervisors each providing a set of virtual
machines using at least one underlying physical machine.

An example of a commercially available hypervisor plat-
form that may be used to implement hypervisor 804 and
possibly other portions of the system in one or more embodi-
ments of the invention is the VMware® vSphere™ which
may have an associated virtual infrastructure management
system, such as the VMware® vCenter™. The underlying
physical machines may comprise one or more distributed
processing platforms that include storage products, such as
VNX and Symmetrix VMAX, both commercially available
from EMC Corporation of Hopkinton, Mass. A variety of
other storage products may be utilized to implement at least
a portion of the system.

Another example of a processing platform is processing
platform 900 shown in FIG. 9. The processing platform 900
in this embodiment comprises at least a portion of the given
system and includes a plurality of processing devices,
denoted 902-1, 902-2, 902-3, . . . 902-D, which communi-
cate with one another over a network 904. The network 904
may comprise any type of network, such as a wide area
network (WAN), a local area network (LAN), a satellite
network, a telephone or cable network, a cellular network, a
wireless network such as WiFi or WiMAX, or various
portions or combinations of these and other types of net-
works.

The processing device 902-1 in the processing platform
900 comprises a processor 910 coupled to a memory 912.
The processor 910 may comprise a microprocessor, a micro-
controller, an application specific integrated circuit (ASIC),
an field programmable gate array (FPGA) or other type of
processing circuitry, as well as portions or combinations of
such circuitry elements, and the memory 912, which may be
viewed as an example of a “computer program product”
having executable computer program code embodied
therein, may comprise random access memory (RAM), read
only memory (ROM) or other types of memory, in any
combination.

Also included in the processing device 902-1 is network
interface circuitry 914, which is used to interface the pro-
cessing device with the network 904 and other system
components, and may comprise conventional transceivers.

The other processing devices 902 of the processing plat-
form 900 are assumed to be configured in a manner similar
to that shown for processing device 902-1 in the figure.

Again, the particular processing platform 900 shown in
the figure is presented by way of example only, and the given
system may include additional or alternative processing
platforms, as well as numerous distinct processing platforms
in any combination, with each such platform comprising one
or more computers, storage devices or other processing
devices.

Multiple elements of system may be collectively imple-
mented on a common processing platform of the type shown
in FIG. 8 or 9, or each such element may be implemented on
a separate processing platform.
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As is known in the art, the methods and apparatus
discussed herein may be distributed as an article of manu-
facture that itself comprises a computer readable medium
having computer readable code means embodied thereon.
The computer readable program code means is operable, in
conjunction with a computer system, to carry out all or some
of'the steps to perform the methods or create the apparatuses
discussed herein. The computer readable medium may be a
tangible recordable medium (e.g., floppy disks, hard drives,
compact disks, memory cards, semiconductor devices,
chips, application specific integrated circuits (ASICs)) or
may be a transmission medium (e.g., a network comprising
fiber-optics, the world-wide web, cables, or a wireless
channel using time-division multiple access, code-division
multiple access, or other radio-frequency channel). Any
medium known or developed that can store information
suitable for use with a computer system may be used. The
computer-readable code means is any mechanism for allow-
ing a computer to read instructions and data, such as
magnetic variations on a magnetic media or height varia-
tions on the surface of a compact disk.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many variations and other alternative
embodiments may be used. For example, the techniques are
applicable to a wide variety of other types of cryptographic
devices and authentication systems that can benefit from
distributed cryptography using distinct value sets as dis-
closed herein. Also, the particular configuration of commu-
nication system and processing device elements shown
herein, and the associated authentication techniques, can be
varied in other embodiments. Moreover, the various simpli-
fying assumptions made above in the course of describing
the illustrative embodiments should also be viewed as
exemplary rather than as requirements or limitations of the
invention. Numerous other alternative embodiments within
the scope of the appended claims will be readily apparent to
those skilled in the art.

