$\boldsymbol{k}+1$ Heads Are Better than \boldsymbol{k}

ANDREW C. YAO AND RONALD L. RIVEST
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

There are languages which can be recognized by a determinstic ($k+1$)-headed one-way finite automaton but which cannot be recognized by a k-headed one-way (deterministic or nondeterministic) finite automaton Furthermore, there is a language accepted by a 2 -headed nondeterminstic finite automaton which is accepted by no k-headed deterministic finite automaton.

key words and phrases multhead finte automata
CR Categories• 522,523

1. Introduction and Definitions

We consider the class of languages recognized by k-headed one-way finite automata (k FAs). These devices consist of a finite state control, a single read-only input tape with an endmarker $\$$, and k one-way reading heads which begin on the first square of the input tape and independently move toward the endmarker under the finite state control. The language accepted by a k-FA is precisely the set of words x such that there is some computation of the k-FA beginning with $x \$$ on the input tape and ending with the k-FA halting in an accepting state. The deterministıc variety of k-FAs will be denoted as k-DFAs. The notion of a multihead finite automaton was apparently first described by Piatkowski [4], and was soon thereafter extensively studied by Rosenberg [5,6$]$.

We assume that the finite control cannot detect coincidence of the heads. Such a capability increases the class of languages recognized by multihead automata somewhat. For example, the language $\left\{0^{n^{2}} \mid n \geq 1\right\}$ can be recognized by a 3-DFA that can detect coincidence (this was pointed out to the authors by A.R. Meyer), but cannot be recognized by any k-FA without this capability [7]. As it turns out, however, our proof that $k+1$ heads are more powerful than k heads holds even if the devices are allowed to detect coincidence.
Let R_{k} (respectively R_{k}^{D}) denote the class of languages recognized by k-FAs (respectively k-DFAs). It is well known that $R_{1}=R_{1}^{D}$, and easy to see that $R_{1}^{D} \nsubseteq R_{2}^{D}$ (consider the language $\left\{x 2 x \mid x \in\{0,1\}^{*}\right\}$). Rosenberg [5] claimed that $R_{k}^{D} \varsubsetneqq R_{k+1}^{D}$ for $k \geq 1$, but Floyd [1] pointed out that Rosenberg's informal proof was incomplete. Subsequently, Sudborough [7, 8], and later Ibarra and Kim [2], proved that $R_{2} \nsubseteq R_{3}$ and $R_{2}^{D} \nsubseteq R_{3}^{D}$. The main result of this paper is that $R_{k}^{D} \varsubsetneqq R_{k+1}^{D}$ and $R_{k} \varsubsetneqq R_{k+1}$ (actually, that $R_{k+1}^{D}-R_{k} \neq \varnothing$) for all $k \geq 1$. That is, we show that " $k+1$ heads are better than k "

[^0]© 1978 ACM 0004-5411/78/0400-0337 \$00 75
in the sense that there is for each k a language L which can be recognized by a $(k+1)$ DFA which can be recognized by no k-FA (even if the k-FA can detect concidence). Our proof uses a counting argument and some observations due to Rosenberg about possible sequences of head movements.

We also show that $R_{k}^{D} \nsubseteq R_{k}$ for $k \geq 2$; adding nondeterminism to multhhead finite automata strictly increases the class of languages they can recognize. We actually show that

$$
R_{2}-\left(\underset{1 \leq k<\infty}{\cup} R_{k}^{D}\right) \neq \varnothing
$$

there is a language recognized by a 2-FA but by no k-DFA.

2. The Hierarchy Theorem

Consider the language L_{b}, defined for positive integers b, over the alphabet $\{0,1, *\}$:

$$
L_{b}=\left\{w_{1} * w_{2} * \cdots * w_{2 b} \mid\left(w_{2} \in\{0,1\}^{*}\right) \wedge\left(w_{2}=w_{2 b+1-\imath}\right) \text { for } 1 \leq i \leq 2 b\right\}
$$

Theorem 1. The language L_{b} is recognizable by a k-FA if and only if $\left.b \leq{ }_{\binom{k}{2} \text {. }}^{(}\right)$
Proof. Rosenberg has demonstrated this in the "if" direction; as the first head traverses $w_{2 b+2-k}, \ldots, w_{2 b}$ the remaining $k-1$ heads can be used to compare these words with w_{k-1}, \ldots, w_{1}, respectively. These $k-1$ heads can then be positioned at the beginning of w_{k} and the same procedure used inductively to verify that $w_{k} * \cdots *$ $w_{2 b+1-k}$ is in L_{b+1-k}. Note that this procedure is deterministic.

