
Signature ofAuthor

Certified by

ALGORITHMS FOR INTEGRATED CIRCUIT SIGNAL ROUTING

Accepted by

by

Alan Edward Baratz

B.S. , University of California at Los Angeles

(1976)

S.M. , Massachusetts Institute of Technology

(1979)

Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor ofPhilosophy

atthe

Massachusetts Institute of Technology

August 1981

O Massachusetts Institute of Technology 1981

AlamExBariff
Department of Electrical Engineering and Computer Science

August 31 , 1981

Ronald đi Muveet

Ronald L. Rivest

Thesis Supervisor

Arthur C. Smith

Chairman, Department Committee

2

Algorithms for Integrated Circuit Signal Routing

by

Alan Edward Baratz

Submitted to the Department of Electrical Engineering and Computer Science

on August 31 , 1981 in partial fulfillment of the requirements for

the Degree ofDoctor of Philosophy

ABSTRACT

The integrated circuit layout problem broadly deals with the transformation of a circuit

description , represented as a set of modules and a set of interconnections among these modules,

into a set of conducting layer patterns that can be used to implement the circuit on a piece of

silicon . If the modules are defined to be high level functional building blocks such as ALU's,

PLA's , or RAM's, the layout process is typically divided into two phases ; the placement phase and

the routing phase. The placement phase deals with the assignment of each module to a distinct

physical location on a routing plane such that no two modules overlap . The routing phase then

involves the generation of a set of conducting layer patterns that can be used to implement the

required interconnect.

Thesis Supervisor : Ronald L. Rivest

This dissertation deals with the development of computer algorithms for the integrated

circuit routing problem. We begin by describing an automated routing system , called the PI

routing system, which has been developed to route custom nMOS circuit designs . The PI system

employs a common two-step approach ; global routing followed by region routing.

The remainder of this thesis deals with the development of "provably good" heuristic

algorithms for various global routing and (rectangular) region routing problems. Most

significantly, we formalize a new set of realistic wiring rules which are used to develop optimal

algorithms for river routing with arbitrarily many conducting layers and near optimal algorithms

for two-layer channel routing.

Title: Associate Professor of Electrical Engineering and Computer Science

Key words: VLSI (Very Large Scale Integrated) circuit layout, integrated circuit signal routing,

Steiner tree, channel routing, river routing, heuristic algorithm, algorithm analysis.

3

Acknowledgements

I would like to thank my thesis supervisor , Ronald Rivest, for his constant support and

guidance. The opportunity to work with him has provided the single most important contribution

to my graduate education . I would also like to thank my readers , Gary Miller and Christos

Papadimitriou, for their direction in the course of this research. In addition, I would like to thank

Ron Pinter for several interesting discussions about signal routing and for his important

contributions to the original "overlap " wiring model; Charles Leiserson for suggesting Lemma 4.7 ;

Paris Kanellakis, Andrew Moulton , and Flavio Rose for numerous enlightening discussions ; and all

those involved in the development of the PI system.

Finally, I am deeply grateful to all my friends and family for their understanding and

support during the preparation of this thesis. I am most indebted to my wife, Raquel, for her

continued faith and love throughout the past two years . Her selfless help in the preparation of the

final manuscript made this thesis a reality.

Abstract ..

Acknowledgements

1 Introduction

…

4

2 The PI Routing System ..

2.1 PI System Input

2.2 PI System Organization

2.3 Routing Region Definition

2.4 Global Routing

3 Global Routing

2.5 Crossing Placement

2.6 Intra-Region Routing

2.7 Summary

4

.............

Region Routing

4.1 Introduction

Table of Contents

...............

.....

......

3.1 The Steiner Tree Problem : A Model for Global Routing

3.2 Heuristic Algorithms for the Steiner Tree Problem

3.3 A Practical Steiner Tree Algorithm

......

.........

4.2 A General Routing Model

4.3 Restricted Region Routing Problems

4.3.1 The River Routing Problem

4.3.2 The Channel Routing Problem

4.3.3 The Fixed-Pin Routing Problem

4.3.4 Wiring Model Considerations

...

...

....

..

....

2

...... 3

...... 6

11

........ 11

........ 13

..... 19

.... 24

27

...... 28

30

…..

.... 32

32

....... 36

..... 44

.... 48

........ 48

... 49

..... 60

...... 60

.... 62

63

64

4.4 Optimal River Routing Algorithms

4.4.1 The Rectilinear Wiring Model

4.4.2 The Augmented Rectilinear Wiring Model

4.4.3 Systematic Layer Selection

4.4.4 Algorithmic Efficiency

4.5 Provably Good Channel Routing Algorithms .

4.5.1 Notation and Basic Observations

4.5.2 The Power of Overlap ...

4.5.3 Reducing Track Usage

4.5.4 An Algorithm for Augmented Rectilinear Wiring Models

4.5.5 Further Channel Routing Results

4.6 The Quick Router : An Algorithm for the Fixed-Pin Routing Problem

4.7 Summary

Bibliography

Biographical note

5

..

..

..

...

.......

..

....

........

.... 67

67

... 73

.... 78

82

..... 83

....... 83

... 86

.. 92

.. 98

........ 102

... 106

…..... 111

112

116

Chapter 1 Introduction .

6

The recent development of LSI and VLSI circuit technology has greatly increased the need

for automated integrated circuit (IC) design . In this thesis we shall investigate algorithms for IC

layout . Integrated circuits are formed on silicon wafers by creating layers of different conducting

substances (e.g. , metal or polysilicon) in geometric patterns on the wafer [Mea79] . Electronic

devices result from the interaction between overlapping regions (or paths) on different layers .

Interconnect lines are simply paths on any one layer , between devices . The IC layout problem

broadly deals with the transformation of a circuit description , represented as a set of modules and

a set of interconnections among these modules , into a set of conducting layer patterns which can

be used to implement the circuit on a piece of silicon . Such a set of geometric patterns is

generally called a circuit layout . In an attempt to guarantee that most of the IC chips fabricated

from a particular layout will satisfy all intended electrical properties , a set of design rules is

followed in generating layouts . These design rules essentially consist of minimum width

specifications for paths on each conducting layer and minimum separation specifications for pairs

of paths on either the same or different conducting layers . The quality of a particular layout is

measured in terms of the size and speed of the resulting circuit implementation . Obviously ,

minimum area and high speed are preferred .

As an example , consider the standard n -channel metal-oxide-semiconductor (nMOS)

fabrication technology . Under this technology an integrated circuit is formed by creating three

separate layers of conducting material on a silicon wafer . Proceeding from top to bottom , these

layers are termed the metal layer , the polysilicon layer , and the diffusion layer . The metal layer

is generally insulated from the polysilicon and diffusion layers . Thus paths on the metal layer can

cross paths on the polysilicon or diffusion layers with no significant functional effect . Whenever a

path on the polysilicon layer completely crosses a path on the diffusion layer , however , an nMOS

field effect transistor is created . The only exception to these rules occurs when paths on two

different layers cross a common contact cut . Contact cuts correspond to holes in the insulating

material between conducting layers and thus they allow for electrical contact between paths on

different layers . The design rules for nMOS are often extremely complex in practice . For our

7

purposes , however , it is sufficient to consider the simplified Mead and Conway [Mea79] design

rules summarized in Figure 1.1 . Each of these design rules is expressed in terms of a single

parameter , λ , called the minimum feature size . The typical minimum feature size for current

technology is λ= 1μm .

The IC layout problem can take on vastly different characteristics under various definitions

of a module and an interconnection between modules . At one level of circuit layout , for

example , modules might be defined to be high level functional building blocks such as ALU's ,

PLA's , or RAM's . At this level we would assume that layouts had already been generated for

each of the modules and we would attempt to use them to construct a layout for an entire system .

At lower levels of circuit layout , the modules might be defined as single storage cells , logic gates ,

or even transistors . Clearly the problems encountered in laying out an entire system , represented

as a set of interconnected functional building blocks , will be very different from the problems

encountered in laying out a single storage cell represented as a set of interconnected transistors .

In this thesis we shall be concerned with the layout of entire systems represented as sets of

interconnected functional building blocks . This is generally called the custom IC layout problem .

The input for an instance of the custom IC layout problem consists of a set of module

specifications and a set of signal net definitions . For our purposes , a module is specified by a

rectangular bounding box with fixed dimensions and an associated set of pins . Each pin specifies

a fixed location along the perimeter of a module , at which an interconnect line (or wire) can be

connected . A signal net is simply defined to be a set of pins which are to be electrically

interconnected by wires . The nets are assumed to be pairwise disjoint . The layout problem then

consists of placing the modules on a routing plane and generating the various conducting layer

patterns needed to implement the specified nets . Conducting paths implementing signal nets are

not allowed to pass over regions occupied by modules .

Due to the overall complexity of the custom IC layout problem , the solution process is

usually divided into two phases; the placement phase and the routing phase . In the placement

phase each of the modules is assigned a physical location on a routing plane such that no two

modules overlap . The goal is to place the modules in a manner which utilizes minimum total

area and yet allows enough space between modules to efficiently generate all the required

Minimum Width Rules:

{

Metal

Minimum Spacing Rules:

q

Metal

Metal

→
[

Contact Cut Rules:

→

一个

3X

3X

21

Cut

√-
³1

↑

Ž

Polysilicon

8

Polysilicon

Polysilicon

Polysilicon

Diffusion
E

2A

→

Te

>

|
<

→

11

2A

21

= 11

+1²^ |

Conducting

Cut

Material

Mead-Conway Width and Spacing Rules

Figure 1.1

Diffusion

Diffusion

Diffusion

一个

1A

一个

키

20

3A

9

interconnect lines . A comprehensive survey of automatic placement techniques can be found in

[Han72] . Once the modules have been placed , the conducting layer patterns implementing each

of the nets must be generated . This constitutes the routing phase . The problem of generating

such a set of geometric patterns is called the integrated circuit signal routing problem .

The classical approach to solving the IC signal routing problem is based on partitioning a

routing plane into routing regions . A routing region is an area of the routing plane through

which wiring may pass . This partition is then used as a road-map of the plane ; to compute a

global routing for each net . A global routing for a given net is a set of routing regions through

which the wires implementing the net must pass . Once a global routing has been determined for

each net , the wiring required within each routing region is generated .

This two-step approach to signal routing was first introduced in 1966 by R. Hitchcock

[Hit69] . Hitchcock developed a cellular routing algorithm in which the routing plane is divided

into a regular arrangement of cells (i.e. , routing regions) through which conducting paths are

found . These paths are computed , one at a time , by a breadth first search of the cell structure .

As each path is computed , the exact locations of the points at which the path crosses from one

cell to the next are determined . However , the path topology within each cell is not specified .

Once all the desired paths have been found , the intra-cellular topologies are generated .

In 1971 , A. Hashimoto and J. Stevens [Has71] proposed a modification of Hitchcock's

procedure in which the actual locations of inter-region wire crossings not are specified until the

intra-region routings are computed . Their systern also incorporates a technique called track

assignment for intra- region routing . The track assignment algorithm places all wiring on a

rectilinear grid with vertical paths routed on one conducting layer and horizontal paths routed on

another conducting layer . The goal is to assign the horizontal paths to tracks (i.e. , grid rows)

such that the number of tracks containing wiring is minimized .

The global routing technique developed by Hitchcock , combined with the track

assignment algorithm of Hashimoto and Stevens , provides a very powerful mechanism for

automatic signal routing [Hig80] . Several IC signal routing procedures based on these ideas have

been developed over the last ten years [Hig80, Lau79 , Per77 , Pre78] . Each such procedure

involves a series of global routing computations (one for each net) followed by a series of intra

10

region routing computations (one for each routing region) . The global routing procedures

essentially involve the computation of a Steiner tree in a graph representing the region structure .

(Some systems allow regions to vary in size as a function of the global routing [Pre78] and other

systems require that all regions be fixed in size [Hig80] .) Each intra- region routing algorithm is

a generalization of the Hashimoto and Stevens track assignment algorithm .based on

In Chapter 2 we shall describe a computer automated signal routing system , called the PI

routing system , that has recently been developed by a group of students under the direction of

Professor R. Rivest at the Massachusetts Institute of Technology Laboratory for Computer

Science . The PI system follows the standard approach of dividing the solution process into a

global routing phase and an intra-region routing phase . The region structure created by the PI

system is composed of fixed-size rectangular regions . The global routing phase performs

successive computations of approximately minimum weight Steiner trees in a graph representing

the region structure . Once a global routing has been computed for each net , the PI system

assigns fixed locations to the points at which associated wires must cross from one region to the

next. This assignment is performed in a global manner , attempting to assign locations such that

each of the resulting intra-region routing problems is simplified . The final step then consists of

generating the wiring required within each routing region . The PI system employs a library of

region routing algorithms for solving these problems .

Chapter 3 of this thesis will deal with theoretical aspects of the global routing problem .

We will begin by formalizing the global routing problem as the problem of computing a Steiner

tree in a graph . We will then use this formalization to develop efficient "near optimal" global

routing algorithms .

Finally , Chapter 4 will deal with the problem of wire routing within a given rectangular

region . We will first introduce a new realistic multiple layer grid -based wiring model . We will

then use this model to construct polynomial- time algorithms for the well known river routing and

channel routing problems. More specifically, we will present efficient polynomial-time algorithms

for river routing with arbitrarily many conducting layers and "provably good" polynomial-time

heuristic algorithms for two-layer channel routing.

11

Chapter 2 The PI Routing System .

In this chapter we present a detailed description of the PI routing system . The PI system

is a (LISP based) automated integrated circuit signal routing system . It was developed to free the

IC designer from the tedious and time consuming task of determining the interconnect geometry

required to implement the signal nets of a given circuit . Thus a designer need only specify a set

of modules (along with their desired physical locations within some specified rectangular layout

area) , specify a set of signal nets defining the interconnect required among the modules , and then

invoke the PI system . The goal was to develop a system that would generate layouts with quality

equal to that of good "hand -drawn" layouts . In addition , the system was designed to provide

quick turnaround and employ a simple and natural user interface . It is important to note ,

however , that the PI system was developed under the assumption of a single metal layer nMOS

fabrication technology . Although great care was taken to parameterize all minimum width and

spacing design rules , the system is highly sensitive to the fact that only a single metal layer is

available for wiring . (Credit for the PI system must be given to a large number of people who

were involved in its development : R. Rivest , A. Baratz , J. Batali , S. Bhatt , J. Byrd , D.

Christman , C. Frank , A. Ghaznavi , A. Hanover , J. Koschella , E. Mayr , A. Moulton , R.

Pinter , R. Rao , F. Rose , G. Roylance , S. Sur , A. Vijayvargia .)

2.1 PI System Input .

We shall now define the structure of input to the PI system . In the process , we introduce

some basic terminology that will be useful in describing the individual procedures comprising the

system .

Input to the PI routing system consists of a desired rectangular bounding box for the

completed layout , a set of module specifications , and a set of signal net definitions . Each module

is specified by a rectangular bounding box with fixed dimensions and fixed location within the

specified layout area . All rectangular regions are assumed to have orientation parallel to the x-y

axes and thus their size , shape and location can be easily specified by giving the coordinates of

Pins :

P. -metal
1

P₂ -polysilicon2
P -metal

3
p -metal

Ps
p -diffusion

P -metal
6

P -metal

p -metal
8

P -polysilicon9

LAYOUT AREA

Nets :

d

p2

M3

M₁

12

Wiring Through a Module

P₁

N₁ = (T₁ ,T₂₁₁T₂), N₁₂={T₁ ,T T }.
{T

1 2 5 2 3 4 6
1

M₂

P7 P8

uf

P6

MA

Terminals : T₁ = (p₁) , T₁= (p₂), T₁=(p₁,p₁}, T ={ p₁,P₂ } T₁={p ,, p. } , T _= { p. } .
2 3 6 5 6

8

Module Specifications and Signal Net Definitions

Figure 2.1

P9

13

their lower-left and upper-right corners . Each module also has an associated set of physical

connection points called pins . A pin is simply a rectangular region of fixed size and location

adjacent to the perimeter of a module . Each pin also has an associated conducting layer . Thus a

pin specifies an area within a module at which a wire on a particular conducting layer can be

connected . The pins associated with any given module are then grouped into a set of logical

connection points called terminals . A terminal is simply a set of pins on a module which are all

electrically interconnected within the module (i.e. , electrically equivalent) . In practice , a

terminal will commonly contain only one pin . A set of module specifications is depicted in

Figure 2.1 .