What is claimed is:

1. A method for determining whether at least one data
element of a client is in a data set of a server, said method
comprising:

obtaining at said client, using at least one processing

device, a transformation of said at least one data
element;
receiving at said client, using at least one processing
device, a response from said server based on said
transformation of said at least one data element,
wherein said transformation comprises one or more of
a Bloom filter-based transformation that employs a
Bloom filter comprising a plurality of hash functions
and an encryption-based transformation; and

determining at said client, using at least one processing
device, whether said at least one data element is in said
data set based on said response, wherein one or more of
said response and said determining is based on a result
of at least one aggregation of a plurality of values that
depend on said at least one data element and one or
more items in said data set as chaff values configured
to obscure said at least one data element within the
aggregation of said plurality of values.

2. The method of claim 1, wherein said Bloom filter-based
transformation of said at least one data element comprises a
mapping of said at least one data element to k hash values
by applying k of said plurality of hash functions to said at
least one data element, wherein said k hash functions are
defined by said Bloom filter.
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3. The method of claim 2, wherein said response is based
on said result of at least one aggregation and wherein said at
least one aggregation comprises performing a bit-wise
aggregation of k bits from said Bloom filter stored at said
server, wherein a selection of said k bits is based on said
mapping and wherein said k bits depend on said one or more
items in said data set by employing said k hash functions.

4. The method of claim 3, wherein said step of determin-
ing whether said at least one data element is in said data set
comprises determining whether said result of said bit-wise
aggregation has a predefined value.

5. The method of claim 2, wherein said response com-
prises k blocks of bits from said Bloom filter stored at said
server, wherein a selection of said k blocks of bits is based
on said mapping, wherein said k blocks of bits depend on
one or more items in said data set by employing said k hash
functions and wherein said determining whether said at least
one data element is in said data set comprises:

performing a bit-wise aggregation of one or more bits

from at least a portion of said k blocks of bits, wherein
a selection of said one or more bits is based on said
mapping; and

determining whether said result of said bit-wise aggrega-

tion has a predefined value.

6. The method of claim 2, wherein said response com-
prises k bits from said Bloom filter stored at said server,
wherein said k bits are obtained using a private information
retrieval (PIR) scheme, wherein a selection of said k bits is
based on said mapping, and wherein said k bits depend on
one or more items in said data set by employing said k hash
functions.

7. The method of claim 6, wherein said determining
whether said at least one data element is in said data set
comprises performing a bit-wise aggregation of at least a
portion of said k bits and determining whether said result of
said bit-wise aggregation has a predefined value.

8. The method of claim 2, wherein said Bloom filter-based
transformation of said at least one data element is obtained
from said server as part of said response, wherein said
response from said server comprises said Bloom filter-based
transformation of said at least one data element and wherein
said k hash functions of said mapping each comprises an
oblivious pseudo random function (OPRF).

9. The method of claim 8, wherein said determining
whether said at least one data element is in said data set
comprises obtaining a bit-wise aggregation of k bits from
said Bloom filter stored at a second server and obliviously
obtained from said server, wherein a selection of said k bits
is based on said mapping and wherein said k bits depend on
one or more items in said data set by employing said k
OPRF's, and determining whether said result of said bit-wise
aggregation has a predefined value.

10. The method of claim 2, wherein said response com-
prises k bits from said Bloom filter, wherein a selection of
said k blocks of bits is based on said mapping, wherein said
k blocks of bits depend on one or more items in said data set
by employing said k hash functions and wherein said
determining whether said at least one data element is in said
data set comprises performing a bit-wise aggregation of at
least a portion of said k bits and determining whether said
result of said bit-wise aggregation has a predefined value.

11. The method of claim 1, wherein said Bloom filter
employed by said Bloom filter-based transformation is com-
puted over one or more of items of said data set prior to said
obtaining by applying one or more of said plurality of hash
functions on said data set.
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12. The method of claim 1, wherein said encryption-based
transformation comprises one or more of an encrypted
version of said at least one data element and an encrypted
version of d powers of said at least one data element.

