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Abstract:

There are languages which can be recog-
nizedby adeterministic (k + 1)-headed one-
way finite automaton but which cannot be re-
cognized by a k-headed one-way (determinis-
tic or non-deterministic) finite automaton.
Furthermore, there is a language accepted by
a 2-headed nondeterministic finite automaton
which is accepted by no k-headed determinis-
tic finite automaton.
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1. Introduction and Definitions

We consider the class of languages re-
cognized by k-headed one-way finite automata
(k - FA's). These devices consist of a finite
-state control, a single read-only input tape
with an endmarker $, and k one-way reading
heads which begin on the first square of the
input tape and independently move towards the
endmarker under the finite-state control. The
language accepted by a k - FA is precisely
the set of words x such that there is some
computation of the k - FA beginning with x$
on the input tape and ending with the k - FA
halting in an accepting state. The determin-
istic variety of k - FA's will be denoted as
k - DFA's. The notion of a multihead finite
automaton was apparently first described by
Piatkowski [6]}, and was soon thereafter exten-
sively studied by Rosenberg [1,7].

We assume that the finite control cannot
detect coincidence of the heads. Such a capa-
bility increases the class of languages recog-
nized by multihead automata somewhat. For

2
0" |n > 1}

recognized by a 3-DFA which can detect coin-
~idence (this was pointed out to the authors
by A.R. Meyer), but cannot be recognized by
any k - FA without this capability (3]. As
it turns out, however, our proof that k + 1
heads are more powerful than k heads holds
even if the devices are allowed to detect co-
incidence.

example, the language can be

Let R, (respectively Ri) denote the
k - FA's
It is well-known

class of languages recognized by
(respectively, k - DFA's).

that Rl = R? , and easy to see that
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R? o Rg (consider the language
*
{x2x|xe{0,1} }). Rosenberg [1] claimed that
o .
RD # Rp,, for k > 1, but Floyd [2] pointed

out that Rosenberg's informal proof was in-
complete. Subsequently, Sudborough [3,4] and
later Ibarra and Kim [5], proved that

c D<_D
Ry # Ry and R, ¥ R

3bg D
this paper is that Rk 7 Rk+1 (actually,

that RO, - R # §) for all k >1 . That

The main result of

is, we show that "k + 1 heads are better
than k" in the sense that there is for each
k , a language L which can be recognized by

a (k + 1)-DFA which can be recognized by no
k - FA (even if the k - FA can detect co-
incidence). Our proof uses a counting argu-

ment and some observations due to Rosenberg
about possible sequences of head movements.
C
We also show that Rﬁ # Ry for k > 2 ;

adding nondeterminism to multihead finite
automata strictly increases the class of
languages they can recognize. We actually

show that
D
R, - U )#ﬂ;
2 (15x<~ x

there is a language recognized by a
but no k - DFA.

2 - FA

2. The Hierarchy Theorem

Consider the language L, . defined for
positive integers

{011:*} :

b , over the alphabet

*
Ly, = {w;*w, ... *wzbi(wie {0,1} ) A (wy

Wap+1-i)  fOF

1l <ic<2b} .

Ly, is recognizable
if and only if b < (g) .
Proof: Rosenberg has demonstrated this in
the "if" direction; as the first head

the remaining

Theorem 1. The language

by a k - FA

traverses W, .oy reeer Wop
k - 1 heads can be used to compare these
words with Wi_g reeer W1 o respectively.
These k - 1 heads can then be positioned
at the beginning of Wy and the same pro-
cedure used inductively to verify that

* *
WE -ee PWo b1k L+1-x + Note that

this procedure is deterministic.

is in

To prove the theorem in the other di-
rection, we derive a contradiction by assuming
that a k - FA m accepts every word in Lg

for b > (g)

and n sufficiently large,



where Lg is the language

Lp = {wy*w, ooo twyy | (wie{0,11) A (wy =

Wops1-i) for 1 < i< 2p}.