A signal net is now simply defined to be a set of terminals which must be interconnected

by wires . Making a connection to a terminal simply requires making a connection to any one of

the pins belonging to the terminal . Notice that this input structure allows electrically equivalent

pins to be selected for interconnect as a function of an optimal routing . In addition , it allows the

possibility of wiring through a module as illustrated in Figure 2.1 .

Finally , we should mention that the current implementation of the PI system does not

handle the routing of power and ground nets . Thus these nets must be hand-wired and specified

as part of the input to the system . The input of a power or ground net simply consists of a set of

specifications (size , shape , and location) of metal layer rectangular regions . A simple PI system.

input example is depicted in Figure 2.2 . We are now ready to describe the overall organization

of the system .

2.2 PI System Organization .

In this section we present a brief overview of the PI routing system and each of its

individual procedures. The PI routing system is organized into four phases; routing region

definition , global routing , crossing placement , and intra-region routing. In the first phase

(routing region definition) , the layout area outside the modules is divided into non-overlapping

rectangular routing regions as shown in Figure 2.3 . This division is performed such that each

resulting region is either disjoint from the area occupied by the power and ground rectangles or

LAYOUT AREA

P1

P3

P2

ground\\\ \\\

M3

M₁

P4

14

P5

J

P7 P8 P9

PI System Input Diagram

Figure 2.2

M₂

P6

M₁

power

Free

Region

LAYOUT AREA

Covered
ground

Region

P3

P₁

M3

p2

M₁

P4

15

Routing Region Definition

Figure 2.3

M₂

P7 P8

B

P6

M4

P9

power

16

contained within the area occupied by the power and ground rectangles . Routing regions of the

former type are called free regions and those of the latter type are called covered regions . Each

routing region defines a portion of the layout area through which wiring may pass . Notice that

wiring located within a covered region must not lie on the metal layer .

The set of routing regions forms a road-map of the layout area which can be used to

determine a global routing for each net . This global routing process comprises the second phase

of the PI system and simply consists of assigning each net to the routing regions through which its

implementation must pass . The goal is to route the nets in a manner which minimizes some

estimate of total interconnect length and at the same time avoids over-congestion in any routing

region . When the global routing phase has been completed , each net will have been assigned to

a set of routing regions and thus each routing region will have been assigned a set of nets . We

will then know for each routing region which wires must pass through the region and which

region-to-region border edges these wires must cross . Notice that the exact locations at which

wires cross region-to -region edges is not yet specified (see Figure 2.4) .

The third phase of the PI system (crossing placement) then determines a fixed location for

the point at which each wire must cross a region- to -region edge . The goal is to place the

crossings so that the remaining wiring problem within each region will be as simple as possible .

More specifically , the crossing locations are determined in a manner which attempts to minimize

the number of crossovers that will eventually be required between electrically distinct conducting

paths . In addition , an attempt is made to place crossings so that total wire length is minimized

and the number of straight-across runs is maximized .

The result of crossing placement will be a decomposition of the remaining problem into a

set of well defined subproblems . Each subproblem will consist of a rectangular routing region

with fixed dimensions and a set of physical connection points with fixed locations along the

perimeter of the region . In addition , the physical connection points will be partitioned into

disjoint subsets that are to be interconnected (see Figure 2.5) . The remaining problem is to

determine the interconnect geometry required within each rectangular region . The goal is to

maximize usage of the metal conducting layer while minimizing total path length . This constitutes

the fourth and final phase of the PI routing system .

LAYOUT AREA

Nets :

ground

P3

P1

M3

p2

M₁

17

P4

N₁ = {T₁ , T₂ , T₁ } , _N_ = {T
I

1 1 2 5 2

3

3
TT , T } .

4 6

P7

Global Routing

Figure 2.4

P₁

M₂

Terminals : T₁= (p), T₁=(p₂), T₁=(P₁P₁), T =(PP), T ={p, P,) , T =(p)
}, {p_2 3 6 5 6

P8

P6

M4

P9

power

Routing Region

B

с

D

A B

D

18

A C D

FAFF B

Partition : { A , B , C , D , E , F }

Intra- Region Routing Problem

Figure 2.5

E

C

B

A

E

19

If the PI routing system should fail at any point during execution , the designer must

modify the input placement to allow more wiring area and then restart the system . In practice ,

several such interations may be required . (We note that algorithms are currently being

implemented to automate this feedback loop .)

Finally , we should mention that the PI system uses geometric hashing as a general

technique for organizing local searches : The entire layout area is divided into square sections

currently of size 70λ (in Mead-Conway [Mea79] units) on a side . For each section there is a data

structure listing all the objects of a given type (module , routing region , crossing , etc ...) which

lie within that section . This technique is invisible to the user , but provides for fast searches for

objects in the neighborhood of other objects .

The remaining sections will constitute a detailed description of the procedures

implementing each of the four routing phases.

2.3 Routing Region Definition .

The first phase of the PI routing system involves decomposing an input layout area into

disjoint rectangular regions such that each region is either a free routing region , a covered routing

region , or a module . This decomposition is defined by a set of edges that separate the routing

regions from each other and from the modules . Each edge is a horizontal or vertical line segment

which borders no more than two distinct routing regions or modules . The endpoints of an edge

are called corners . Two distinct edges can intersect only at a corner and thus a corner can be the

endpoint of at most four distinct edges ; two vertical and two horizontal . A corner is said to be

exposed if it is the endpoint of exactly one vertical edge and exactly one horizontal edge (neither

of which lies on the boundary of the layout area) . Figure 2.6 illustrates the fact that a routing

region may be enclosed by an arbitrary number (greater than three) of edges .

LAYOUT AREA

ground

|P3

P1

M3

P2

M₁

P4

20

€3

P7 PS P9
e4

Ps

M₂

Examples of Edges and Corners

Figure 2.6

R

e7

P6

M4

e6

power

Routing Region R Is Defined By 8 Edges :

e₁e2e3e4e5e6e7₁e8

Corners of e6

21

Since the time complexity of the global routing phase of the PI system is directly related

to the number of routing regions composing the layout area , we use a decomposition algorithm

which produces large "natural looking " routing regions (a criterion initially proposed by F. Rose) .

This algorithm basically attempts to minimize the total length of edges defining the routing

regions .

The routing region definition algorithm , developed by R. Rivest and R. Rao , is a

simple "greedy" type algorithm based on the observation that every exposed corner must be

eliminated by the addition of at least one incident edge as shown in Figure 2.7a . The edge set is

initialized to contain exactly those line segments defining the boundary of the total layout area ,

the boundaries of the modules , and the boundaries of the power and ground regions . Notice

that each module gives rise to four exposed corners . The algorithm then proceeds by generating

for each exposed corner both a horizontal and a vertical extension from that corner outward to the

first point of intersection with an existing edge (see Figure 2.7b) . The shortest of all these

extensions is then added to the edge set . Let a and b denote the corners of this new edge .

Clearly each of these corners must be located on at least one other edge ; edge e, and edge e

respectively . Now if a is not located at an endpoint of e , then edge eis replaced by two new

edges having a as a common corner as shown in Figure 2.7c . Similarly , if b is not located at an

endpoint of e , then edge ez is replaced by two new edges having b as a common corner .

(Notice that at most one of these two cases can occur .) This entire process is then iterated on the

remaining exposed corners .

a

It should now be noted that this algorithm is only a heuristic for computing a

decomposition with minimum total edge length . In fact , there are examples for which this

algorithm will compute a decomposition with total edge length much larger than the minimum

possible (see Figure 2.8 .) Nonetheless , the algorithm is extremely efficient and tends to produce

very natural looking routing regions . For completeness we remark that the minimum length

decomposition problem has not been proven NP-complete and yet there exists no known

polynomial time algorithm for solving it .

a)

Edge added
to eliminate
exposed corner

e

b)

LAYOUT AREA

vertical
extension

horizontal
extension

e

e2

q 1M₂₁

e4

LAYOUT AREA

c)

ez

new edge

e₂

e,
M₁

e4

10

€13

92

22

ez

Ca

b

LAYOUT AREA

a

a

eb

€5

Figure 2.7

€10

9₂

e
6

M
2

eg

e₂

es

V

e6

M₂

eg

ea

eq

y

€11

• Exposed

->

--->

a

e
€11

corner

* Exposed
corner

m+5

n

(m= n-5)

23

2

ادا

1

|

←
§

→

|

Decomposition Computed by Heuristic : Length of Added Edges =5m+10

Alternate Decomposition : Length of Added Edges = n + 14= m + 19

Pathological Example for Region Decomposition Algorithm

Figure 2.8

24

Finally , the last step in the routing region definition phase consists of identifying all

narrow routing regions (i.e. , those which are so narrow that wires can only run straight across the

region) and then refining the decomposition so that all covered and narrow routing regions are

enclosed by exactly four edges . This refinement is accomplished in four scans across the layout

area; one from left to right , one from right to left , one from top to bottom , and one from

bottom to top . During the first scan (left-to - right) , the algorithm searches for any corner a ,

located on the left side of a covered or narrow routing region r , such that there are two vertical

edges incident on a and bordering r . When such a corner is found , the algorithm creates a new

(horizontal) edge with corners a and b such that b is located on a vertical edge e bordering the

right side of r . If b is not located at an endpoint of e , then the edge e is replaced by two new

edges having b as a common corner . Thus the region r is divided into two distinct routing

regions . Once this division is complete , the algorithm continues its left- to - right scan , searching

for another corner with the specified properties . The remaining three scans are then performed in

an analogous manner . We now note that this refinement is performed to simplify the global

routing phase of the system .

2.4 Global Routing .

The global routing phase of the PI system utilizes the previously defined region structure

to compute a global routing for each net . This computation simply involves the assignment of

each net to the set of routing regions that its corresponding wires will traverse . The set of all

edges that will be crossed by the wires implementing a given net is concurrently recorded . The

data structure recording that the implementation of a net will cross a given edge is called a

crossing. In the global routing phase the actual position at which a wire will cross an edge is

unspecified . This location is determined later , in the crossing placement phase .

A maximal connected portion of the interconnect lines implementing a given net , which

lies entirely within a given routing region , is called a strand of that net . It is possible for a given

net to be represented by more than one strand within a given routing region . The data structure

representing a strand contains a pointer to the net of the strand , a pointer to the routing region

25

containing the strand , and a list of crossings representing points on the perimeter of the associated

routing region that are to be interconnected by the strand . If a strand lists more than two

crossings , the corresponding interconnect geometry will form a tree-like pattern .

The global routing phase processes the nets sequentially , roughly in order of increasing

net interconnect length . (Actually , the nets are processed in order according to the length of the

perimeter of the bounding box of the net's pins , divided by the number of terminals comprising

the net; so a multi-terminal net may be routed early .) The processing of any given net then

proceeds by creating a graph structure representing the search to be performed . The vertices of

this graph are the mid-points of all the region-to-region edges plus points representing the pins of

the net currently being processed . Each pin is generally represented by the mid -point of its side

adjacent to the perimeter of the module on which it lies . (Recall that a pin is a rectangular region

located within a module .) Two vertices are adjacent (i.e. , connected by an arc) in the graph if

and only if they lie on a common routing region (see Figure 2.9) . A distance function which

attempts to estimate the amount of wire needed to connect two adjacent vertices is then defined on

the arcs in the graph . More precisely , the distance associated with an arc in the graph is defined

to be the Manhattan distance between its endpoints plus penalty values for turning corners (i.e. ,

jogging) , traversing a covered routing region , or reaching a vertex representing an edge that is

nearly full of crossings . (Recall that each edge has fixed length and thus there is an upper bound

on the number of wires that can cross it .) In the current implementation these penalty values are

defined as follows:

1) Each required jog (i.e. , direction change) results in a penalty of 5X .

2) Traversing a covered routing region results in a penalty of 5A times the length

of the traversal .

3) Reaching a vertex representing an edge that is nearly full of crossings results in

a penalty of A/4f, where A denotes one-half the length of the perimeter of the

layout area and f denotes the number of wires that can still cross the edge .

arc

Layout Areal

26

GDJ

M₁

The Global Routing Graph Structure

Figure 2.9

M₂

1) A set of routing regions through which the interconnect lines implementing the

net must pass .

Once the graph structure has been generated for a net , a heuristic algorithm is employed

to determine an approximately minimum weight connected subgraph which contains a set of

vertices representing at least one pin from each terminal of the net . The arcs of this subgraph

will correspond to the routing regions to be traversed by the wires implementing the net and the

vertices of this subgraph will correspond to the edges to be crossed by these wires . Notice that

the distance function is defined such that this algorithm attempts to compute a global routing

which minimizes interconnect length and avoids congestion . The details of the heuristic algorithm

for computing an approximately minimum weight connected subgraph will be presented in

Chapter 3 .

At the completion of the global routing phase , the PI system will have determined for

each net:

2) A set of crossings recording the edges which these interconnect lines must

cross .

Edge

Vertex

3) A set of strands specifying the crossings representing points which must be

interconnected within cach region .

Pin

Vertex

27

Recall , however , that as yet there is no specific location associated with a crossing . This is the

task of the next phase .

2.5 Crossing Placement .

The crossing placement phase of the PI routing system assigns a fixed location to each

crossing. The basic approach is to organize the crossings in a global manner , attempting to

generate crossing placements that will maximize the probability of success during the intra-region

routing phase . An important advantage of this explicit crossing placement phase is that it cleanly

decomposes the remaining problem into a set of independent region routing problems .

Each edge of the routing region structure initially contains a number of crossings to be

placed . A crossing representing an edge enclosing a module is associated with a pin . Thus such

crossings are assigned the location of the mid-point of the side of the pin adjacent to the associated

edge . All other crossings (i.e. , crossings representing edges separating two routing regions) are

called floating crossings . Each floating crossing belongs to exactly two distinct strands : one for

each routing region adjacent to the edge associated with the crossing .

The procedure used to place the floating crossings is an iterative relaxation method ,

developed by R. Rivest , where each edge is considered in turn and the crossing positions on that

edge are adjusted . Initially each floating crossing is assigned the location of the mid-point of the

edge with which it is associated . At each step a new position for a crossing c on an edge e is

computed as the weighted average of the old position of c on e , the mid-point of e , and the

projections onto edge e of the current positions of the other crossings belonging to the strands

containing c . The projections of crossing positions which are closer to the old position of crossing

c on edge e are weighted heavier than the projections of crossing positions farther away . In

addition , the projections of crossing positions facing the edge e are weighted heavier than the

projections of crossing positions off to the side of e (see Figure 2.10) .

R

side crossing position

R₂

28

2.6 Intra-Region Routing .

C

facing crossing position

Crossing Placement

Figure2.10

edge e

After a new position is computed for each crossing on an edge , the positions are

discretized so that they lie on a global grid whose spacing equals the standard track-center- to-track

center distance (currently set to 7A) . This discretization process simply involves adjusting each

crossing position in turn , moving it to the closest unoccupied grid position . The crossings are

adjusted in order of decreasing placement force , where the force of a placement is simply the total

weight involved in computing the current crossing position .

The only exception to this crossing placement procedure occurs when two crossings belong

to a common strand across a covered or narrow channel . In this case the two crossings are treated

as a unit for the purposes of crossing placement . Thus we are guaranteed that such crossings will

always be assigned location directly opposite each other .

Finally , this simple crossing placement procedure is iterated over all edges several times .

The result is a crossing placement which tends to yield instances of the intra- region routing

problem requiring a minimum amount of jogging and wire crossover .

When the PI system begins the intra-region routing phase , all that remains is to solve a

set of well-defined independent intra-region routing problems . Each such problem will consist of a

rectangular region with fixed dimensions and a set of physical connection points (i.e. , crossing

29

positions) with fixed locations along the perimeter of the region . In addition , a set of strands will

specify wiring required internal to the region . The problem then consists of generating a layout

for the routing region which implements all the required interconnect . Care must be taken ,

however , not to route conducting paths too close to the border of the region as this might

interfere with the wiring in an adjacent routing region . The only exception occurs when a wire is

running to the edge of a region to make a connection to a crossing position .