13. The method of claim 12, wherein said response is
based on said result of at least one aggregation of said
plurality of values and wherein said plurality of values is
based on one or more comparisons between said encryption-
based transformation of said at least one data element and an
encrypted version of one or more items in said data set.

14. The method of claim 13, wherein said response
comprises a result of a product aggregation of values,
wherein each of said values comprises a comparison
between said encryption-based transformation of said at
least one data element and an encrypted version of one item
in said data set.

15. The method of claim 13, wherein said determining
whether said at least one data element is in said data set
comprises determining whether a decrypted version of said
response has a predefined value.

16. The method of claim 13, wherein said at least one
aggregation comprises at least one aggregation of values for
each subset in a plurality of subsets in a partition of said data
set, wherein each of said subsets has at least two items, and
wherein said values for each subset are based on one or more
comparisons of one or more encrypted versions of d powers
of said at least one data element and said encrypted version
of said one or more items in said subset.

17. The method of claim 16, wherein for each of said
subsets, said at least one aggregation comprises a sum over
weighted versions of said encrypted versions of d powers of
said at least one data element, wherein said weighted ver-
sions comprise a weighted sum aggregation of said
encrypted version of said one or more items in said subset.

18. The method of claim 17, wherein said determining
whether said at least one data element is in said data set
comprises determining whether a decrypted version of each
of final results for one or more of said subsets has a
predefined value.

19. The method of claim 1, wherein said encryption-based
transformation employs a homomorphic encryption scheme.

20. The method of claim 12, wherein said encrypted
version of said one or more items in said data set is generated
by said server substantially contemporaneously with a gen-
eration of said response.

21. The method of claim 1, wherein said response is based
on a test performed on one or more of said transformation of
said at least one data element and a transformation of said
data set.

22. The method of claim 1, wherein said response from
said server is further based on a transformation of said data
set.

23. The method of claim 1, further comprising determin-
istically partitioning said data set into a plurality of disjoint
subsets and applying one or more of said Bloom filter-based
transformation and said encryption-based transformation to
each of said plurality of disjoint subsets to determine
whether said at least one data element is in said data set.

24. The method of claim 1, wherein said at least one data
element comprises one or more of a credit card number, a
user credential and a personal data item, and wherein said
data set comprises one or more of a list of stolen credit card
numbers, a list of compromised credentials and a data set of
personal data.

25. The method of claim 1, wherein one or more of a
communication cost and a computation cost are less than a
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linear proportion of a size of a set comprised of said at least
one data element and said data set.

26. The method of claim 1, wherein said transformation of
said at least one data element comprises a privacy-preserv-
ing transformation.

27. The method of claim 1, wherein said at least one
aggregation does not reveal said one or more items in said
data set to said client.

28. An apparatus for determining whether at least one data
element of a client is in a data set of a server, said apparatus
comprising:

a memory; and

at least one processing device, coupled to the memory,

operative to implement the following steps:
obtaining at a client, using at least one processing device,
a transformation of said at least one data element;

receiving at a client, using at least one processing device,
a response from said server based on said transforma-
tion of said at least one data element, wherein said
transformation comprises one or more of a Bloom
filter-based transformation that employs a Bloom filter
comprising a plurality of hash functions and an encryp-
tion-based transformation; and

determining at a client, using at least one processing

device, whether said at least one data element is in said
data set based on said response, wherein one or more of
said response and said determining is based on a result
of at least one aggregation of a plurality of values that
depend on said at least one data element and one or
more items in said data set as chaff values configured
to obscure said at least one data element within the
aggregation of said plurality of values.

29. The apparatus of claim 28, wherein said encryption-
based transformation comprises an encrypted version of said
at least one data element, wherein said response comprises
a product aggregation of values, wherein each of said values
comprises a comparison between said encryption-based
transformation of said at least one data element and an
encrypted version of an item in said data set, and wherein
said determining whether said at least one data element is in
said data set comprises evaluating a decrypted version of
said response and determining whether said result of said
decryption evaluation has a predefined value.