Specifically, we show that if m. accepts

every word in Lg then m accepts some word

not in L_ . Since L, 2 y Lg the contra-
b b n

diction follows.

A configuration of the k - FAm is a
(k + 1)=tuple is,pl,...,pk) where s is the
state of the finite control and P; is the

position of the ith head (where the left-most
tape square is pisition number 1). The type
of a configuration Js,pl,...,pk) is the k-

(lpy/m + 1 ,... o,/ + 1] ; the
ith element q; of the type specifies that
the ith head of m

tuple

is on w ‘or its follow-
ing delimiter in this configuration when
n

Lb .

cl(x), cz(x),.ma,czx(X)

sequence of configurations of the

scanning a word in

Let be the

k - FA M
during an (arbitrarily selected) accepting
computation of a word ’xeLg . . Here lx is

the length of this computation. Let dl(x),.

"'dl' (x) be the subsequence obtained by
X

selecting cl(x) and all subsequent ci(x)

such that

tYPe(ci(X)) # typé(ci_l(k)) .
Call dl(x),...,dl.x(x) the pattern of x .

(While the pattern of x depends on which ac-
cepting computation of x was selected, this
does not matter to our proof; we require only

that each word xeLg be associated with one

pattern in this fashion.) The pattern of x
describes the computation of m on input x
in a rough fashion--we select only those con-
figurations where some head has just moved to
the first character of some subword Wy of

x . Using the fact that 1; <k+(2b -1) +1
we see that the number P of possible pat-
terns is less than

(s - (2b(n + 1)Kk " (2b=1)+1

where s is the number of states in m's
finite-state control.

Now we classify the words in L2 accord-
ing to their patterns. There must exist a
A ~

pattern d;,...,d. which corresponds to a set
L

So of at least 2bn/P words.

Rosenberg observed that if b > (g) then

for any computation of m on an

xeL? there exists an index i

b
and w

such that wi*

(or w2b$ if i = 1) are never

*
2b+1-i
being read simultaneously. (If a pair of
heads is reading such a matched pair of sub-
words at some point during the computation,
then at no other time during the computation
could that pair of heads read some other
matched pair of subwords. The observation

follows since there are only g pairs of

heads to consider.) The possible values for
i are determined entirely by the pattern of
the computation. .Let io be such a value

~

for the pattern dl,...,dA .
L

Partition the words in So into classes

according to the string

*

*yg k ok * * .
W1 M2l e Wy -1 wi°+1 e W

Zb-lo,

*
w2b+2-i6 ceee

of characters they contain, exclusive of the

matched pair of subwords . w, and
o
YWobtl-i ° Let S1 be a class which con-
o
tains at least [SOI/Zn(b 1 > 2n/P words,

and assume n is large enough so that

]Sll > 2.,

Let x = xl*xz* aes *bek and
y = y;* ... *y,y be two distinct words in
Sl . By assumption, .-then

(x; = y;) ® 1t{1°,2b +1 - 10} .
We claim that the word v

z = zl* ....*22b

X, *x,% ... *xg, . *y s
1 72 2b i, 2b+1 i,
*x . * .. v
2b+2-1o

obtained by replacing .y2b+1-i for
- o

x2b+l-i° in x, w;ll be accepted by m.

n N D
However; z¢Lb since 1z,

io 7 Zabe1-i ¢ the

desired contradiction.

To prove that m accepts 2z , we use a
"cutting and pasting" argument on the sequence
of configurations cl(x),... and cl(y),...,

to obtain a sequence of configurations for m

on z such that 7/ accepts z . By con-
struction, both cl(x),.... and cl(y),...
contain the pattern d1 ,000, da as a sub-

L

sequence. Divide the sequences



A

£ blocks
each by beginning a new block with each oc-

cl(x),... and cl(y),... into

currence of an element d. , as in the fol-

lowing figure. i

block 1 block 2
{Ci(x)} = cl(x)l"‘l /ciz(x)r---l
d1 d2
block £
cees ciA(x),...
~ L
da
L
block 1 block 2
;N = ¢ (y,..., /cjzm.....
dl d2
block %
cecey cjh(y),...
A// L
L

By definition of dl,..., the subwords of x

or y being read change only at the inter-
block transitions; during any block they re-
main fixed, and since {ci(x)} and {ci(y)}

have the same pattern during the ith block
the heads are reading corresponding subwords
of x and vy .