The PI system takes a somewhat novel approach to the intra-region routing problem by

employing a library of region routing procedures , each with different philosophies and

capabilities . Currently two such routers have been implemented : a "quick and dirty" router and

a slower , more sophisticated router . Empirically , the "quick router" succeeds on approximately

80% of the routing regions . Whenever the quick router fails, we depend on the "powerful" router

to solve the problem .

Before performing the region routing , each region is assigned a preferred direction (vertical

or horizontal) which indicates the direction in which the metal layer wiring will be run ; wires

running in the other direction will be on the polysilicon or diffusion layer whenever they cross a

metal wire . The preferred direction is chosen in a way which attempts to maximize the amount of

metal layer wiring that will be generated .

The quick region router employs a three step solution process . In the first step a simple

set of heuristics is used to determine the basic geometry of the desired layout . No consideration

is given to conducting layers or design rules at this point . The goal is simply to generate a set of

geometric patterns that will interconnect the crossing positions specified by each strand . The

second step of the quick router then consists of assigning a conducting layer to each interconnect

path . This layer assignment is performed such that all paths running in the preferred direction

are assigned the metal layer and paths running in the other direction are assigned the metal layer

whenever possible . The final step performed by the quick router is a complete design rule check

of the layout generated . If the layout passes the design rule check , the region is marked as

routed and the system moves on to another region . If the layout fails the design rule check , it is

passed on to the powerful router . The details of the quick router will be presented in Chapter 4 .

The powerful region router , developed by D. Christman and J. Koschella , uses a

30

coordinate transformation so it can view the region with the preferred direction running from left

to right . The basic components of this router are:

1) A jiggler which can be used to adjust the track positions of the wires as they

enter on the left or right .

2) A recursive slice router that successively wires a sequence of vertical slices into

which the region is divided . A given slice may contain connections to crossing

positions on the top and/or bottom of the region .

The approach is then to route the region in a left to right manner . The details of this procedure

are presented in [Kos81] . In addition , several algorithms with the same flavor will be discussed

in Chapter 4 .

2.7 Summary.

The PI routing system is a four phase integrated circuit signal routing system . The basic

approach taken by PI is a fairly common one in which the routing problem is solved by first

generating a global routing for each signal net and then generating a set of small detailed local

routings for various regions of the layout area . However , the PI system is unique in that the data

structure representing the layout area consists of a set of fixed two-dimensional rectangular routing

regions . Thus we always know the exact size and shape of each routing region . Furthermore ,

we always know the exact length of any edge separating two routing regions . This provides a

greater ability to avoid congestion in any one area of the layout .

Another notable ingredient of the PI system is the separate phase for determining the

exact positions at which wires must cross edges . This results in a completely independent set of

region routing problems and thus it simplifies the last phase of the system .

The final important ingredient of the PI system is the notion of a library of region

routers . The goal is to develop a set of very efficient routers that each have a high probability of

success on a specific type of region routing problem . The proper router can then be selected for

any given problem .

31

In conclusion , empirical results show that the first two phases of the PI system (i.e. ,

region routing definition and global routing) produce fairly high quality results . The iterative

improvement algorithm implementing the crossing placement phase , however , is much too

sensitive to the values assigned to various parameters in the weighting function . It is believed that

a better approach would be one which is more combinatorial in nature . The goal would then

simply be to place crossings such that the number of required wire crossovers is minimized .

Finally , the library approach to region routing seems to be a great time saver . The real success

of this approach , however , is dependent upon the development of a comprehensive theory for

region routing .

Chapter 3 Global Routing .

32

The most common approach to computing a global routing for a given net consists of

searching a graph structure representing all existing paths across a layout area . The edges of this

graph are generally assigned weights so that the weight of a path in the graph corresponds to the

quality of a conducting path through the layout area . For each net , a global routing is generated

by computing an approximately minimum weight connected subgraph containing the vertices

corresponding to the pins for the net . Such a subgraph is called a Steiner tree [Gar79] .

In this chapter we begin by formalizing the notion of a Steiner tree and the problem of

computing an optimal Steiner tree in a graph . We then describe and analyze two "provably

good" heuristic Steiner tree algorithms . The first of these algorithms , due to C. El-Arbi [EA78] ,

is guaranteed to compute a solution having total weight no more than twice optimal . The second

algorithm has the interesting property that its performance is related to the number of Steiner

vertices in an optimal solution to the given problem . Finally , we present a description of the

Steiner tree algorithm used in the PI system . This algorithm is essentially an efficient

implementation of the algorithm developed by El-Arbi .

3.1 The Steiner Tree Problem : A Model for Global Routing .

In this section we shall formalize the notion of a Steiner tree and the problem of

computing an optimal Steiner tree in a graph . We begin by defining some standard graph

theoretic notation . (The informed reader may wish to proceed directly to Definition 3.5 .)

Definition 3.1:

V

An undirected weighted graph G= (V , E , w) consists of a finite set of vertices

V={ ₁,...,v₂}, a set of edges EC{{v₁, vj} | v₁,vV and vv) , and a weight function w.E- RV¡ ,

which maps E into the set of non-negative real numbers . Two vertices v € V and v¡¤V are said to

be adjacent in G if {v , E. Further , for any vertex vEV we define the degree of v; in G ,

denoted deg (v.) , to be the number of distinct vertices adjacent to v, in G:

deg (v)= {{v₁,v;} |{v₁, vj}€E} \ .

Vi

For any undirected weighted graph G= (V, E , w) , if e = {u , v} is an edge in E , then e is

said to connect u and vin G. Furthermore , u and v are called the endpoints of e in G.

Definition 3.2:

33

Let G = (V , E, w) denote an undirected weighted graph . A path p , from vertex u, to

vertex u, in G ,in G , is a sequence of distinct vertices and edges p - u₁e₁₂e₂...Uk-lek-14k (k≥2) such

that uEV for each 1≤i≤k, eEE for each 1≤i≤k-1 , and e = { u;, u₁+ 1} for each 1≤i≤k-1 . The

are called the endpoints of p and p is said to connect ₁
vertices and in G. TheU₁

and
uик

weight of a path p in G is defined to be:

W(p)= {w(e) | eEE is an edge in p} .

Definition 3.4:

Uk

Definition 3.3:

Let G= (V, E , w) denote an undirected weighted graph . A tree T= (V₂CV, ECE) in G

T

is a connected subgraph of G such that the removal of any edge in the subgraph will leave it

disconnected . Any vertex vEV such that deg,(v) = 1 is called a leaf in T. Further , for any

VCVwe say that T spans V' in G if VCVT . A tree which spans V in G is called a spanning tree

of G. Finally , the weight of a tree T is defined to be:

W(T) = Σ{w(e) | e€E7} .

Occasionally we will speak about a path in a tree or the weight of a path in a tree . A

path in a tree is simply a path in the underlying graph composed entirely of vertices and edges in

the tree . Similarly , the weight of a path in a tree is defined relative to the weight function in the

underlying graph . We are now ready to formaily define the notion of a Steiner tree and the

problem of computing an optimal Steiner tree in a graph .

D

Let G= (V , E, w) denote an undirected weighted graph and let DCV denote any subset of

the vertices in G with |D|>1 . A Steiner tree T with respect to D in G is simply a tree in G that

spans D and has leaves from only the set D. A Steiner vertex in T, is then defined to be anyD

vertex v in To such that deg, (v)>2 and vD . Finally , a minimum weight Steiner tree with

respect to D in G is defined to be any Steiner tree with respect to D in G whose weight is

minimum among all such Steiner trees .

Definition 3.5:

D

and uk
is either aD

Let G= (V, E , w) denote an undirected weighted graph , let DCV denote any subset of the

vertices in G with |D|>1 , and let To denote a Steiner tree with respect to D in G. Further , let p

denote any path from a vertex u, to a vertex uk in To such that each of U₁

Steiner vertex in Tp or an element of the set D and every other vertex u' in p' satisfies the

Then the path p' is called a basic path in Tp .

D

constraints
desT D

Figure 3.1 illustrates the notions of a Steiner tree , a basic path in a Steiner tree , and a

Steiner vertex in a Steiner tree . An instance of the Steiner tree problem can now be easily

defined as follows .

Definition 3.6:

34

which :

An instance of the Steiner tree problem is simply an ordered pair , STP= (G , D) , in

1) G= (V , E , w) denotes an undirected weighted graph .

2) DCV denotes a subset , with ID >1 , of the vertices in G.

Each vertex dED is called a distinguished vertex in G. An optimal solution to such a problem

instance consists of a minimum weight Steiner tree with respect to D in G.

The problem of computing an optimal solution to any Steiner tree problem given as input

is known in the literature as the Graph Steiner Tree Problem [Gar79] . This problem has been

shown to be NP-hard [Gar79] and thus there is little hope of developing an efficient (i.e. ,

polynomial-time) algorithm for solving it . In the next section we will discuss two efficient

heuristic algorithms for computing a " near optimal " solution to a Steiner tree problem . Before

describing these algorithms we require the following definition .

Definition 3.7:

Let G= (V, E , w) denote an undirected weighted graph and let DCV denote any subset of

the vertices in G. The path graph for D in G is then defined to be the undirected weighted graph

G₁=(D₂Ep , wp) such that:

a
€₂

b

Steiner vertex

es

em

eg

C

b

em

es

es

еб

e6

e A

eq

35

e7

0.0g

G= (V , E , w) , where

e

V= { a , b , c , d , e , f , g }

E= { ₁ , ²₂ , ²3 , ²4 , egregieg , egreg}

w (e₁) = 1 for all i (1≤i≤9)
W

D= { a , d , e , g }

An Example ofa Steiner Tree

Figure 3.1

ID= (VIDT

ET .

V = { a , b , c , d , e , g }T.D

е

E) , where
T.
D

D
=[e₁₁e₁e₁₁e₁ey }

The path p=b e ce e is a basic path in Tсе D.

36

1) E₁ = {{d;, d;} | d₁, d.ED and dd;} .

2) wû({d¡ , d;}) is set equal to the weight of any minimum weight path from d¡ to

d, in G.

Notice that each edge in a path graph can be associated with some minimum weight path

in the underlying graph .

to com

3.2 Heuristic Algorithms for the Steiner Tree Problem .

In this section we shall consider two heuristic Steiner tree algorithms which are guaranteed

te a solution with total weight no more than twice optimal . The first of these

algorithms , developed in 1977 by C. El-Arbi [EA78] , is based on a simple spanning tree

computation in a path graph . The second algorithm attempts to apply the same spanning tree

computation to a path graph that has been augmented with several vertices corresponding to

Steiner vertices in an optimal solution . The search for efficient heuristic Steiner tree algorithms is

justified by the fact that the Steiner tree problem has been shown to be NP-hard even under

various restricted graph topologies and weight functions [Gar79] .

Algorithm 3.1: (El-Arbi [EA78])

Let STP= (G , D) denote any instance of the Steiner tree problem with G= (V, E, w) .

Algorithm 3.1 then computes a Steiner tree T with respect to D in G as follows:

1) Construct the path graph G for D in G.

2) Compute a minimum weight spanning tree Ts of the path graph G.S

е3) For each edge e= {d₁ , d;} in Ts , let pe denote a minimum weight path between

d¡ and d¡ in G. Furthermore , let Ps={pe | e is an edge in T } and let RCV

denote the set of all vertices belonging to a path in Pg . Then let GR denote

the subgraph of G induced by the vertex set R and compute a minimum

weight spanning tree TR of GR . (Notice that DCR and thus TR spans D in

GR .)

37

4) Construct a Steiner tree To from TR by repeatedly deleting from TR any vertexD

R(along with its incident edge) which has degree 1 in Tp and does not belong to

the set D.

Notice that the tree TR will have weight no greater than the weight of Ts
since the

construction of GR insures that there exists a spanning tree of GR with weight at most equal to the

weight of Ts. Thus it must also be the case that the Steiner tree T will have weight at most

equal to the weight of Ts . We will now demonstrate an upper bound on the weight of To by

proving an upper bound on the weight of Ts . This bound is based on the observation that any

minimum weight Steiner tree , T for D in G can be decomposed into a set of (possibly

overlapping) paths in G which correspond to a spanning tree of GD with weight at most

2. W(Topt) .

D

opt'

Lemma 3.1 :

Let G= (V, E , w) denote an undirected weighted graph , let DCV denote any subset of the

vertices in G with | D |> 1 , and let 7 denote any Steiner tree with respect to D in G. Further , let

aED and bED denote any two distinct leaves in T and let p' denote the unique path from a to b

in Tp . Then there exists a set of paths P= {P₁ P₁D -1} in Tp such that:D

1) Each pEP denotes the unique path from some vertex dED to some other

vertex dED in Tp.

2) The graph G =(D,E) , where E = {{dd;} | d; and d, are the two endpoints

of some path in P} , forms a tree (i.e. , a connected graph such that the

removal of any edge will leave it disconnected) .

D3) Each edge in To belongs to at most two distinct paths in P and each edge in p

belongs to at most one path in P.

Proof: [Induction on [Dm]

For m= 2 , let D={d₁ , d2} and assume without loss of generality that a= d₁ and b= d₂ .

Then it must be the case that T denotes a path between a and b in G. Thus P={T } must

clearly satisfy the conditions of the lemma .

D

D

We now assume that Lemma 3.1 holds for m = k (k≥2) and we consider the case

m= k+1 . For m= k+ 1 there are two possibilities ; either T has exactly two leaves or T

contains more than two leaves . If Tp has exactly two leaves , assumed without loss of generality

to be a= d₁ED and b= dk+1ED , then To denotes a path between a and b in G. We now assumeD

D(wlog) that Tô is a path from a to b and let (a= d₁ , ₂, ... , dk+1 = b) denote the ordered

sequence of all vertices of D along the path Tp . Further , let P= {p₁, ... ,P } denote the set of

k paths in Tp such that p, denotes the unique path from d; to di+ 1 in TD (see Figure 3.2a).

Then clearly the set P satisfies the conditions of the lemma .

D

D

D

Finally , if T contains more than two leaves then let cED denote any leaf in To such that

ca and c#b . Further , let q denote the basic path from c to some vertex v in TD. Now

consider the set D' = D-{c} and the Steiner tree T ' generated by removing from To all the edges

and vertices (with the exception of v) belonging to q (see Figure 3.2b) . By the induction .

hypothesis , there exists a set P' = {p₁ , ... , Pk-1} of paths in T ' which satisfy the conditions of

the lemma for G , D' , T ' , a , and b . Now if vED , then simply let P= P'U{q} . Clearly , the

set P satisfies the conditions of the lemma for Tp . However , if v denotes a Steiner vertex in T

then there must exist at least one path pEP' such that v belongs to p . In this case we generate

the required set P for To by simply replacing p; in P' with a pair of paths as shown in FigureD

3.2c .

distinct leaves in T

38

Theorem 3.1: (El-Arbi [EA78])

Let STP= (G , D) denote any instance of the Steiner tree problem with G= (V , E , w) .

Further , let T denote a minimum weight Steiner tree with respect to D in G and let T denote
opt alg

a Steiner tree generated by Algorithm 3.1 for STP . If we now let / denote the number of

Proof:

opt'
then:

☐

W(Tals)/W(Topt) ≤2(1-1/1) ≤ 2(1-1 /|D |) .

Let aED and bED denote two distinct leaves in T such that the weight of the path p

from a to b in T is maximized . Then let (a= d₁ , d₂, ... , d = b) denote the ordered sequence

opt

opt

of all leaves in T as visited in a preorder traversal of Tont (c.f. , [Aho74]) ; beginning at a andopt

a)

a=d₁

b) TD :

C

2

a

P2

वु

P4

न्डै

c)

b = ds

Pi

39

di

V

Figure 3.2

=

TD':

भू

V
a

ने

८

Pi

d;

V

P;"

b

40

ending at b . If we now let q; denote the path from d; to di+ 1 in Topt (for all i , 1≤i≤1-1) , then

clearly:

W(p') + Σ{W(q;) | 1<i<l+ 1} =2• W(Topt) .