To prove the theorem in the other direction, we derive a contradiction by assuming that a k-FA \mathscr{M} accepts every word in L_{b}^{n} for $b>\binom{k}{2}$ and n sufficiently large, where L_{b}^{n} is the language

$$
L_{b}^{n}=\left\{w_{1} * w_{2} * \cdots * w_{2 b} \mid\left(w_{2} \in\{0,1\}^{n}\right) \wedge\left(w_{2}=w_{2 b+1-\imath}\right) \text { for } 1 \leq i \leq 2 b\right\}
$$

Specifically, we show that if \mathscr{M} accepts every word in L_{b}^{n} then \mathscr{M} accepts some word not in L_{b}. Since $L_{b} \supseteq \cup_{n} L_{b}^{n}$ the contradiction follows.

A configuration of the k-FA \mathcal{M} is a $(k+1)$-tuple (s, p_{1}, \ldots, p_{k}) where s is the state of the finite control and p_{2} is the position of the i th head (where the leftmost tape square is position number 1). The type of a configuration (s, p_{1}, \ldots, p_{k}) is the k-tuple $\left(\left[p_{1} /(n+1)\right], \ldots,\left[p_{k} /(n+1)\right]\right)$; the i th element q_{\imath} of the type specifies that the i th head of \mathcal{M} is on $w_{q_{1}}$ or its following delimiter in this configuration when scanning a word in L_{b}^{n}.

Let $c_{1}(x), c_{2}(x), \ldots, c_{l_{x}}(x)$ be the sequence of configurations of the k-FA \mathscr{M} during an (arbitrarily selected) accepting computation of a word $x \in L_{b}^{n}$. Here l_{x} is the length of this computation. Let $d_{1}(x), \ldots, d_{l_{i}}(x)$ be the subsequence obtained by selecting $c_{1}(x)$ and all subsequent $c_{2}(x)$ such that type $\left(c_{2}(x)\right) \neq$ type $\left(c_{1-1}(x)\right)$. Call $d_{1}(x), \ldots$, $d_{l^{\prime}}(x)$ the pattern of x. (Although the pattern of x depends on which accepting computation of x was selected, this does not matter to our proof; we require only that each word $x \in L_{b}^{n}$ be associated with one pattern in this fashion.) The pattern of x describes the computation of \mathscr{M} on input x in a rough fashion - we select only those configurations where some head has just moved to the first character of some subword w_{i} of x. Using the fact that $l_{x}^{\prime} \leq k \cdot(2 b-1)+1$, we see that the number P of possible patterns is less than $\left(s \cdot(2 b(n+1))^{k}\right)^{k}{ }^{(2 b-1)+1}$, where s is the number of states in \mathcal{M} 's finite state control.

Now we classify the words in L_{b}^{n} according to their patterns. There must exist a pattern $\hat{d}_{1}, \ldots, \hat{d}_{i}$ which corresponds to a set S_{0} of at least $2^{b n} / P$ words.

Rosenberg observed that if $b>\binom{k}{2}$ then for any computation of \mathcal{M} on an $\boldsymbol{x} \in L_{b}^{n}$ there exists an index i such that $\boldsymbol{w}_{i} *$ and $\boldsymbol{w}_{2 b+1-\imath} *$ (or $\boldsymbol{w}_{2 b} \$$ if $i=1$) are never being read simultaneously. (If a pair of heads is reading such a matched pair of subwords at some point during the computation, then at no other time during the computation could that pair of heads read some other matched parr of subwords. The observation
follows since there are only $\binom{k}{2}$ pars of heads to consider.) The possible values for i are determined entirely by the pattern of the computation. Let i_{0} be such a value for the pattern $\hat{d}_{1}, \ldots, \hat{d}_{t}$.

Partition the words in S_{0} into classes according to the string

$$
w_{1} * w_{2} * \cdots * w_{20-1} * w_{10+1} * \cdots * w_{2 b-20} * w_{2 b+2-10} * \cdots
$$

of characters they contain, exclusive of the matched parr of subwords $\boldsymbol{w}_{1_{0}}$ and $\boldsymbol{w}_{2 b+1-2_{0}}$. Let S_{1} be a class which contans at least $\left|S_{0}\right| / 2^{n(b-1)} \geq 2^{n} / P$ words, and assume n is large enough so that $\left|S_{1}\right| \geq 2$.