30. The apparatus of claim 28, wherein said encryption-
based transformation comprises an encrypted version of d
powers of said at least one data element, wherein said at least
one aggregation comprises at least one aggregation of values
for each subset in a plurality of subsets in a partition of said
data set, wherein each of said subsets has at least two items,
and wherein said values for each of said subsets are based on
one or more comparisons of one or more of said encrypted
version of d powers of said at least one data element and an
encrypted version of said one or more items in said subset,
wherein for each of said subsets, said at least one aggrega-
tion comprises a sum over weighted versions of said
encrypted version of d powers of said at least one data
element, wherein said weighted versions comprise a
weighted sum aggregation of said encrypted version of said
one or more items in said subset, wherein said determining
whether said at least one data element is in said data set
comprises determining whether a decrypted version of each
of final results for one or more of said subsets has a
predefined value.

31. The apparatus of claim 28, wherein said Bloom
filter-based transformation of said at least one data element
comprises a mapping of said at least one data element to k
hash values by applying k hash functions to said at least one
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data element, wherein said k hash functions are defined by
said Bloom filter, wherein said response is based on said
result of at least one aggregation and wherein said at least
one aggregation comprises performing a bit-wise aggrega-
tion of k bits from said Bloom filter stored at said server,
wherein a selection of said k bits is based on said mapping
and wherein said k bits depend on said one or more items in
said data set by employing said k hash functions, and
wherein said determining whether said at least one data
element is in said data set comprises determining whether
said result of said bit-wise aggregation has a predefined
value.

32. The apparatus of claim 28, wherein said Bloom
filter-based transformation of said at least one data element
comprises a mapping of said at least one data element to k
hash values by applying k hash functions to said at least one
data element, wherein said k hash functions are defined by
said Bloom filter, wherein said response comprises k bits
from said Bloom filter stored at said server, wherein said k
bits are obtained using a private information retrieval (PIR)
scheme, wherein a selection of said k bits is based on said
mapping, wherein said k bits depend on one or more items
in said data set by employing said k hash functions, and
wherein said determining whether said at least one data
element is in said data set comprises performing a bit-wise
aggregation of at least a portion of said k bits and deter-
mining whether said result of said bit-wise aggregation has
a predefined value.

33. The apparatus of claim 28, wherein said Bloom
filter-based transformation of said at least one data element
comprises a mapping of said at least one data element to k
hash values by applying k hash functions to said at least one
data element, wherein said k hash functions are defined by
said Bloom filter, wherein said Bloom filter-based transfor-
mation of said at least one data element is obtained from said
server as part of said response, wherein said response from
said server comprises said Bloom filter-based transformation
of said at least one data element and wherein said k hash
functions of said mapping each comprises an oblivious
pseudo random function (OPRF), and wherein said deter-
mining whether said at least one data element is in said data
set comprises obtaining a bit-wise aggregation of k bits from
said Bloom filter stored at a second server and obliviously
obtained from said server, wherein a selection of said k bits
is based on said mapping and wherein said k bits depend on
one or more items in said data set by employing said k
OPRF's, and determining whether said result of said bit-wise
aggregation has a predefined value.

34. A computer program product for determining whether
at least one data element of a client is in a data set of a server,
comprising a non-transitory machine-readable storage
medium having encoded therein executable code of one or
more software programs, wherein the one or more software
programs when executed perform the following steps:

obtaining at said client, using at least one processing

device, a transformation of said at least one data
element;

receiving at said client, using at least one processing

device, a response from said server based on said
transformation of said at least one data element,
wherein said transformation comprises one or more of
a Bloom filter-based transformation that employs a
Bloom filter comprising a plurality of hash functions
and an encryption-based transformation; and
determining at said client, using at least one processing
device, whether said at least one data element is in said data
set based on said response, wherein one or more of said
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response and said determining is based on a result of at least
one aggregation of a plurality of values that depend on said

at least one data element and one or more items in said data
set as chaff values configured to obscure said at least one
data element within the aggregation of said plurality of 5
values.
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