However , since p' has weight no less than W(q) for every i (1≤i≤1-1) , we have:

W(p)≥ (2/1).W(Topt) .

We can now apply Lemma 3.1 to T a , and b , to obtain a set P of paths in Tont such that:

W(P)=Σ{W(p) |PEP}≤2·W(Topt)-(2/1).W(Topt) .

opt' opt

Finally , it should be clear from condition (2) of Lemma 3.1 that W(P) is no less than the weight

of the tree Ts computed in Step (2) of Algorithm 3.1 for STP . Thus we have:S

W(Talg)≤WD(Ts)≤W(P)≤2(1-1/1)• W(Topt)

⇒> W(Talg)/W(Topt)≤2(1-1/1)≤2(1-1/ |D |) .

Therefore , Algorithm 3.1 is guaranteed to compute a near optimal solution to any given

instance of the Steiner tree problem . We now note that this algorithm might produce somewhat

better results if we could initially augment the distinguished vertex set with several vertices

corresponding to Steiner vertices in an optimal solution . An indirect application of this

observation yields the following heuristic Steiner tree algorithm .

Algorithm 3.2:

Let STP= (G , D) denote any instance of the Steiner tree problem with G= (V, E, w).

Algorithm 3.2 then computes a Steiner tree T with respect to D in G as follows:D

For each distinct ICV-D such that ≤2 , compute a Steiner tree TDUI with respect to

DUI in G by simply applying Algorithm 3.1 to the problem STP₁= (G , DUI . Then delete

vertices and edges from each of these trees (see Step (4) of Algorithm 3.1) until all the remaining

leaves are vertices in D (and not DUI) . Finally , let To denote the tree which has minimum

weight over all those computed .

D

We now note that T will have total weight no more than the weight of the smallest

spanning tree computed in Step (2) of Algorithm 3.1 . Thus a bound on the weight of this

smallest spanning tree will be a bound on Tp .

Lemma 3.2:

Let G= (V, E, w) denote an undirected weighted graph , let DCV denote any subset of the

vertices in G with |D|>1 ,

aED and bED denote any two

and let T denote any Steiner tree with respect to D in G. Further , let

Then there exists a set of pathsdistinct vertices in D.

P={P₁.... P₁D -1} in To such that:D

Proof:

41

1) Each pEP denotes the unique path from some vertex dED to some other

vertex dED in Tp .

2) The graph G′ = (D , E') , where E' = {{d; , d;} | d; and d; are the two endpoints

of some path in P} , forms a tree .

D3) Each edge in To belongs to at most two distinct paths in P , each edge in a

basic path between two distinct vertices dED and dED in T belongs to at

most one path in P , and each edge in a basic path from either aED or bED to

D

some other vertex in T belongs to at most one path in P.

The proof of this lemma follows from the same induction argument as that used to prove

Lemma 3.1 . The only difference occurs in the case where m = k+ 1 and T₁ has exactly two

leaves . In this case we allow a and b to be arbitrarily assigned to vertices in D.

D

Theorem 3.2:

and for s>2 we have:

Let STP= (G , D) denote any instance of the Steiner tree problem with G= (V , E, w) .

Further , let T denote a minimum weight Steiner tree with respect to D in G and let To denotealgopt

a Steiner tree generated by Algorithm 3.2 for STP . If we now let s denote the number of

distinct Steiner vertices in T then for s2 we have:
opt'

W(Tale)/W(Topt)= 1 ,

W(Talg)/W(Topt)≤2(1-1/s) .ор

Proof:

42

Let SV denote the set of all Steiner vertices in T. Therefore , s= |SV and we have twoopt

possible cases to consider; s= |SV|≤2 and s= |SV|>2 . If s≤2 , then clearly one of the augmented

distinguished vertex sets (DUI) generated by Algorithm 3.2 will contain exactly those vertices

belonging to T For this particular distinguished vertex set Algorithm 3.1 is guaranteed to

compute a Steiner tree with weight equal to W(Top). Thus the final Steiner tree ,

computed by Algorithm 3.2 must also have weight equal to W(Top) . Therefore , for s≤2 we

opt

alg '

ор

have:

W(T
alg)/W(Topt)= 1 .

If s= |SV|>2 , then for each Steiner vertex vESV let E, denote the set of all edges

belonging to a basic path with endpoint v in Topt and let W(E) denote the sum of the weights of

all edges in E

W(E)= {w(e) | eEE} .

Furthermore , let aESV and bESV denote two distinct Steiner vertices in T
opt

W(E₂UE₂) = Σ{w(e) | e€EUE₂}

is maximum over all possible pairs of distinct Steiner vertices in Topt

T

such that:

(Notice that the weight of

any edge in both E and E, is counted only once .) Now consider the edge sets X , Y, and Z sucha b

that:

1) X contains exactly those edges belonging to a basic path between two

distinguished vertices in T
opt*

2) Y contains exactly those edges beloging to a basic path between two Steiner

vertices in T
opt*

(s/2)•W(E_UE)≥W(Y)+ W(Z)= W(Topp)-W(X)

⇒ WE UE₂)≥2·[W(Top)-W(X)]/s

3) Z contains exactly those edges belonging to a basic path between a Steiner

vertex and a distinguished vertex in 77opt

Further , let W(X) , W(Y) , and W(Z) denote the sum of the weights of all edges in X , Y , and Z

respectively . We now note that the sets X, Y , and Z partition the edge set of T and thus

W(X)+ W(Y) + W(Z)= W(Top). In addition , we note that YUZ=U{E, ESV} and thus by

opt

|

our selection of vertices a and b we obtain the relation:

(3.1)

Finally , we apply Lemma 3.2 to G , DU{a , b} , Topt , a , and b to obtain a set P of paths in Topt

such that:

W(P)= Σ{W(p) |PEP}≤2 W(Top)-W(X)-WEUE).

It should now be clear from condition (2) of Lemma 3.2 that W(P) is no less than the weight of

the spanning tree computed in Step (2) of Algorithm 3.1 for the augmented vertex set DU{a , b} .

Therefore W(P) must be no less than the weight of the smallest spanning tree computed in Step

(2) of Algorithm 3.1 and so we have:

Theorem 3.3:

43

Proof:

W(Tals)≤W(P)≤2·W(Topt)-W(X)-W(EUE₂)ор

⇒W(T

Theorem 3.4:

alg)≤2·W(Topt)-W(X)-2·[W(Top)-W(x)]/s

We have now shown that both Algorithm 3.1 and Algorithm 3.2 are guaranteed to

compute a near optimal solution to any given instance of the Steiner tree problem . It should also

be clear , however , that Algorithm 3.2 will always generate a better solution than Algorithm 3.1 .

Let us now consider the time complexity of each of these two Steiner tree algorithms .

W(Talg) ≤2· W(Topt) -2 · W(Topt)/s

⇒W(Tals)/W(Topl)≤2(1-1/s) .

[from (3.1)]

[since s>2]

Let STP= (G , D) denote any instance of the Steiner tree problem with G= (V, E, w) .

Then Algorithm 3.1 has worst case time complexity O(³) for computing a solution to STP .

The proof of this theorem follows directly from a simple analysis of the worst case time

complexity of each step in Algorithm 3.1 .

Let STP= (G , D) denote any instance of the Steiner tree problem with G= (V, E , w) .

Then Algorithm 3.2 has worst case time complexity O(log) for computing a solution to

STP .

Proof:

The proof of this theorem follows from the observation that the minimum weight paths

between every pair of vertices in the graph G can be precomputed in time O(³) [Aho74] . The

construction of each path graph GUI can then be accomplished by simply selecting the

appropriate minimum weight paths from those previously computed . All other steps are then

analyzed in the standard way .

44

3.3 A Practical Steiner Tree Algorithm .

In this section we shall describe a practical version of Algorithm 3.1 which is currently

being used in the global routing phase of the PI routing system . This new algorithm is essentially

a generalization of Dijkstra's single source shortest path algorithm [Aho74] and thus we shall begin

by describing Dijkstra's algorithm .

Let G= (V, E , w) denote an undirected weighted graph and let v EV denote any vertex in

V. Dijkstra's algorithm then computes a minimum weight path from v to any other vertex in V

by constructing a set SCV such that the minimum weight path from y to each vertex in S is

composed entirely of vertices in S. If we let C(v) denote the weight of the current minimum

weight path from v to v passing only through vertices of S , then Dijkstra's algorithm proceeds as

follows : (taken from [Aho74])

1) S+{v};

2) C(v)+0;

3) for each ve V-{v } do C(v)+ w({v , v }) ;

comment Let w({v,, vj})= + 00 if {v₁, v} E and let w(v₁,v)= .

4) while SV do

begin

5)

6)

7)

8)

end

choose a vertex v'EV- S such that C(v) is minimum;

add v to S;

for each ve V-S do

C(v) Min(C(v) , C(v) + w({v' , v}))

45

We should now note that Dijkstra's algorithm is essentially an efficient formulation of

C.Y. Lee's minimum length path algorithm [Lee61] . As Lee noted , the growth of the set S

can be viewed as a wave expansion ; similar to the result of dropping a pebble into a pond . We

can now generalize this wave expansion technique to compute the minimum weight path over all

paths between any pair of vertices in a prespecified subset of vertices . The basic approach is to

execute Dijkstra's algorithm from several sources simultaneously until the wave expansion from

one source reaches another source . This constitutes the basic computational step in our Steiner

tree algorithm .

Let STP= (G, D) denote any instance of the Steiner tree problem with G= (V, E, w) . If

vEV denotes any vertex in V and VCV denotes any subset of the vertices in V , then a minimum

weight path between v and V in G is defined to be any path p between v and some vertex v'EV

in G such that W(p) is minimum over all possible paths in G between v and a vertex in V. Now

let B={B₁,...,B } denote any family of disjoint subsets of V. The basic computational step in

our Steiner tree algorithm then consists of computing a path p' in G such that p' connects two

vertices belonging to distinct subsets in B and W(p') is minimum over all such paths in G. This

computation is performed by a simple generalization of Dijkstra's algorithm which constructs a

family of sets {SBV,...,SB } such that for each i (1<i<m) , the minimum weight path

between B; and each vertex in SB is composed entirely of vertices in SB. If we let C (v) denote
B¡°

the weight of the current minimum weight path between v and B, passing only through vertices ofi

SB₁
then the path-finding algorithm proceeds as follows:

1) for each BEB do

begin

2)

3)

4)

SB₁+B;

for each b€ B₁ do C₁(b)← ;B

for each vềV-B₁ do Cp,(v) +Min {w({v , b}) | b €B;}
end;

5) while true do

begin

6)

7)

8)

9)

10)

46

end

C ,
choose a pair (B;¤B, v'EV-SB) such that CB(v) is minimum over all such

pairs;

add y to
SB³

if v'EB, for some BEB then halt (The desired path has been found) ;

for each ve V-SB . do

CB(v)+Min(CB,(v), CB(v)+ n({v, v}))

B.In the complete Steiner tree algorithm , each set S is called a group with basis B, and

each vertex in the set B; is called a basic vertex in SB . Further , each vertex in the set SB; isi

called a new vertex in SÂ , and each vertex v S , with CB(VOO is called a neighbor vertex of
S
SB₁

B B.B.i

Finally , in the current implementation of the algorithm there exists a data structure called a mark

which records the relationship (basis , new , or neighbor) between every group-vertex pair . The

entire Steiner tree algorithm can now be described as follows .

Algorithm 3.3:

1) If |D| = 2 , the standard single source Dijkstra algorithm is used to compute the

desired Steiner tree .

2) If |D|>2 , the algorithm begins by generating |D| distinct groups each with a

unique basis {d}CD . Following this initialization , the generalized Dijkstra

algorithm is used to compute a minimum weight path in G between any pair of

basic vertices belonging to distinct groups . This path is then output as a

fragment of the desired Steiner tree and the two groups containing the

endpoints of the path are merged . The merging process simply involves

replacing the two endpoint groups with a new group containing no neighbor or

47

new vertices and having basis equal to the union of the basis sets for the two

groups being replaced . The path- finding procedure is then continued on this

new group structure . Such iteration continues until there is only one

remaining group . At this point the set of paths output by the algorithm can

be used to form the desired Steiner tree .

It should now be clear that Algorithm 3.3 is essentially an efficient implementation of the

first two steps of Algorithm 3.1 and thus the same bounds on solution optimality must hold

(i.e. , W(Talg)/W(Top)≤2(1-1/[D])) . Notice , however , that this algorithm computes a Steiner

tree with worst case time complexity O(|D|· E ·log|V) . (This follows from the fact that the

algorithm essentially involves O(|D|) Dijkstra computations , each with time complexity

O(E ·log|V) .) Finally , notice that this algorithm can also be applied to the more general Steiner

tree problem in which each distinguished vertex corresponds to a set of vertices . The problem is

then to compute a minimum weight tree containing at least one vertex from each set . The

solution of this problem simply requires the initialization of each group with a set of basis vertices

rather than a single basic vertex . This technique was also noted by D. Hightower [Hig74] for the

case in which there are only two distinguished vertices (or vertex sets) .

Chapter 4 Region Routing .

4.1 Introduction .

48

In this chapter we consider the problem of wire routing within a rectangular region . We

begin by developing a new realistic multiple layer grid -based wiring model . We then use this

model to construct polynomial-time algorithms for the well known river routing and channel

routing problems . More specifically , we present efficient polynomial-time algorithms for river

routing with arbitrarily many conducting layers and "provably good " polynomial-time heuristic

algorithms for two-layer channel routing .

Assume we are given a rectangular region with fixed dimensions on a routing plane and a

set of connection points constrained to lie on the perimeter of the region . In addition , assume

we are given a partition of the connection points into nets which specify interconnect required

within the region . We now consider the problem of producing wiring which has the properties

that all points belonging to a given net are interconnected and no two points belonging to different

nets are shorted (i.e. , interconnected) . Furthermore , all wiring must be located entirely within

the given region and must satisfy some prespecified set of wiring rules .

In 1971 , Hashimoto and Stevens [Has71] presented a simple heuristic algorithm for a

restricted region routing problem in which each net has cardinality two and there are constraints

on the locations at which connection points can lie and the type of wiring that can be produced .

In particular , all wiring is required to lie on a rectilinear grid with vertically oriented wires

assigned to one conducting layer and horizontally oriented wires assigned to another . In 1976 ,

Deutsch [Deu76] generalized this work to include nets containing arbitrarily many connection

points . (This version of the region routing problem is called the channel routing problem .)

Empirically , Deutsch's algorithm performs very well in practice . However , A. LaPaugh and E.

Lloyd [LaP80] have shown that there exist pathological problem instances for which it produces

very poor results . Moreover , LaPaugh [LaP80] and Szymanski [Szy81] have proven NP

Completeness for various versions of the channel routing problem .

A somewhat simpler restricted region routing problem , called the river routing problem ,

49

has also received a great deal of attention in the recent literature . An instance of the river routing

problem has the properties that each net contains exactly two connection points , one constrained

to lie at a fixed location along the top of the rectangular region and the other constrained to lie at

a fixed location along the bottom , such that the th net contains both the th connection point

(numbered from left-to -right) along the top of the region and the th connection point along the

bottom . In 1980 , M. Tompa [Tom80] presented a polynomial-time algorithm for river routing

under a general single-layer grid- free wiring model . Tompa showed that an optimal solution need

only contain wires composed of straight line segments and circular arcs . One year later , D.

Dolev and others [Do181] developed a polynomial-time algorithm for river routing under a single

layer rectilinear grid-based wiring model . This result was later extended by Dolev and Siegel

[DS81] to include single-layer rectilinear plus diagonal grid-based wiring models .

In Section 4.2 , we shall formalize the notion of a region routing problem and thus

develop a general routing model . This model will serve to unify many of the individual routing

problems and wiring models that have appeared in the recent literature (including those discussed

above) . In the process , we will introduce a new class of realistic multiple layer grid -based wiring

models which will be used in Sections 4.4 , 4.5 , and 4.6 to construct provably good algorithms

for the river routing and channel routing problems .

