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AaSTRACr There are languages which can be recognized by a deterministic (k+l ) -headed  one-way finite 
automaton but which cannot be recognized by a k-headed one-way (deterministic or nondetermlnisuc) finite 
automaton Furthermore, there is a language accepted by a 2-headed nondetermlmstic fimte automaton 
which is accepted by no k-headed deterministic finite automaton. 
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1. Introduction and Definitions 

We consider the class of languages recognized by k-headed one-way finite automata (k- 
FAs). These devices consist of a finite state control, a single read-only input tape with 
an endmarker $, and k one-way reading heads which begin on the first square of the 
input tape and independently move toward the endmarker under the finite state 
control. The language accepted by a k-FA is precisely the set of words x such that there 
is some computation of the k-FA beginning with x$ on the input tape and ending with 
the k-FA halting in an accepting state. The deterministic variety of k-FAs will be 
denoted as k-DFAs. The notion of a multihead finite automaton was apparently first 
descrtbed by Piatkowski [4], and was soon thereafter extensively studied by Rosenberg 
[5, 6]. 

We assume that the finite control cannot detect coincidence of the heads. Such a 
capability increases the class of languages recognized by multihead automata somewhat. 
For example, the language {0n2ln _> 1} can be recognized by a 3-DFA that can detect 
coincidence (this was pomted out to the authors by A.R. Meyer), but cannot be 
recognized by any k-FA without this capability [7]. As it turns out, however, our proof 
that k + 1 heads are more powerful than k heads holds even if the devices are allowed 
to detect coincidence. 

Let R k (respectively R~) denote the class of languages recognized by k-FAs (respec- 
tively k-DFAs). I,t ts well known that R1 = R~, and easy to see that R~ ° ~ R2 ° (consider 
the language {x2x[x E {0, 1}*}). Rosenberg [5] claimed that Rg ~R~+i for k -> 1, but 
Floyd [1] pointed out that Rosenberg's informal proof was incomplete. Subsequently, 
Sudborough [7, 8], and later Ibarra and Kim [2], proved that R2 ~ R3 and Rz ° ~ Ra ° . 
The main result of this paper is that R~ ~ R~+i and Rk ~ Rk+l (actually, that 
R~+i - Rk ~ O ) for all k _> 1. That is, we show that "k + 1 heads are better than k" 
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in the sense that there is for each k a language L which can be recogmzed by a (k + 1)- 
D F A  which can be recognized by no k - F A  (even if the k - F A  can detect  coincidence).  
Our  proof  uses a counting argument and some observations due to Rosenberg about  
possible sequences of head movements.  

We also show that  R~ ~ Rk for k -> 2; adding nondeterminism to mult lhead finite 
automata  strictly increases the class of languages they can recognize.  We actually show 
that 

R 2 - (  LI R~ I -~f~; 

there is a language recognized by a 2 -FA but by no k - D F A .  

2. The Hterarchy Theorem 

Consider the language Lb, defined for positive integers b ,  over  the alphabet  {0, 1, *}: 

Lb = {wl * w2 * "'" * W2bI(W, ~ {0, 1}*) A (W~ = W2b+l-0 for 1 --< i --< 2b}. 

THEOREM 1. The language Lb tS recognizable by a k-FA i f  and only i f  b -< (~). 
PROOF. Rosenberg has demonst ra ted  this in the "if" direction;  as the first head 

traverses W2b+2-k, ... , W2b the remaining k - 1 heads can be used to compare  these 
words with wk-1, ... , w l ,  respectively. These k - 1 heads can then be posit ioned at the 
beginning of wk and the same procedure  used inductively to verify that wk * "'" * 
W2b+a-k is in Lb+~-e. Note that this procedure is deterministic.  

To prove the theorem m the other direction,  we derive a contradicUon by assuming 
that a k - F A  ~ accepts every word in L~ for b > (~) and n sufficiently large, where L~ is 
the language 

L~ = {wa * w2 * "'" * W2bl(W, ~ {0, 1} n)/~ (w, = w2b+a-,) for 1 --< i --< 2b}. 