Let $x=x_{1} * x_{2} * \cdots * x_{2 b}$ and $y=y_{1} * \cdots * y_{2 b}$ be two distinct words in S_{1}. By assumption, $\left(x_{2}=y_{v}\right) \Leftrightarrow i \notin\left\{i_{0}, 2 b+1-i_{0}\right\}$. We claim that the word $z=z_{1} * \cdots * z_{2 b}=x_{1}$ $* x_{2} * \cdots * x_{2 b-10} * y_{2 b+1-10} * x_{2 b+2-10} * \cdots$, obtained by replacing $y_{2 b+1-10}$ for $x_{2 b+1-20}$ in x, will be accepted by \mathscr{M}. However, $z \in L_{b}$ since $z_{10} \neq z_{2 b+1-20}$, the desired contradiction.

To prove that \mathscr{M} accepts z we use a "cutting and pasting" argument on the sequence of configurations $c_{1}(x), \ldots$ and $c_{1}(y), \ldots$, to obtain a sequence of configurations for \mathcal{M} on z such that μ accepts z. By construction, both $c_{1}(x), \ldots$ and $c_{1}(y), \ldots$ contain the pattern $\hat{d}_{1}, \ldots, \hat{d}_{l}$ as a subsequence. Divide the sequences $c_{1}(x), \ldots$ and $c_{1}(y), \ldots$ into \hat{l} blocks each by beginning a new block with each occurrence of an element \hat{d}_{t}, as in the following figure.

By definition of \hat{d}_{1}, \ldots, the subwords of x or y being read change only at the interblock transitions; during any block they remain fixed, and since $\left\{c_{1}(x)\right\}$ and $\left\{c_{i}(y)\right\}$ have the same pattern during the i th block the heads are reading corresponding subwords of x and y.

We construct an accepting computation for \mathcal{M} of z by selecting successive blocks from $\left\{c_{i}(x)\right\}$, except when \mathscr{M} during that block would be reading $x_{2 b+1-l_{0}}\left(\neq z_{2 b+1-r_{0}}\right)$, in which case we select the corresponding block from $\left\{c_{2}(y)\right\}$ (since $y_{2 b+1-\tau_{0}}=z_{2 b+1-\tau_{0}}$). This sequence forms a valid computation for z since the last configuration in block i for either $\left\{c_{2}(x)\right\}$ or $\left\{c_{2}(y)\right\}$ yields \hat{d}_{l+1} as the next configuration of \mathcal{M}, and by construction \mathcal{M} is never reading subwords i_{0} and $2 b+1-i_{0}$ simultaneously, so that, at any instant, \mathcal{M} behaves exactly as it would if the input had been one of x or y.

In summary, the preceding theorem states that

$$
L_{\binom{k+1}{2}} \in R_{k+1}^{D}-R_{k},
$$

so that $R_{k}^{D} \varsubsetneqq R_{k+1}^{D}$ and $R_{k} \mp R_{k+1}$.

3. Consequences of the Hierarchy Theorem

We present several results which follow more or less directly from the hierarchy theorem.
Theorem 2. For every $k \geq 1$, there is a language M_{k} recognized by a $2-F A$ but by no $k-D F A$.

Proof. Let $M_{k}=\bar{L}_{b}$ for $b=\binom{h}{2}+1$, where \bar{L}_{b} denotes the complement of L_{b} By Theorem $1, M_{k}$ is recognized by no k-DFA since R_{h}^{D} is closed under complementation.

However, a 2-FA can recognize M_{k} by guessing which matched pair of subwords $w_{1}, w_{2 b+1-1}$ are unequal and then verifying this.
Let

$$
M=\left\{w_{1} * w_{2} * \cdots * w_{2 b} \mid(b \geq 1) \wedge\left(w_{2} \in\{0,1\}^{*} \text { for } 1 \leq i \leq 2 b\right) \wedge(\exists i)\left(w_{2} \neq w_{2 b+1-2}\right)\right\}
$$

Theorem 3. The language M is recognizable by a 3-FA but by no k-DFA.
Proof. To recognize M, send heads one and two to the beginning of some (nondeterministically chosen) subword w_{2}. Using head one to count the number of words between w_{i} and the endmarker, simultaneously position head three at the beginning of $w_{2 b+1-\imath}$. Use heads two and three now to check that $w_{\imath} \neq w_{2 b+1-\imath}$.