4.2 A General, Routing Model.

In this section we shall formalize the notions of a region routing problem and an

associated wiring model . We will begin by introducing the fundamental concept of a routing

region which essentially defines the boundary of a routing area and the topology of wiring allowed

within that area (e.g. , the slope of legal interconnect lines or the portions of the wiring area

through which wires may pass) . A routing region will be defined to have fixed dimensions and

thus a region routing problem will be a decision problem rather than an optimization problem .

That is , a region routing problem will be a problem of determining whether or not a routing can

be generated within a given region . Notice that this differs from the problem of determining the

smallest region for which a routing exists .

50

Once we have introduced the concept of a routing region , we can formalize the notion of

wiring by defining the structure of a wire and a wiring tree within a routing region . This will be

used to define the concept of a wiring model . A wiring model essentially consists of a routing

region , defining the topology of a legal wire , and a set of wiring rules , defining the properties of

permissible wirings . For example , a wiring model might require that all wiring be placed on a

rectilinear grid with horizontally oriented segments located on one conducting layer and vertically

oriented segments located on another ; as in the Thompson model [Tho80] . Another wiring model

might allow diagonal wire segments but require that each net be routed on a single layer . Thus a

wiring model essentially specifies wire topology , restrictions on layer assignment , and restrictions

on wire overlap or crossing . Our goal is to develop a framework for studying and comparing the

effect of various wiring models on a particular type of routing problem .

Finally , the concept of a wiring model will be combined with the notions of a pin and a

net to develop a formal definition of the region routing problem . A net will be simply defined as

a set of pins and a pin should be considered an abstraction of a physical connection point

constrained to lie somewhere along the perimeter of a particular routing region . However , we

would like our model to incorporate many different types of routing problems having various

restrictions on the locations at which pins can be placed . (For example , the river routing

problem is defined such that each pin has a fixed location along either the top or bottom of the

routing area . Similarly , the channel routing problem is defined such that each pin is constrained

to lie either at some fixed location along the top or bottom of the routing area , at some

unspecified location along the left side of the routing area , or at some unspecified location along

the right side of the routing region .) Thus the notion of a pin will be defined under a set of

restrictions on the points at which it may be located .

Definition 4.1:

A (rectangular) routing region R is a 5 -tuple , R = (1, h , A , V , E) , such that:

1) 1, h , A€Z * .

2) V denotes a set of grid points (x , y) such that the integers x and y satisfy the

relations <x<1+ 1 and <y<h+ 1 .

3) E denotes a non-empty set of routing edges of the form ({v₁ , v;} , k) , where Vi
and

Vj are distinct grid points in V and the integer k satisfies the relation

1≤k≤A .

51

The routing region R is said to have length 1 , height h , and to contain A conducting

layers . For each routing edge e= ({v;, v;} , k) in E we say that Vi
and

Vj are the endpoints of e and

that e connects Vi and
vj while on conducting layer k . Furthermore , we define the function

layer(e) such that:

layer(e) = k , for each edge e= ({v₁ , vj) , k) in E.

Finally , any routing edge which connects two grid points with the same y-coordinate is called a

horizontal edge and any routing edge which connects two grid points with the same x-coordinate is

called a vertical edge .

Definition 4.2:

Let R = (1, h , A , V, E) denote a routing region and let i€Z denote an integer which

satisfies the relation 0≤i≤h+ 1 . We then define track i of R to be the ordered pair track i

=(V₁,E.) such that:

1) VCV denotes the set of all grid points in V with y-coordinate equal to i .

2) ECE denotes the set of all (horizontal) edges in E which connect pairs of grid

points in V

Note that track i is not necessarily connected .

Definition 4.3:

Let R= (1, h , A , V , E) denote a routing region and let jEZ denote an integer which

satisfies the relation 0≤j≤/+ 1 . We then define column j of R to be the ordered pair column j

=(V;,E;) such that:

1) VCV denotes the set of all grid points in V with x-coordinate equal to j .

2) ECE denotes the set of all (vertical) edges in E which connect pairs of grid

points in V₁ .

Note that column j is not necessarily connected .

An example of an arbitrary routing region is shown in Figure 4.1 . Notice that a routing

region can assume any one of many different topologies depending on the structure of the

Routing Region.

(1 Conducting Layer)

52

Rectilinear Routing Region

(2 Conducting Layers)

Figure 4.2

Figure 4.1

horizontal edge

vertical edge

F.

Aug. Rect . Routing Region.

(1 Conducting Layer)

Figure 4.3

53

associated set of routing edges . In the remainder of this chapter we shall be mainly concerned

with two specific types of routing regions; the rectilinear routing region and the augmented

rectilinear routing region .

Definition 4.4:

A rectilinear routing region R¹= (1, h ,A , V, E¹) is a routing region with the property that

the edge set E forms a multi -layer rectilinear grid by containing essentially all routing edges

connecting pairs of horizontally or vertically adjacent grid points :

E¹= {({v₁ , vj},k) | v₁= (x₁,y)EV, v₁=(x ,y;)EV, [xx + y =1₁

1≤x;≤1 or 1≤x;≤1, 1≤y;≤h or 1≤y;≤h,

kEZ , and 1k≤A}.

An augmented rectilinear routing region R² = (1, h , A , V , E²) is a routing region with the

property that the edge set Ể forms a multi-layer " diagonally augmented" rectilinear grid by

containing essentially all routing edges connecting pairs of horizontally , vertically , or diagonally

adjacent grid points :

Ê̂²= E¹U{({ v₁ , vj} , k) | v;= (x₁ , y;)EV, vj= (x; ,y;)EV, 1≤x₁,x;≤1,

1≤yi , yjsh , (x¡¯x;)²+(v¡v;)²=2,

kez , and 1≤k<^}.

Definition 4.5:

9

Figure 4.2 shows an example of a rectilinear routing region and Figure 4.3 shows an

example of an augmented rectilinear routing region . In each case we note that there are no

routing edges in track , track h + 1 , column , or column 1 + 1 . This restriction is imposed to

model the fact that it is generally undesirable to have wiring located on the border of a routing

region . The following definitions will formalize the relationship between routing edges and wiring

within a routing region .

Let R = (1, h , A , V, E) denote a routing region . A wire W , from grid point v₁ to grid

point v, in R , is a sequence of distinct grid points and routing edges W= ₁₁₂₂
Ve

V -1²n-1'n
en

(n>2) such that vEV for each i (1<i<n) , eEE for cach i (1≤i≤n-1) , and e, connects v and

.

Vit1 for each i (1≤i≤n-1) .Vi + l

Definition 4.6:

54

Let R= (1, h , A , V , E) denote a routing region and let VCV denote a subset of the grid

points in V with IV >1 . A wiring tree T with respect to Vin R is an ordered pair T= (VT, ET)

such that:

1) VCV CV.

T2) ECE with each edge in Er connecting a pair of grid points in Vr.

3) For each pair of distinct grid points (vEV , EV) , there exists exactly one

wire from v¡ to v ; in R which is composed entirely of edges in ET.

T4) The sets VT and E, are minimal with respect to (1) , (2) , and (3) . That is ,

there are no subsets of VT or Er which also satisfy (1) , (2) , and (3) .T

We say that T interconnects Vin R.

An example of a wiring tree is depicted in Figure 4.4 . It should be noted that both a

wire and a wiring tree may be composed of routing edges from many different conducting layers .

Thus we require the following definition .

H

A Wiring Tree in a Rectilinear Routing Region

Figure 4.4

Definition 4.7:

Let R = (1 , h , A , V, E) denote a routing region , let VCV denote a subset of the grid

points in V with | V' >1 , and let T= (VT,ET) denote a wiring tree with respect to Vin R. For

each integer k (1≤k≤A) , the set of all edges of T which are on conducting layer k is denoted by :

layer (7)= {eEE | layer(e)= k} .

55

T

TFurther , for each grid point vEV, we define low,(v) to be the least integer i such that there exists

an edge in E, which is on conducting layer i and has v as an endpoint . Similarly , we define

high,(v) to be the greatest integer i such that there exists an edge in Er which is on conducting

layer i and has v as an endpoint . The set of internal contact points of T is then defined by:

IC(T)= {v€VT | low,(v) high,(v)} .

Finally , the set of contact points of T is defined by:

CON (T)= VUIC (T) .

The definitions of a routing region and a wiring tree within a routing region can now be

combined to formalize the concept of a wiring model . A wiring model essentially consists of a set

of wiring rules defining the structure of permissible wirings within a given routing region . Thus

we begin by introducing three common restrictions on the general structure of permissible wirings .

We then present a formal definition of a wiring model .

Definition 4.8:

such that

2

Let R = (1, h , A , V, E) denote a routing region and let T₁ and T₂ denote two distinct

wiring trees in R. The wiring trees T₁ and T₂ are said to satisfy wiring restriction NEO [No EdgeT,1

Overlap] if there does not exist a pair of routing edges e, belonging to T₁ and e₂ belonging to T₂

and
e2 have the same pair of endpoints .e1

Definition 4.9:

Let R= (1, h, A , V, E) denote a routing region and let T=(VT, ET) denote a wiring tree in

R. The wiring tree T is said to satisfy wiring restriction LPT [Layer Per Tree] if E - layer (1)

for some 1≤k<^ .

T

Definition 4.10:

Let R = (1 , h , A , V , E) denote a rectilinear routing region with A = 2 conducting layers and

let T= (VT, ET) denote a wiring tree in R. The wiring tree T is said to satisfy wiring restriction

LPD [Layer Per Direction] if layer (7) contains only horizontal edges and layer (7) contains only

vertical edges . Notice that wiring restriction LPD is defined only for rectilinear routing regions

with two conducting layers .

Definition 4.11:

56

A wiring model M is a 3 -tuple , M = (R , o , p) , such that :

1) R = (1 , h , A , V , E) denotes a routing region .

2) σER + denotes a positive real number called the minimum separation distance

for M.

3) pC{NEO , LPT , LPD} specifies the set of wiring restrictions that must be

satisfied under M.

It now remains to define the structure of permissible wiring under a given wiring model .

Before proceeding , however , we require a technical formulation of the concept of a routing edge

as a set of points in the Euclidean x-y plane .

Definition 4.12:

Let R= (1, h , A , V, E) denote a routing region , let e= ({v¡ , v;} , k) denote any routing edge

in E , and let T= (VT, ET) denote a wiring tree in R. We define line(e) to be the set of all points

in the x-y plane which lie on the line segment connecting points v = (x ,y) and v = (x, y):

line(e)={(x,y) |x,y€ and (x,y)= (x ,y) + (1-1)-(x ,y) for some 0≤1≤1}.

Furthermore , for each integer k (1≤k≤A) , we define span (T) as:

span{(T) = [U{line(e) | e¤layer (T)}]U{v] v€Vand low,(v)≤k<high,(v)} .

Informally , span (7) simply specifies all points in the x-y plane at which conducting layer

k contains some portion of the wiring tree T. Notice that this includes any contact point of T

requiring a physical contact cut through conducting layer k .

Definition 4.13:

Let M = (R , o , p) denote a wiring model in which R= (1, h , A , V, E) . Further , let T₁

and T₂ denote two distinct wiring trees in R. The wiring trees T₁ and T₂ are said to be

compatible under M if:

57

1) For each integer k (1≤k≤A) , the Euclidean distance between any point

aEspan (T) and any point bespan (T) is at least o .

2) The wiring trees T₁ and T₂ satisfy those wiring restrictions (NEO , LPT, or

LPD) specified by p .

2

We now note that a wiring model has been defined with respect to only three types of

wiring restrictions . For our purposes this is sufficient . It should be clear , however , that the

definition can be extended to include other wiring restrictions as may be necessary or desired .

Figure 4.5 shows several examples of compatible wiring trees under various wiring models .

Observe the distinction between "edge overlap " and "point overlap " among wiring trees .

We are now ready to formalize the concept of a region routing problem . We begin by

defining a pin structure .

Defintion 4.14:

Let R = (1 , h , A , V , E) denote a routing region and let QCV denote the set of all grid

points (x , y)EV with either xE {0,1+ 1} or ye{ , h + 1 } ; but not both xE{0,1+ 1} and

y€{ , h + 1} . Each grid point in Q is called a legal pin location point in R and the set Q is called

the pin location set for R. Now let P= {p₁ , ... , Pm} denote a set of pins such that m< |Q| and

let :P- Q denote a one-to -one function which maps each distinct pin in P into a distinct legal

pin location point in Q. The set P is then called a valid pin set for R and the mapping is called

a legal placement of the pin set P in R.

Definition 4.15:

Let R = (1, h , A , V, E) denote a routing region , let P= {p₁ , ...,Pm} denote a valid pin

set for R , and let 7 denote a legal placement of the pin set P in R. Further , assume that

7(p)= (x ,y) for each pEP . We then define the functions :P- Z and 7 :P- Z such that

7 *(p;) = x;_and_¶³(p) = y; for each p;EP .

a)

p=Ø

edge overlap.

T₂

c)

+ Ti

internal
contact
point

58

contact
✓point

TO2

LPDEP

• T

b)

NEO ER

• T₂Q

Compatible Wiring Trees under Rectilinear Routing Regions

Figure 4.5

point
overlap

Definition 4.16:

59

Let R = (1, h , A , V, E) denote a routing region , let P = {p₁ , ... ,Pm} denote a valid pin

set for R , and let II = { ₁ , ... ,,} denote a set of legal placements of the pin set P in R. The

ordered pair PS= (P , II) is then called a pin structure in R.

Informally , a pin should be considered an abstraction of a physical connection point

constrained to lie somewhere along the perimeter of a particular routing region . A pin structure

then simply specifies a set of pins and a set of constraints on the locations at which each of these

pins can lie . Notice that a pin can be forced to lie at a particular pin location point , or that a set

of pins can be forced to lie at pin location points which are consistent with some prespecified

partial order , by simply defining the set II appropriately .

Definition 4.17:

Let R = (1, h, A , V , E) denote a routing region , let PS = (P , II) denote a pin structure in

R , and let EПI denote a legal placement of the pin set P in R. A net N under PS is then

defined to be a subset of the pins in P such that N1 . Further , the placement of net N under

the mapping 7 is defined by:

π(N)= {(x , y) | (x , y) = 7 (p.) for some p {N} .

We shall now present a formal definition of an instance of the region routing problem and

a solution to an instance of the region routing problem .

Definition 4.18:

An instance of the region routing problem is defined to be an ordered triple ,

RRP= (M , PS , Nets) , such that:

1) M = (R , o , p) denotes a wiring model .

2) PS= (P , II) denotes a pin structure in R.

3) Nets= {N₁ ,, . . . , N₁ } denotes a set of n nets under PS , for some integer n ,

such that U{N¡ | 1<i<n}= P and NON -Ø for all i,j such that 1≤i,j≤n

and i#j .

Thus the set of nets defines a partition of the pin set P.

Definition 4.19:

60

Let RRP= (M , PS , Nets) denote any instance of the region routing problem with

M = (R , σ , p) , PS= (P , II) , and Nets= {N₁,... ,N }. Then a solution to RRP consists of

1) A legal placement 7EII of the pin set P in R.

9 n2) A set of n pairwise compatible trees T₁, ... , T under M , such that T₁

interconnects (N) in R. The wiring tree T, is said to implement net N₁ in R.i

We now note that a given instance of the region routing problem may in fact have no

solution . This would be the case , for example , if the associated routing region had insufficient

length or height to accomodate the necessary wiring . Thus a region routing problem is essentially

a decision problem [Gar79] for which we must either compute a solution or determine that none

exists .

It should be clear that instances of the region routing problem can occur in various forms

depending on the type of wiring model employed , the type of pin structure employed , and the

character of the associated net set . In the next section we shall describe three classes of region

routing problems which lead to formalizations of the well known river routing problem , channel

routing problem , and fixed-pin routing problem . The remainder of this chapter will then be

devoted to the presentation of new algorithms for solving various versions of each of these

problems .

4.3 Restricted Region Routing Problems .

In this section we show how several well known signal routing problems can be formulated

as a restricted region routing problem . We then discuss the implications of altering the wiring

model associated with a problem instance .