Specifically, we show that if J~ accepts every word in Lg then ~ accepts some word not 
m Lb. Since Lb D tJn Lg the contradiction follows. 

A configuration of the k - F A  ~t is a (k  + 1)-tuple (s, Pl  . . . . .  Pk) where s is the state 
of the finite control and p~ is the position of the ith head (where the leftmost tape 
square is position number  1). The type of a configuration (s, Pl . . . . .  Pk) is the k- tuple 
( [pJ (n  + 1)] . . . .  [pk/(n + 1)l); the i th element  q, of the type specifies that the ith 
head of ~ is on wq, or its following delimiter  in this configuration when scanning a 
word in L~. 

Let ca(x), c2(x) . . . . .  czx (x) be the sequence of configurations of the k - F A  ~ during an 
(arbitrarily selected) accepting computat ion of a word x E Lg. Here  l~ is the length of 
this computat ion.  Let da(x), . . . ,  dz;(x) be the subsequence obtained by selecting 
ca(x) and all subsequent c,(x) such that type (c,(x)) ~ type (c,_a(x)). Call da(x) . . . . .  
dc(x) the pattern of x. (Although the pattern of x depends on which accepting 
computat ion of x was selected, this does not  mat ter  to our proof;  we require only that 
each word x E Lg be associated with one pat tern in this fashion.) The pat tern of x 
describes the computat ion of ~ on input x in a rough f a s h i o n - w e  select only those 
configurations where some head has just moved to the first character  of some subword 
w, of x. Using the fact that 1~ -< k-  (2b - 1) + 1, we see that the number  P of possible 
patterns is less than (s. (2b(n+l))k) h ~2b-~)+~, where s is the number  of states in ~ ' s  
finite state control.  

Now we classify the words m Lg according to their pat terns.  There must exist a 
pat tern di, • • , d t  which corresponds to a set So of at least 2b"/P words. 

Rosenberg observed that if b > (~) then for any computat ion of ~ on an x ~ L~ 
there exists an index i such that w, * and wzb+a-, * (or wzo $ if t = 1) are never being 
read simultaneously. (If a pair  of heads is reading such a matched pair of subwords at 
some point during the computat ion,  then at no other  t ime during the computat ion 
could that pair of heads read some other  matched pair of subwords. The observation 
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follows since there are only (z k) pairs of heads to consider.)  The possible values for i are 
determined entirely by the pat tern of the computation.  Let  i0 be such a value for the 
pattern t~l, ... , t~t. 

Partition the words in So into classes according to the string 

W 1 * W 2 * . . .  * W~o_ 1 * W~o+l  * . . .  * W2b_~o * W2b+2_~o  * , . .  

of characters they contain, excluswe of the matched pa~r of subwords w,0 and w2b+~-~o- 
Let  S~ be a class which contains at least [Sol/2 "¢b-1) _> 2 " / P  words, and assume n is 
large enough so that IS~ I -> 2. 

Let  x = x ~ * x z * . . . * x 2 b  a n d y  = y~* - - . *y2o  be two distract words m S~. By 
assumption, (x, = y,) ¢-,, i ~ {i0, 2b + 1-i0}. We claim that the word z = z~ * . . .  * Z2b = X~ 

• X2 * "'" * X2b-~o * Y2b+~-~ * X2b+2-~o * "'" , obtained by replacing Y2b+l-~ for x2b-~-~ in 
x, will be accepted by ~ .  However ,  z q~ Lb since z~ ¢ z2b+~-~, the desired contradiction. 

To prove that ~ accepts z we use a "cutting and pasting" argument on the sequence 
of configurations c~(x), ... and c~(y) . . . . .  to obtain a sequence of configurations for d/  
on z such that ~t accepts z. By construction, both ca(x), ... and el(y), ... contain the 
pattern ,~ . . . .  , ,~t as a subsequence. Divide the sequences ca(x), ... and q(y) . . . .  into [ 
blocks each by beginning a new block with each occurrence of an element  d~, as in the 
following figure. 