On the other hand, if $M \in R_{k}^{D}$, then $\bar{M} \in R_{k}^{D}$. But this implies that, for any fixed $b, L_{b}=\bar{M} \cap\left\{w_{1} * w_{2} * \cdots * w_{2 b} \mid w_{2} \in\{0,1\} *\right.$ for $\left.1 \leq i \leq 2 b\right\}$ would be in R_{k}^{D} as well, since recognizing it only involves counting up to $2 b$ in addition. Choosing $b=\binom{k}{2}+1$ gives a contradiction to Theorem 1

The theorem can in fact be strengthened as follows:
Theorem 4. There is a language L which can be recognized by a 2-FA but by no k $D F A$, for any k. That is, $\left(R_{2}-\mathrm{U}_{k} R_{k}^{D}\right) \neq \varnothing$.

Proof. We just present the main idea here and leave the details to the reader, as they are quite similar to those of the proof of Theorem 1.

Let

$$
\begin{aligned}
& L=\left\{w_{1} * w_{2} * \cdots * w_{2 b} \mid\left((\forall i, 1 \leq i \leq 2 b)\left(w_{2} \in\{0,1\}^{*} \propto\{0,1\}^{*}\right)\right)\right. \\
&\left.\wedge\left[(\exists i, j)\left(w_{2}=x \propto y \wedge w_{j}=x \notin z \wedge y \neq z\right)\right], \text { for any } b \geq 1\right\}
\end{aligned}
$$

That is, each w_{2} consists of a "tag" field w_{2}^{\prime} and a "value" field $w_{2}^{\prime \prime}$ so that $w_{2}=w_{2}^{\prime} \llbracket w_{2}^{\prime \prime}$. A word $w_{1} * \cdots$ is in L iff there is a pair of words with the same tag field but different value fields. Clearly $L \in R_{2}$.

To show $L \notin \cup_{k} R_{k}^{D}$, consider the subset of L such that the tag field of w_{i} is the binary representation of $\min (l, 2 b+1-i)$. As in the proof of Theorem 1 , there can be constructed a word in this subset of L which the k-DFA will reject, using the fact that there are many words having this tag structure such that $w_{2}=w_{2 b+1-2}$ for $1 \leq i \leq b$ (and thus not in L).
acknowledgments. We would like to thank Albert Meyer and Jeffrey Jaffe for several helpful discussions, and Zvi Galil for pointing out an error in Section 3 of an earlier draft of this paper. Greg Nelson at Harvard has also proved a version of the hierarchy theorem, using entirely different methods [3].

REFERENCES

1 Floyd, R W Review 14, 352 (of paper by Rosenberg [5]) Comptng Rev. 9, 5 (May 1968), 280
2 Ibarra, O H., and Kim, C E On 3-head versus 2 -head finite automata. Acta Informatica 4 (1975), 193-200
3 Nelson, C G One-way automata on bounded languages Tech. Rep TR14-76, Harvard Ctr for Res and Comptng, July 1976.
4 Piatkowski, T F N-head finite state machines Ph D Th., U of Mıchigan, Ann Arbor, Mich, 1963
5 Rosenberg, A L On multi-head finite automata IBM J Res, and Develop 10 (1966), 388-394
6 Rosenberg, A L Nonwriting extensions of finte automata Ph D Th, Rep No. BL-39, Comput Lab, Harvard U., Cambridge, Mass, 1965
7 Sudborough, I H One-way multhead writing finite automata Inform. and Control 30 (1976), 1-20
8. Sudborough, I H Computation by multi-head writing finite automata Ph.D Th, Pennsylvania State U , University Park, Pa, 1971

[^0]: General permission to make fair use in teaching or research of all or part of this material is granted to individual readers and to nonprofit librartes acting for them provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery To otherwise reprint a figure, table, other substantal excerpt, or the entire work requires specific permission as does republication, or systematic or multiple reproduction
 This paper was prepared with the support of the National Science Foundation under Grant MCS 76-14294, Contract DCR74-12997-A01 and the Office of Naval Research under Grant N00014-67-A-0204-0063
 Authors' present addresses A C Yao, Computer Science Department, Stanford Unıversity, Stanford, CA 94305; R L Rivest, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