4.3.1 The River Routing Problem .

Assume we are given a rectangular region with fixed dimensions , a set of n physical

connection points { ₁ , ... , a } with distinct fixed locations ordered from left-to - right along the

top of the region , and a set of n physical connection points {b₁ , ... , b } with distinct fixed

61

locations ordered from left-to-right along the bottom of the region; as shown in Figure 4. 6. We

now consider the problem of generating n wires. satisfying some specified set of wiring rules.

such that each wire connects a distinct pair of points (a
i
. b) and lies entirely within the rectangular

region. This wiring problem is commonly called the river routing problem and has received a

great deal of attention in the recent literature [D0181, DS81, Lei81, Tom80]. We shall now

present a formal definition of an instance of the river routing problem by simply formulating it as

an instance of the region routing problem.

Definition 4. 20:

An instance of the river routing problem is an ordered triple. R VRP= (M. PS. Nets). such

that:

1) M=(R,a,p) denotes a wiring model in which R=(l,h,A, V,E).

2) PS=(P,IT) denotes a pin structure in R with P={p1, ... ,p2n}. for some
integer n. and IT= {'IT} consisting of a single legal placement which satisfies
the properties:

a) 'iTY(p)=h+l for all i (l<i�n).

b)?TY(p)=O for all i (n+l<i�2n).

c) ?T x(p)<?T x(p) for all i,jsuch that l:$;KJ:$;n or n+ l�KJ<2n.

3) Nets = {N
1
, ... ,N

n
} denotes a set of n nets under PS with N

i
= {p

i
'P

n+
J for

all i (1 <i:$;11).

Notice that R VR}> is also an instance of the region routing problem.

fJ.3 b't �- i)& 07 f:>? q t:J lo b,, Q1z_

The River Routing Problem
Figure 4.6

62

For the case where R is a rectilinear routing region containing A = 1 conducting layer , it

has been shown [Do181] that there exist very efficient polynomial- time algorithms for solving the

river routing problem . In Section 4.4 we shall extend this result to include wiring models for

which A>1 and {NEO , LPT}\p = Ø . Furthermore , we will show that this result is independent

of whether or not LPT belongs to p . Thus we can always achieve a solution in which no wiring

tree contains internal contact points . We should point out that there is no known polynomial

time algorithm for solving the river routing problem under the more common , but no more

realistic , Thompson [Tho80] wiring model in which A = 2 and LPDƐp .

4.3.2 The Channel Routing Problem .

Let us now consider a somewhat more general routing problem in which the nets are

essentially composed of arbitrary subsets of some set of physical connection points with distinct

fixed locations along the top and bottom of a rectangular region . In addition , each net may

contain at most two physical connection points , one constrained to lie along the left side of a

region and the other constrained to lie along the right , whose exact locations are unspecified and

may be determined as a function of the required wiring . Such a problem is generally known as a

channel routing problem [Has71, Deu76] . We now present a formal definition of an instance of

the channel routing problem .

Definition 4.21:

An instance of the channel routing problem is an ordered triple , CRP= (M , PS , Nets) ,

such that:

1) M = (R , o , p) denotes a wiring model in which R= (1 , h , A , V, E) .

P₁ Pright}2) PS= (P , II) denotes a pin structure in R with {Ptop bottom Plest, P

defining a partition of P such that Ptop≤1, Pbottom≤1 , Plefi≤h, and

Pright≤h . Further , II = { ₁, ... , } denotes the set of all legal placements1

of the pin set P in R with:

77

a) 7(p) = (x₂ , h+ 1) for all 7EII and pEP,top *

b) (p)= (x₂ ,) for all II and pEPbottom

c) 77*(p)= for all EII and PEPleft.

63

d) 7*(p)= 1+ 1 for all 7EII and pEP,77

13) Nets={N₁,...,N } denotes a set of n nets under PS , for some integer n ,

with U{N¡ | 1≤i≤n}= P , NPef≤1 for all i (1≤i≤n) , |N; Pright≤1 for

all i (1≤i≤n) , and NON = Ø for all i, j such that 1≤i ,j≤n and i‡j .

Notice that CRP is also an instance of the region routing problem .

The general channel routing problem has recently been proven NP-complete for the case

in which M= (R , o , p) denotes a two-layer rectilinear wiring model with o = 1 and LPDEp

[Szy81] . Furthermore , there are no known polynomial- time algorithms guaranteed to compute a

solution to such a problem whenever the associated routing region has height within some constant

times the minimum necessary for a solution to exist . Therefore , in Section 4.5 we will consider

algorithms for solving various restricted versions of the channel routing problem under somewhat

relaxed , but still realistic , two-layer wiring models in which LPD p . In particular , we will

present a new class of algorithms that are guaranteed to correctly solve an instance of such a

problem if the associated routing region has height at least four times the minimum necessary for a

solution to exist . We note that the complexity of the general channel routing problem under

these relaxed wiring models is still open (i.e. , NP-completeness has not been proven) .

4.3.3 The Fixed -Pin Routing Problem .

Definition 4.22:

The last type of region routing problem we shall deal with in this chapter is called the

fixed-pin routing problem . This problem is exactly the one encountered in the last phase of the

PI routing system where nets are simply composed of subsets of a set of physical connection points

with distinct fixed locations along the perimeter of some rectangular region . An instance of the

fixed-pin routing problem is easily formulated as an instance of the region routing problem in the

following manner .

An instance of the fixed-pin routing problem is an ordered triple , FPRP= (M , PS , Nets) ,

such that:

1) M = (R , o , p) denotes a wiring model .

2) PS= (P , II) denotes a pin structure in R with II = 1 .

3) Nets= {N₁ , ... ,N } denotes a set of n nets under PS , for some integer n ,

with U{N; | 1<i<n}=P and NON-Ø for all i, j such that 1≤i,j≤n and

i#j .

64

Notice that FPRP is also an instance of the region routing problem .

In Section 4.6 we will turn our attention from theory to practice and consider an

unusual , but practical , heuristic algorithm for the fixed-pin routing problem . This algorithm ,

called the quick routing algorithm , is based on the assumption that many of the instances of the

fixed-pin routing problem which arise in practice can be solved by a very simple set of heuristics .

The philosophy underlying the development of the quick routing algorithm was discussed in

Section 2.6 . Thus Section 4.6 will consist of a detailed description of the algorithm itself.

4.3.4 Wiring Model Considerations .

The remainder of this chapter will deal with new algorithms for solving various versions of

the river routing problem , the channel routing problem , and the fixed-pin routing problem . For

the most part we will assume that the wiring model associated with each problem instance is

based on a rectilinear routing region and a minimum separation distance of o = 1 . Wiring models

of this type are desirable for two important reasons . First of all , they closely reflect the most

widely supported design styles ; allowing only vertical and horizontal interconnect lines [Mea79] .

Thus they are realistic and can be used to develop algorithms that are of practical as well as

theoretical interest . The second reason for considering models of this type is that the minimum

separation constraint for compatible wiring trees takes on a very clean form as demonstrated in the

following lemma .

Lemma 4.1:

Let M = (R , o , p) denote a wiring model in which R = (1 , h , A , V , E) is a rectilinear

routing region and o = 1 . Further , let T₁ and T₂ denote two wiring trees in R. Then for each

integer k (1≤k≤A) , the minimum distance between the points in span (T₁) and the points in

span (T₂) will be at least o if and only if span (T) span (T₂)= Ø .

Proof:

The proof of Lemma 4.1 follows directly from the simple observation that two line

segments corresponding to routing edges in a rectilinear routing region will have minimum

distance strictly less than o = 1 if and only if they intersect .

65

Let us now consider wiring models based on augmented rectilinear routing regions .

Recall that such models allow diagonal as well as vertical and horizontal interconnect lines .

Although the most widely supported design styles are those allowing only vertical and horizontal

interconnect lines , there is growing support for the incorporation of diagonal lines .

Furthermore , it appears that significant savings in wiring area are possible under such design

styles . Thus there is practical justification for employing wiring models based on augmented

rectilinear routing regions . Notice that these models will be most useful when o = √///2/2 and the

following analog of Lemma 4.1 can be applied .

Lemma 3.2:

Let M = (R , o , p) denote a wiring model in which R = (1, h , A , V, E) is an augmented

rectilinear routing region and o = √2/2 . Further , let T₁ and T, denote two wiring trees in R.

Then for each integer k (1≤k≤A) , the minimum distance between the points in span (T₁) and

the points in span (T2) will be at least o if and only if span (T) span (T₂)= Ø .

2

Proof:

Once again the proof of Lemma 4.2 follows directly from the simple observation that two

line segments corresponding to routing edges in an augmented rectilinear routing region will have

minimum distance strictly less than o = √2/2 if and only if they intersect .

We should now point out that wiring models based on augmented rectilinear routing

regions and a minimum separation distance of o = √2/2 have practical application whenever a

grid size of √2 times the specified minimum separation distance is acceptable . In practical terms

this means that such wiring models will be useful whenever the physical connection points for a

given routing problem are located with less than (roughly) 2/3 maximum density along the

66

perimeter of the given rectangular region. More specifically, there should be no more than two

physical connection points located within any interval of length 2(✓2a) along the perimeter of the

region. However, for such less dense routing problems we achieve substantial wiring

improvements by employing these models and thus such models will also be considered in the

following sections. (see Figure 4 . 7)

6 (., D /:. F b H I ,,- K. t... n N O -P & � S r t.t V i.v ..X Y r • t1 o •• • ll' o •e o o oa& o 6'• • • • • • o • • • • • o • "" • • • • O • • • - • • • o

0 0

• • • a • f1 0 • •• • • tiJI O I# - • • '#># • • e • • •• • • fl. • • • . 4 • .- o • O O 4 # do •

.fi/3 l-.D E..F b-H- IJ' 1<.L hN DP 19.1?- .s, UV W>f Yr:

�
e

,. �n.f �·j;·1�-t1i·J¾· f �-J�·j I·r�· J\a J� ·: ·@·: •

0
-: ·::

0

0

h,?.fJ +�
(Jo, e;r,Jl 0 0 •

t>J�)

E.F bfl -l:J' l<.t.. f1N DI' G.R. .ST t..tV WX Ye

Rectilinear Routing Region

Augmented Rectilinear Routing Region

 Figure 4.7

67

4.4 Optimal River Routing Algorithms .

In this section we present efficient polynomial-time algorithms for solving any given

instance of the river routing problem under two different multi- layer wiring models .. Moreover ,

we show that the power of these wiring models for river routing is unaffected by enforcement of

wiring restriction LPT (i.e. , whether or not we allow wiring trees to be composed of edges from

more than one conducting layer) . Thus there is no benefit in generating wiring trees which

contain internal contact points . The results presented here extend the work of Tompa [Tom80]

and Dolev and others [Do181] for river routing under single-layer wiring models . Tompa uses a

general grid- free wiring model and Dolev and others use a standard grid-based rectilinear wiring

model .

4.4.1 The Rectilinear Wiring Model .

The main result to be presented in this section is a necessary and sufficient condition for

any given instance of the river routing problem to have a solution under a general multi-layer

rectilinear wiring model . In addition , the sufficiency part of this result will yield an efficient

polynomial-time algorithm for actually computing a solution if one exists . Our basic approach is

similar to that taken in [Do181] for single layer wiring models . We begin by defining some

notation .

Let RVRP= (M , PS , Nets) denote any instance of the river routing problem with

M= (R , σ , p) , PS= (P , II) , and Nets= {N₁, ... ,N₂} . Within this section we will assume that

R= (1, h , A,V, E) denotes a rectilinear routing region , that o = 1 , and that p = Ø . Thus we are

dealing with a general multi-layer rectilinear wiring model .

We now recall that each net NENets is defined by exactly two pins ; pEP and Pn +iP .

Further , the pin p; is constrained to lie at a particular pin location point along the top of the

routing region R and the pin Pnti is constrained to lie at a particular pin location point along the

bottom of R. We now let a¡ denote the x-coordinate of the point at which p; is constrained to lie

and we let b, denote the x-coordinate of the point at which Pnti is constrained to lie . Thus the

ordered pair (a , b) completely specifies the net N, and so these two notations can be used

interchangeably . In addition , the integer a, will be called the entry coordinate of the net N₁ and

integer b; will be called the exit coordinate of the net N₁ . Finally , the net N, will be called a

falling net if aķb₁ , a trivial net if a = b;, and a rising net if a>b¡ .

i

Now for each integer i (1≤i≤n) and each integer 7 (7≥0) , let G₁ , ¡ denote the number

of distinct nets whose implementation in R must intersect a line drawn either from point (b₁ , 1) to

point (b;+ r -1 , h) if N, is a falling net , or from point (a,, h) to point (a; + r-1,1) if N; is not a

falling net . Thus the value of Gr , is defined as follows : (cf. , [Do181])

i

i

|{ {a; , b;}) | a;≤a;≤b;+ r- 1 } | if a<b¡

(K{(a;,b;) | b;≤b;≤a;+ r-1 } | if a;≥b¡ .

iNext we define a sequence of integers (T₁ ,) such that 7 ; (1≤i≤n) denotes the smallest

non-negative integer which satisfies the relation :

68

G₁ , i

Proof:

(4.1)

A•T₁2G₁₁₁1•
(4.2)

Notice that such a sequence of integers must always exist since 0≤G,, ≤n for all i (1≤i≤n) and

all T (T≥0) . Further , we have the following lemma .

Lemma 4.3:

Let i denote any integer such that 1<i<n and let r ' denote any integer such that T'≥7¡.

Then the integer r' must satisfy the relation AT2G,',i

We prove Lemma 4.3 inductively by simply showing that A(r + 1)≥G₁ + 1 , i
for any non

negative integer such that ATGT,

A⋅r≥G₁ , ¡ ⇒ A·T +A≥G₁ , ¡+A

⇒ A(+1)≥G₁ , i+ 1

⇒ A(r + 1)≥G₁ + 1 , i •

We are now ready to state and prove the two main theorems of this section . The first

theorem yields a necessary condition for RVRP to have a solution . The second theorem then

shows that this condition is also sufficient .

Theorem 4.1:

RVRP has no solution if hr.

height of the associated routing region R.

Proof:

max'

69

where TTmax=Max{r, | 1<i<n} and h denotes the

max

KKT

Let j denote any integer such that 1≤n and T x= Tj.
Further , assume that

max=7jT , and that RVRP has a solution . We then have two possible cases to consider; ab; or

ab. If akb, then consider the diagonal line D drawn from grid point (b,, 1) to grid point

(b; + h- 1 , h) as shown in Figure 4.8 . Clearly no more than A-h distinct wiring trees can intersect

D in any solution to RVRP . However , Għ ,j denotes the minimum number of distinct wiring

trees which must intersect D in any solution to RVRP . Thus we must have the relation :

F

A·h≥Gh ,j .

TCombining this with the definition of 7; we obtain the result h≥7; and thus we have a

contradiction . A similar contradiction argument holds for the case when a;≥b;.

bj

Diagonal Constraint Line D

Figure 4.8

Theorem 4.2:

70

RVRP has a solution if h≥max where Tmax = Max{7 ; | 1¹≤i≤n} and h denotes the

height of the associated routing region R.

Proof:

We shall prove Theorem 4.2 constructively by presenting an algorithm which is

guaranteed to compute a solution to RVRP if h≥¹ max " Since RVRP is an instance of the river

routing problem , we recall that there exists exactly one legal placement 7EII of the pin set P.

Thus our algorithm need only compute the required set of compatible wiring trees .

Algorithm 4.1:

This algorithm proceeds net by net , in order of increasing net entry coordinate ,

generating a complete single layer wiring tree for each net in turn . Further , the wiring tree for

any given net (a ,b) is generated by a simple "greedy" algorithm as follows:

1) If a <b, then the algorithm selects a conducting layer k which is not being used

by any wiring tree containing grid point (a,, h) . The algorithm then generates

a single layer wiring tree for net (a , b) , utilizing conducting layer k , by

beginning at grid point (a¡ , h + 1) and extending to grid point (b₁,) . This

extension is performed by alternating between vertical extension downward as

far as possible and then horizontal extension to the right only until vertical

extension downward is once again possible .

2) If a¡≥b¡ then a similar procedure is employed . In this case the algorithm

selects a conducting layer which is not being used by any wiring tree containing

grid point (b¡ , 1) and then the tree for (a , b) is generated from grid point

(b₁ ,) to grid point (a,, h + 1) . The extension alternates between vertical

upward (as far as possible) and horizontal to the right .