{ c , ( x ) }  = 

{c,(y)} = 

block 1 block 2 block 
A ,A. 

c a ( x ) ,  . . .  , c ~ ( x )  . . . . . . . . .  c ~ ( x )  . . . .  , 

el(y)  . . . .  , c,2(y) . . . . . . . .  , c~(y) . . . . .  
• • Y 

block 1 block 2 block ~ 

By definition of d~ . . . . .  the subwords of x or y being read change only at the interblock 
transitions; during any block they remain fixed, and since {c,(x)} and {c,(y)} have the 
same pattern during the ith block the heads are reading corresponding subwords of x 
and y.  

We construct an accepting computat ion for M of z by selecting successive blocks 
from {c,(x)}, except when ~ during that block would be reading Xzb+l-,o ( ~  Z2b+l-~o), in 
which case we select the corresponding block from {c,(y)} (since Yzb+l-,0 = Z2b+l-,o)" 
This sequence forms a valid computat ion for z since the last configuration in block i for 
either {c~(x)} or {c,(y)} yields d,+~ as the next configuration of ./.t, and by construction 
is never reading subwords to and 2b + 1- i0  simultaneously, so that,  at any instant,  
behaves exactly as it would if the input had been one of x or y .  [] 

In summary,  the preceding theorem states that 

so that R~ ~ Rg+, and Rk ~ Rk+l.  

3. Consequences o f  the Hierarchy Theorem 

We present several results which follow more or less directly from the hierarchy 
theorem. 

THEOREM 2. For every k --> 1, there is a language Mk recogmzed by a 2-FA but by no 

k - D  FA . 
PROOf. Let  Mk = Lo for b = (~) + 1, where Lb denotes  the complement  of Lb By 

Theorem 1, Mk is recognized by no k - D F A  since R~ is closed under complementat lon.  
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However ,  a 2 -FA can recognize Mk by guessing which matched pair of subwords 
W,,W2b+l-, are unequal  and then verifying this. [] 

Let 

M = {wl * w2 * "'" * W2bl(b --> 1)/~ (w, E {0, 1}* for 1 --< i --< 2b) /~  (30 (w~ #: W2b+l-,)}. 

THEOREM 3. The language M is recognizable by a 3-FA but  by no k - D F A .  
PROOF. To recognize M, send heads one and two to the beginning of some 

(nondeterministlcally chosen) subword w,. Using head one to count the number  of 
words between w~ and the endmarkeL  slmultaneously positron head three at the 
beginning of W2b+~-,. Use heads two and three now to check that w~ ~ w2b+r-~. 

On the other  hand, if M ~ Rg, then ~/  ~ Rg. But this implies that ,  for any fixed 
b,  Lb = ~/ n {wl * w2 * "'" * w2blw~ E {0, 1}* for 1 --<i --< 2b} would be in Rk D as well, 
since recognizing it only involves counting up to 2b in addit ion.  Choosing b = (2 k) + 1 
gives a contradiction to Theorem 1 [] 

The theorem can in fact be s trengthened as follows: 
THEOREM 4. There is a language L which can be recognized by a 2-FA but by no k- 

D F A ,  for  any k. That  is, (R2 - LJk R~) ~ 0 .  
PROOF. We just present  the main idea here and leave the details to the reader ,  as 

they are qmte similar to those of the proof  of Theorem 1. 
Let  

L = {wl * w2 * "" * W2bl((Vi, 1 --< i --< 2b)(w~ E {0, 1}* ¢ {0, 1}*)) 

/~ [ (3 i ,  j ) ( w , = x e y / ~ w ~ = x ¢  z A y ~ z)], for any b >_ l}. 

That is, each w, consists of a " tag"  field w[ and a "value"  field w~' so that w, = w~ ¢ w~'. 
A word wx * • • • is in L iff there is a pair of words with the same tag field but  different 
value fields. Clearly L ~ R~. 

To show L ~ Ok Rk D, consider the subset of L such that the tag field of w~ is the binary 
representat ion of min(t, 2b + 1 - i). As in the proof  of Theorem 1, there can be 
constructed a word in this subset of L which the k - D F A  will reject ,  using the fact that 
there are many words having this tag structure such that w, = W2b+~-, for 1 <-- i _< b (and 
thus not in L ) .  [] 
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