We construct an accepting computation for
m of 2z by selecting successive blocks from
{ci(x)} , except when m during that block

would be reading x2b+l—i°(# 22b+1—i°) , in

which case, we select the corresponding block
from {c,(y)} (since y2b+1—i° = 22b+1_io) .

This sequence forms a valid computation for
since the last configuration in block ,.i for
either {ci(x)} or {ci(y)} yields 4., as

the next configuration of m
tion m

2b+1-1o

is concerned, at any instant, it cannot dis-
tinguish between z and one of x or y . O

and by construc-
is never reading subwords io and

simultaneously, so that as far as m

In summary, the preceding theorem states

+1°R)[<)+1'Rk'
)

that

2
so that Rll: ‘¥R£+1 and Rk ;Rk+1 .

3. Consequences of the Hierarchy Theorem

we present several results which follow
more or less directly from the Hierarchy
theorem.
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there is a
2 - FA but
Let M, = L

k
P X b b (2) + 1 , where
Lb denotes the complement of Lb . By

Theorem 2. For every k >1,
language M recognized by a

by no k - DFA .

Proof. for

Theorem 1, M is recognized by no k - DFA
since Rg is closed under complementation.
However, a 2 - FA can recognize M by

guessing which matched pair of subwords Wi

Wop+1-i are unequal and then verifying this.pn
Let
*
= * *.
M= {w tw,* oo *wy, [(b > 1) Awelo 1) for

1 <i <2b) /\(Ei)(wi # w2b+l—i)} .

Theorem 3. The language
by a 3 - FA but by no

M is recognizable
k - DFA.

Proof. To recognize M , send heads one and
two to the beginning of some (nondetermin-
istically chosen) subword wio. Using head
one to count the number of words between Wy
and the endmarker, simultaneously position
head three at the beginning of YWop+l-i °
Use heads two and three now to check that

Wi ¥ Vope1-i -

On the other hand, if MeRE , then for
any fixed b , the language .

*
My o= MW, * L., w2b|(wie{0,1} for

1 <ic<2b))

would be in Rﬁ as well, since this only in-

volves counting up to 2b in addition. But
then for any b the language Lb of Theorem

1 would be in Rﬁ , 8ince Ly, is jus the
complement of My with respect tg the reg-
ular set {w;* ... *w2b|(wie{0,l} for

1l < i < 2b¥ , contradicting Theorem 1. O

The theorems can in fact be strengthened
as follows:

Theorem 4. There is a language L which can
be recognized by a 2 - FA' but by no k - DFA

for any k . That is, (RZ-;)R][:)#O.

Proof. We just present the main idea here and
Jeavethe details to the reader, as they are
quite similar to those of the proof of Theorem
1.



Let {L = wl*wz “en 2b|
((vi,1 <4 < 2b)(w; e{0,1} ¢{0 1" NIAI@BL,3)
(wl = x¢y/\w3 = x¢z/\y # z)] , for any
b > 1}.

That is, each Wy consists of a "tag" field
wi and a "value" field w{ so that

= 1 n . *.. . 3 3 ]
W, wi¢wi . A word Wy is in L iff
there is a pair of words with the same tag

fields but different value fields. Clearly
LER, .
2

To show Lg U Rg , consider the subset
k

of L such that the tag field of LA is

the binary representation of min(i,2b + 1
- i) . As in the proof of Theorem 1, there
can be constructed a word in this subset of
L which the k - DFA will reject, using
the fact that there are many words having
this tag structure such that w; = w, ., ;

for 1 < i <b (and thus not in L ).
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