An example of a set of wiring trees that might be generated by Algorithm 4.1 is shown in

Figure 4.9 . It should now be clear that Algorithm 4.1 will generate only wiring trees which are

mutually compatible in R. Furthermore , any pair of these trees which intersect a common

Lemma 4.4:

Proof:

71

a1 a2 a3 a4 a5 a6

b₂ b3 bit

column in R must either both be implementations of falling nets or both be implementations of

rising nets . Thus there is no interaction between trees implementing nets of different type (i.e. ,

falling , trivial , or rising) . Finally , we note that the only way in which this algorithm can

terminate unsuccessfully is by reaching a net for which there is no available conducting layer .

This gives rise to the following lemma .

Wiring Trees Generated by Algorithm 4.1

Figure 4.9

If Algorithm 4.1 fails to compute a solution to RVRP then hr,max*

If Algorithm 4.1 fails to compute a solution to RVRP then there must exist some net

(a , b) such that when Algorithm 4.1 begins processing (a , b) there is no available conducting

layer. We now have three possible cases to consider; ab , a = b;, or apb;. If a;= b;, then

clearly there can be no wiring tree containing grid point (b;, 1) when Algorithm 4.1 begins

processing (a;, b;) .
Thus we have a contradiction .

If a b;, then it must be the case that there are exactly A distinct wiring trees containing

grid point (a,, h) when Algorithm 4.1 begins processing (a , b) . Further , each of these wiring

trees must lie on a distinct conducting layer and must be the implementation of a falling net . Let

us now consider a diagonal line D drawn from grid point (a; h + 1 , 1) to grid point (a;, h) . Due to

the fact that Algorithm 4.1 extends the wiring trees for falling nets vertically downward whenever

possible , it follows that every grid point which intersects D must also be contained in exactly A

distinct wiring trees ; each corresponding to a falling net . Furthermore , these A-h wiring trees

which intersect D must all be distinct and must all be implementations of (falling) nets (a , b)

with :

72

aka,and b2a;h+1 . (4.3)

Now let (a , b) denote the (falling) net with the smallest exit coordinate not less than afh+ l . It

then follows that each of the Ah nets which were shown to satisfy (4.3) must also satisfy:

a₂≤a≤b₂+h-1 . (4.4)

In addition , net (a;, b) , which is distinct from each of the A· h nets shown to satisfy (4.4) , must

also satisfy (4.4) . Thus it follows that:

Gh₁zZA·h+ 1 = A·h<Gh , z

Combining this with (4.2) and Lemma 4.3 we obtain the result T₂Tmax

Finally , if a;>b; then we obtain the same result by a similar argument on rising nets .

This completes the proof of both Lemma 4.4 and Theorem 4.2 .

maxⓇ

one exists .

We have now shown that the relation h≥¹max , where =Maxr; | 1≤i≤n}, is bothmax

a necessary and sufficient condition for RVRP to have a solution . Furthermore , we have

presented an algorithm , Algorithm 4.1 , which is guaranteed to compute a solution to RVRP if

Let us now consider the following interesting corollary to Theorem 4.2 .

ht

Proof:

Corollary 4.1:

If RVRP has a solution , then it has a solution in which no wiring tree contains internal

contact points .

The proof of this corollary follows immediately from the fact that Algorithm 4.1 generates

only single layer wiring trees .

Corollary 4.1 tells us that the power of the general multi- layer rectilinear wiring model for

river routing is unaffected by enforcement of wiring restriction LPT (i.e. , whether or not

LPTEp) . Thus there is no benefit in generating wiring trees which have internal contact points .

73

4.4.2 The Augmented Rectilinear Wiring Model .

In this section we develop a necessary and sufficient condition for an instance of the river

routing problem to have a solution under a general multi- layer diagonally augmented wiring

model . In addition , the sufficiency part of this result will once again yield an efficient

polynomial-time algorithin for actually computing a solution if one exists . The approach closely

parallels that followed in Section 4.4.1 .

Let RVRP (M , PS , Nets) denote any instance of the river routing problem with

M= (R, o , p) , PS= (P, II) , and Nets= {N₁, ... , N }. Within this section we will assume that

R= (1 , h , A,V , E) denotes an augmented rectilinear routing region , that o = √/2/2 , and that

p =Ø . Thus we are dealing with a general multi-layer diagonally augmented wiring model .

Further , each net N €Nets may once again be denoted by an ordered pair (a¡ , b;) , where a¡

specifies the entry coordinate of the net N, and b; specifies the exit coordinate of the net N₁ . The

notions of a falling net , a trivial net , and a rising net are then defined as in the previous section .

Now for each integer i (1≤i≤n) , let H; denote the number of distinct nets whose

implementation in R must intersect a line drawn either from point (b,, 1) to point (b¡ , h) if N¡ is a

falling net , or from point (a;, h) to point (a;, 1) if N, is not a falling net . Thus the value H; is

i

defined as follows:

[{ (a; , b;}) | a;≤a;≤b;} | _if_a<b¡

|{(a ,b) | b≤b;≤a;}| if a≥b₁.

Next we define a sequence of integers (₁, ... Yn) such that y; (1≤i≤n) denotes the smallest

non-negative integer which satisfies the relation :

A•Y,ZH₁.

H₂= (4.5)

(4.6)

Notice that such a sequence of integers must always exist since 0≤H≤n for all i (1≤i≤n) .

Further , we have the following lemma .

Lemma 4.5:

Let i denote any integer such that 1<i<n and let y' denote any integer such that y'≥y₁ .

Then the integer y' must satisfy the relation Ay2H¡.

Proof:

iThe proof of Lemma 4.5 follows directly from (4.6) and the fact that H₁ denotes a fixed

integer which is independent of y' .

74

We now have the following two theorems which extend the results of Section 4.4.1 to

include diagonally augmented wiring models .

Theorem 4.4:

RVRP has no solution if hymax where Ymax= Max{y; | 1≤i≤n} and h denotes the

height of the associated augmented rectilinear routing region R.

Proof:

Let j denote any integer such that 1≤j≤n and Ymax= Yj .
Further , assume that

WKymax and that RVRP has a solution . We then have two possible cases to consider ; a<b; ormax=Yj

ab . If a b; then consider the vertical line D drawn from grid point (b;, 1) to grid point (b¡ , h)

as shown in Figure 4.10 . Clearly no more than Ah distinct wiring trees can intersect D in any

solution to RVRP . However , H; denotes the minimum number of distinct wiring trees which

must intersect D in any solution to RVRP . Thus we must have the relation:

A·h≥Hj .

Combining this with the definition of y, we obtain the result h2y, and thus we have a

contradiction . A similar contradiction argument holds for the case when ab;.

Theorem 4.5:

RVRP has a solution if h≥Ymax , where Ymax= Max{y ; | 1<i≤n} and h denotes the

height of the associated augmented rectilinear routing region R.

Proof:

We shall prove Theorem 4.5 constructively by presenting an algorithm which is

guaranteed to compute a solution to RVRP if h≥Ym Since RVRP is an instance of the river

routing problem , we once again recall that there exists exactly one legal placement 77EII of the

pin set P. Thus our algorithm need only compute the required set of compatible wiring trees .

max*

62

bj

Vertical Constraint Line D

Figure 4.10

75

a1 a2 a3 a4 a5 a6

63 D4

Wiring Trees Generated by Algorithm 4.2

Figure 4.11

76

Algorithm 4.2:

This algorithm proceeds net by net , in order of increasing net entry coordinate ,

generating a complete single layer wiring tree for each net in turn . Further , the wiring tree for

any given net (a₁ , b;) is generated by a simple "greedy" algorithm as follows:

1) If ab¡ then the algorithm selects a conducting layer k which is not being used

by any wiring tree containing grid point (a , h) . The algorithm then generates

a single layer wiring tree for net (a , b) , utilizing conducting layer k , by

beginning at the grid point (a,, h + 1) and extending to grid point (b₁ ,) . This

extension is performed by alternating between downward extension (vertical

preferred over diagonal) as far as possible and then horizontal extension to the

right only until downward extension is once again possible .

2) If a¡≥b¡ then a similar procedure is employed . In this case the algorithm

selects a conducting layer which is not being used by any wiring tree containing

grid point (b¡ , 1) and then the tree for (a , b) is generated from grid point

(b₁ ,) to grid point (a,, h + 1) . The extension alternates between upward (as

far as possible) and horizontal to the right .

An example of a set of wiring trees that might be generated by Algorithm 4.2 is shown in

Figure 4.11 . In light of Lemma 4.2 it should now be clear that Algorithm 4.2 , like Algorithm

4.1 , will generate only wiring trees which are mutually compatible in R. Furthermore , any pair

of these trees which intersect a common column in R must either both be implementations of

falling nets or both be implementations of rising nets . Thus there is no interaction between trees

implementing nets of different type (i.e. , falling , trivial , or rising) . Finally , we note that the

only way in which this algorithm can terminate unsuccessfully is by reaching a net for which there

is no available conducting layer . This gives rise to the following lemma .

Lemma 4.6:

If Algorithm 4.2 fails to compute a solution to RVRP then hẤYmax :

Proof:

77

If Algorithm 4.2 fails to compute a solution to RVRP then there must exist some net

(a ,b) such that when Algorithm 4.2 begins processing (a,, b) there is no available conducting

layer . We now have three possible cases to consider; ab;, a;= b;, or a}b¡ . If a;=b;, then

clearly there can be no wiring tree containing grid point (b;, 1) when Algorithm 4.2 begins

processing (a;, b) .
Thus we have a contradiction .

If a b;, then it must be the case that there are exactly A distinct wiring trees containing

grid point (a,, h) when Algorithm 4.2 begins processing (a ,b) . Further , each of these wiring

trees must lie on a distinct conducting layer and must be the implementation of a falling net . Let

us now consider a vertical line D drawn from grid point (a;, h) to grid point (a,, 1) . Due to the

fact that Algorithm 4.2 extends the wiring trees for falling nets downward whenever possible , it

follows that every grid point which intersects D must also be contained in exactly A distinct wiring

trees ; each corresponding to a falling net . Furthermore , these A· h wiring trees which intersect D

must all be distinct and must all be implementations of (falling) nets (a₁ , b.) with:

aka;andb≥a¡. (4.7)

It thenNow let (a , b) denote the (falling) net with the smallest exit coordinate not less than a;.

follows that each of the Ah nets which were shown to satisfy (4.7) must also satisfy:

a₂SaSb₂. (4.8)

In addition , net (a¡ , b) , which is distinct from each of the A · h nets shown to satisfy (4.8) , must

also satisfy (4.8) . Thus it follows that:

H₂2A·h+ 1 => A·h<H₂ .

Combining this with (4.6) and Lemma 4.5 we obtain the result y₂≤Ymax → hymax.

Finally , if ab; then we obtain the same result by a similar argument on rising nets .

This completes the proof of both Lemma 4.6 and Theorem 4.5 .

We have now shown that the relation h≥Ymax , where Ymax= Max{y; | 1<i<n} , is both

a necessary and sufficient condition for RVRP to have a solution when a general multi-layer

diagonally augmented wiring model is employed . Furthermore , we have presented as algorithm ,

Algorithm 4.2 , which is guaranteed to compute a solution to RVRP if one exists . In addition , it

should now be clear that an analog of Corollary 4.1 can be proven under the diagonally

augmented rectilinear wiring model and thus once again there is no benefit in generating wiring

trees which have internal contact points .

4.4.3 Systematic Layer Selection .

The river routing algorithms presented in the previous two sections both allow conducting

layers to be assigned to wiring trees in a more or less arbitrary manner as long as certain

constraints are satisfied . Thus each of these algorithms can in fact be used to compute a wide

variety of solutions to a given instance of the river routing problem (see Figure 4.12) . Notice ,

however , that the constraints on layer selection are determined dynamically as wiring trees are

generated and thus there is no way of knowing a priori how conducting layers will be assigned to

wiring trees . Although these procedures allow flexibility , they do so at the cost of reduced

efficiency . (e.g. , How do we efficiently determine which conducting layers are available for

assignment to a given wiring tree?) Thus there is justification for developing a more deterministic

method of layer assignment . In this section we present a simple class of systematic layer selection

techniques which can always be employed . We begin by reformulating the results of Sections

4.4.1 and 4.4.2 as suggested by C. Leiserson and R. Pinter [Lei81] .

bz

aj a2 a3 a4 a5

78

by 65

A Variety ofRiver Routing Solutions

Figure 4.12

al a12 a3 a4 a52

by

Lemma 4.7:

Let RVRP= (M , PS , Nets) denote any instance of the river routing problem with a general

multi - layer rectilinear wiring model as defined in Section 4.4.1 . Further , let Gri
be as defined

in (4.1) and let Ti be as defined in (4.2) . Then RVRP has a solution if and only if

ai+Anbi+h for each falling net NENets and bi+ Za + h for each rising or trivial net

N€Nets.

Proof:

From Theorems 4.1 and 4.2 we know that RVRP has a solution if and only if h≥r; for

each i (1≤i≤n) . Further , by (4.2) and Lemma 4.3 we have that h≥r , for each i (1≤i≤n) if

and only if A·h≥Gh , i for each i (1≤i≤n) . Finally , applying (3.1) we obtain the result:

ai+A·h≥b₁+ h for all (a , b) such that ab

bi+^· h≥ª¡+ h for all (a , b) such that a≥b₁.

A-hZGhi (for each 1≤i≤n) =

Lemma 4.8:

79

Proof:

i

Let RVRP= (M , PS , Nets) denote any instance of the river routing problem with a general

multi-layer diagonally augmented wiring model as defined in Section 4.4.2 . Further , let H₁ be

as defined in (4.5) and let y ; be as defined in (4.6) . Then RVRP has a solution if and only if

ai+A·h≥b₁+ 1 for each falling net NENets and bi+Aha;+1 for each rising or trivial net

NENets.

it

From Theorems 4.4 and 4.5 we know that RVRP has a solution if and only if h2y ; for

each i (1≤i≤n) . Further , by (4.6) and Lemma 4.5 we have that hy, for each i (1≤i≤n) if

and only if A h>H, for each i (1≤i≤n) . Finally , applying (4.5) we obtain the result:

ai+A·h≥b₁+ 1 for all (a , b) such that aķb¡

bi+ ^ ·ħ≥a¡+ 1 for all (a , b) such that a2b₁.

A·h≥H¡ (for each 1≤i≤n) ⇒

Let us now return to the layer selection problem and show how these two lemmas can be

utilized to prove the correctness of a very simple systematic layer assignment technique . Consider

redefining Algorithms 4.1 and 4.2 in such a manner that the wiring tree implementing net N₁ (for

each 1in) is always assigned conducting layer:

i

80

k= L [(i-1) mod A• m]/m]+1 , (4.9)

Am

where m denotes any positive integer . Thus the first m nets are assigned conducting layer 1 , the

next m nets are assigned conducting layer 2 , and so on until nets NN(A - 1)m + 1
through N are

assigned conducting layer A ; at which point the process repeats . In particular , for A=2 and

m= 1 all odd numbered nets are assigned conducting layer 1 and all even numbered nets are

assigned conducting layer 2. Notice that such algorithms perform layer assignment in a systematic

manner which is completely independent of net structure . Therefore , if we can prove that these

new versions of Algorithms 4.1 and 4.2 are correct , we will have obtained our desired result . In

the remainder of this section we will show that in fact the modified versions of Algorithms 4.1

and 4.2 will correctly compute a solution to any given instance of the river routing problem ,

under the appropriate wiring model , whenever m evenly divides the height of the associated

routing region . Thus m= 1 will always yield correct algorithms .

Theorem 4.6:

Let RVRP= (M , PS , Nets) denote any instance of the river routing problem under a

general multi-layer rectilinear wiring model as defined in Section 4.4.1 . Further , let Algorithm

4.1A be a modification of Algorithm 4.1 in which layer selection is performed as defined in

(4.9) ; with m denoting any positive integer such that m/h . Then Algorithm 4.1A is guaranteed to

compute a solution to RVRP whenever one exists .

Proof:

Let m be any positive integer such that mlh . Further , for each integer k (1≤k≤^) , let

RVRP₁= (M' , PS , Nets) denote that single layer instance of the river routing problem in which

M' is identical to M except for A = 1 , Nets Nets includes exactly those nets in RVRP which are

associated with conducting layer k under (4.9) , and PS includes exactly those pins in RVRP

which are associated with nets in Nets Notice that Algorithm 4.1A is equivalent to Algorithm

k

4.1 whenever A = 1 and thus by Theorems 4.1 and 4.2 we are guaranteed that Algorithm 4.1A

will correctly solve RVRP for each k (1≤k≤A) . Now since Algorithm 4.1A generates only

single-layer wiring trees and associates conducting layers with nets in a prespecified manner as

defined by (4.9) , it follows that Algorithm 4. 1A will compute a solution to RVRP if and only if

each RVRPŁ (1≤k≤A) has a solution . Thus it only remains to show that every RVRPK

(1≤k≤A) has a solution if and only if RVRP has a solution .

k

(⇒) If every RVRPŁ (1≤k≤A) has a solution then clearly a superimposition of any set of

solutions to these A problems will be a solution to RVRP . Thus it follows that RVRP in fact has

a solution .

81

(=) If RVRP has a solution then by Lemma 4.7 we must have that:

ai+A·h≥bi+ h for each falling net NENets

and

bi + ^ .h≥a¡+ h for each rising or trivial net N€Nets .

Now for each integer k (1≤k≤^) , let №₁ denote the net with th largest entry coordinate in

RVRPk Under (4.9) we then have that:

Nk₁= Ni+L(i-1)/mJ (A-1)-m +(k-1)•m

Thus if N₁ is a falling net we must have :

net .

aki + h

€Nets .

[by (4.11)]

[since m/h]= ªi + L(i-1)/m_J · (A -1) • m + (k- 1)• m + A•h

≥b¡ + L (i-1)/ml · (A - 1) • m + (k- 1) • m
[by (4.10) and (4.11)]

[by (4.11)]
=bx₁+

h

ki + hZaki
Furthermore , by a similar argument we obtain the result b + h if N₁ is a rising or trivialif

N ,

Combining this with Lemma 4.7 we have that each RVRPŁ (1≤k≤A) in fact has a

solution . This completes the proof of Theorem 4.6 .

bki

= ªi+ h + L(i + h-1)/mJ (A-1)• m + (k-1)• m

(4.10)

+h

(4.11)

We now note that an analogous proof holds for the diagonally augmented rectilinear

wiring model and Algorithm 4.2 . In this proof, however , we use Lemma 4.8 rather than

Lemma 4.7.

82

4.4.4 Algorithmic Efficiency .

Let us now consider the time complexity of the algorithms presented in the previous three

sections . Each algorithm's time complexity is (upper-)bounded by the sum over all nets of the

time required to select a layer and generate a wiring tree for each net . Further , for any given net

we observe that the actual wiring tree computation has time linear in the size of the tree

generated . (Notice that this can be made to hold even if the tree is represented solely by the

endpoints of its maximal length line segments .) Finally , the layer selection process in each

algorithm requires at most constant time per net if systematic selection is employed . Combining

these observations we see that each algorithm employing systematic layer assignment has time

complexity which is linear in the size of the output generated . If systematic layer assignment is

not utilized , then additional time will be required to search for an available conducting layer for

each net . In this case , the algorithms will be O(An) for a problem instance containing n nets .

83

4.5 Provably Good Channel Routing Algorithms .

ordered tripleRecall that an instance of the channel routing problem is an

CRP= (M , PS , Nets) with M = (R , o , p) , PS=(PUP UP, UP and
top bottomUPleft right,II)

,

Nets= {N₁ , ... , N₁} . Let us now consider a restricted version of the channel routing problem in

which no connection points are allowed on the left and right sides of a routing region (i.e. ,

Pleft= Pright= Ø) and in which each net contains exactly two distinct connection points ; one

constrained to lie along the top of the routing region and the other constrained to lie along the

bottom of the routing region (i.e. , |N₁|=2 , N₁OP₂ = 1 , and NPbottom = 1 for each i ,

1≤i≤n) . This restricted version of the channel routing problem is now called the restricted two

pin channel routing problem . We now present several provably good heuristic algorithms for

solving the restricted two-pin channel routing problem . These algorithms are provably good in

the sense that they are guaranteed to compute a solution to a given routing problem if the

associated routing region has height greater than four times the minimum necessary for a solution

to exist . In order to obtain these results we assume a wiring model which allows a limited

amount of edge overlap . In particular , we assume that R is either a two-layer rectilinear routing

region or a two-layer augmented rectilinear routing region and that p = .

4.5.1 Notation and Basic Observations .

In this section we develop a more convenient notation for a net (cf. Section 4.4.1) and

then introduce the concept of channel density [Deu76] . This concept is used to derive lower

bounds on the routing region height required for an instance of the restricted two-pin channel

routing problem to have a solution .

Let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin channel routing

problem . If M = (R , o , p) , PS = (P , II) , and Nets={N₁ ,...,N₁ , then by Definition 4.21

and the previous discussion , every pin in P must be constrained under II to lie at some fixed

location along either the top or the bottom of the associated routing region R. Furthermore ,

each net NENets must be defined by exactly two distinct pins , p €P and p/EP , such that p¡
is

constrained to lie at a particular pin location point along the top of R and p is constrained to lie

at a particular pin location point along the bottom of R. Now let a, denote the x-coordinate of

the point at which p; is constrained to lie and let b , denote the x-coordinate of the point at which

p is constrained to lie . Thus the ordered pair (a , b) completely specifies the net N, and so these

two notations can be used interchangeably . In addition , the integer a, will be called the entry

coordinate of the net N¡ and the integer b, will be called the exit coordinate of the net N₁ .

Finally , the net N₁ will be called a falling net if ab;, a trivial net if a;= b;, and a rising net if

a>b . We are now ready to define the notion of the density of an instance of the restricted two

pin channel routing problem [Deu76] .

i

i

Definition 4.23:

Let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin channel routing

problem and let x denote any integer . A net NENets is said to cross x if either a <x<b¡ or

b≤xa . The channel density of RCRP is then defined to be the maximum over all xEZ of the

number of nets which cross x .

Figure 4.13 illustrates the concept of channel density for a restricted two-pin channel

routing problem . This concept can now be employed to derive a lower bound on the routing

region height required for an instance of the restricted two-pin channel routing problem to have a

solution ; assuming a rectilinear or augmented rectilinear routing region .

a ,

b3

аг аз

b₂

84

3A4

b4

G5

bg

-

av

by

a¬

ble

The Concept ofChannel Density

Figure 4.13

ад

b5

4 Nets Cross 6

Channel Density = 4

Lemma 4.9:

Let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin channel routing

problem such that M = (R , o , p) denotes a wiring model in which R = (1, h , A , V, E) is a rectilinear

routing region . Further , let d denote the channel density of RCRP and assume that

{NEO, LPD}Op= . Then RCRP has no solution if h<d/A . However , if

{NEO , LPD} \̂p ‡Ø then RCRP has no solution if h<d .

Proof:

85

Let x'EZ denote any integer such that the number of nets in RCRP which cross x' is

equal to d . Then clearly in any solution to RCRP at least d distinct wiring trees must contain

horizontal edges of R connecting a grid point in column x' and a grid point in column x' + 1 .

Now if {NEO , LPD} p = Ø , then at most A -h distinct wiring trees can contain such routing

edges in any solution to RCRP . Furthermore , if {NEO , LPD}\̂p ‡Ø , then at most h distinct

wiring trees can contain such routing edges in any solution to RCRP . Therefore , if RCRP has a

solution and {NEO, LPD}\p = Ø then we must have the relation :

A·h≥d➡ h≥d/A .

Similarly , if RCRP has a solution and {NEO , LPD} p‡Ø then we must have the relation :

h>d.

Lemma 4.10 :

Let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin channel routing

problem such that M = (R , σ , p) denotes a wiring model in which R = (1, h , A , V, E) is an

augmented rectilinear routing region . Further , let d denote the channel density of RCRP and

assume that {NEO , LPD}\̂p = . Then RCRP has no solution if h<d/D.

Proof:

Let x'EZ denote any integer such that the number of nets in RCRP which cross x' is

equal to d . Then clearly at least d distinct wiring trees must contain grid points from column x'

of R in any solution to RCRP . However , at most Ah distinct wiring trees can contain grid

86

points from column x' of R in any solution to RCRP . Therefore , if RCRP has a solution then

we must have the relation :

A·h≥d⇒ h≥d/A .

In the remainder of this section we will always assume that R = (1 , h , A , V , E) is a two

layer rectilinear or augmented rectilinear routing region (i.e. , A = 2) . Therefore , d/2 will

always be a lower bound on the region height necessary for a problem instance to have a solution .

4.5.2 The Power of Overlap .

Let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin channel routing

problem such that M = (R , σ , p) denotes a wiring model in which R = (1, h , A , V, E) is a A = 2

layer rectilinear routing region , o = 1 , and p = Ø . We will now present an efficient polynomial

time algorithm that is guaranteed to compute a solution to RCRP as long as h |Nets = n .

Further , each wiring tree generated by this algorithm will contain exactly one internal contact

point and at most one horizontal extension ; as shown in Figure 4.14 . Before actually describing

the algorithm , notice that the location of each pin in RCRP is fixed (i.e. , |II|= 1) and thus the

algorithm need only generate the required set of wiring trees .

Algorithm 4.3:

Assume that RCRP contains exactly r rising nets , f falling nets , and t trivial nets (so that

r+f+ 1= n) . This algorithm then proceeds net by net , in order of increasing net entry

coordinate , generating a complete wiring tree for each net in turn . The wiring tree for any given

net (a , b) is generated as follows:

1) If ab, then let mEZ denote the number of distinct falling nets with exit

coordinate strictly greater than b; and let c = h-m . The wiring tree for net

(a , b) is then composed of a vertical extension from grid point (a,, h + 1) to

grid point (a,, c) on conducting layer 1 , a horizontal extension from grid point

(a¡ , c) to grid point (b , c) on layer 2 , and a vertical extension from grid point

(b , c) to grid point (b₁ ,) on layer 2 (see Figure 4.14a) .

a) Wiring Tree for

Falling Net

a;

bi

87

b

b) Wiring Tree for

Rising Net

-
+

bi

Figure 4.14

a1 a2 a3 a4 a5

વ,ે

b5 b 4 b 3 b2 bi

Example ofWiring Trees Generated by Algorithm 4.3

Figure 4.15

c) Wiring Tree for

Trivial Net

ai

88

2) If ab; then let m€Z denote the number of distinct rising nets with entry

coordinate strictly greater than a; and let c = m+ 1 . The wiring tree for net

(a , b) is then composed of a vertical extension from grid point (a,, h + 1) to

grid point (a¡ , c) on conducting layer 1 , a horizontal extension from grid point

(a¡ , c) to grid point (b;, c) on layer 1 , and a vertical extension from grid point

(b¡ , c) to grid point (b₁ ,) on layer 2 (see Figure 4.14b) .

Proof:

3) If a; = b; then the wiring tree for net (a , b) is composed of a vertical extension

from grid point (a,, h + 1) to grid point (a,, r+ 1) on conducting layer 1 and a

vertical extension from grid point (a,, r+ 1) to grid point (a ,) on layer 2 (see

Figure 4.14c) .

An example of a set of wiring trees that might be generated by Algorithm 4.3 is shown in

Figure 4.15 . The correctness of this algorithm for computing a solution to RCRP is based on the

following lemma .

Lemma 4.11:

If T, and T are two distinct wiring trees generated by Algorithm 4.3 for RCRP and

h≥n , then T, and T, are compatible under M.

Assume without loss of generality that T, is the implementation of net NENets and T, is

the implementation of net N€Nets . We then have four possible cases to consider; the set

{N₁ , N;} contains at least one trivial net , the set {N₁, N} contains exactly two rising nets , the set

{N₁, N} contains exactly two falling nets , or the set {N₁ , N} contains one rising net and one

falling net .

Case (1): {N₁, N;} contains at least one trivial net .

iAssume without loss of generality that N, is a trivial net . If N; is also a trivial net then

clearly the wiring trees T, and T; do not contain a common grid point and so by Lemma 4.1 they

must be compatible under M. If N, is a rising net then 7; and 7, can contain a common grid

point only if the horizontal extension of T, crosses a vertical extension of T However , since

h≥n and N, is a rising net it must be the case that the horizontal extension of T, is on conducting

i J

89

layer 1 and the vertical extension of T, crossed by T; (if any) is on conducting layer 2 as shown in

Figure 4.16a . Thus T₁ and T; must be compatible under M. A similar compatibility argument

holds for the case in which N; is a falling net .

i

Case (2): {N₁ , N;} contains exactly two rising nets .

i

Assume without loss of generality that the entry coordinate for net N₁ is strictly greater

than the entry coordinate for net N¡ (i.e. , aa) . Then it should be clear from the description

of Algorithm 4.3 that if h≥n , the horizontal extension for 7, must lie on a lower numbered track

than the horizontal extension for T. Therefore , T¡ and T; can contain a common grid point only

if the horizontal extension of T, on conducting layer 1 crosses the vertical extension of T, on

conducting layer 2 as shown in Figure 4.16b . Thus T, and T, must be compatible under M.

Case (3) : {N₁ , N;} contains exactly two falling nets .

i

Assume without loss of generality that the exit coordinate for net N; is strictly greater than

the exit coordinate for net N¡ (i.e. , b>b) . Then it should be clear from the description of

Algorithm 4.3 that if hèn , the horizontal extension for T; must lie on a higher numbered track

than the horizontal extension for T₁ . Therefore , T, and T, can contain a common grid point only

if the horizontal extension of T, on conducting layer 2 crosses the vertical extension of T; on

conducting layer 1 as shown in Figure 4.16c . Thus T, and T, must be compatible under M.

Case (4): {N ,N} contains one rising net and one falling net .

Assume without loss of generality that N₁ is a rising net and N₁ is a falling net . Then it

should be clear from the description of Algorithm 4.3 that if h≥n , the horizontal extension for T

must lie on a higher numbered track than the horizontal extension for T₁ . Therefore , T, and T

can contain a common grid point only if either the horizontal extension of T; on conducting layer

2 crosses the vertical extension of T; on conducting layer 1 , the horizontal extension of T₁ on

conducting layer 1 crosses the vertical extension of T, on conducting layer 2 , or the verticalj

extension of T¡ on conducting layer 1 and the vertical extension of T; on conducting layer 2

overlap ; as shown in Figure 4.17 . Thus T, and T; must be compatible under M.

It now follows directly from Lemma 4.11 that any set of wiring trees generated by

Algorithm 4.3 for RCRP must be pairwise compatible under M if h≥n . Therefore , Algorithm

4.3 is guaranteed to compute a solution to RCRP as long as h≥n . Furthermore , this solution

will clearly be composed entirely of wiring trees containing exactly one internal contact point and

at most one horizontal extension . We should now mention that no such result is possible under

wiring models with LPDEp . In particular , there exist examples under such models in which

some wiring tree must utilize more than one track (see Figure 4.18) . Thus the removal of the

wiring restriction LPD appears to result in substantially more powerful wiring models . Finally ,

for completeness we note that Algorithm 4.3 has worst case time complexity O(n) for computing a

solution to RCRP if each wiring tree is represented by the endpoints of its maximal length line

segments .

a)

围

bj

a) aj

ai

bi

bu

ai

b)

90

b)

ai

BO

Figure 4.16

Figure 4.17

·

30

30

c) aj

c)

ai

ai

a₁
O

b3

91

az

bi

a3

ba

Wiring Tree Requiring Two Tracks (LPDEP

Figure 4.18

92

4.5.3 Reducing Track Usage .

We will now improve the result of Section 4.5.2 by presenting an algorithm which is

guaranteed to compute a solution to any given instance of the restricted two-pin channel routing

problem providing the height of the associated routing region is at least 2d+ 1 , where d denotes

the corresponding channel density . This algorithm is an improvement of an earlier algorithm (with

the same 2d+ 1 bound) due to R. Rivest [RBM81] . The algorithm presented here is guaranteed

to compute a solution requiring at most 4n internal contact points . The previous algorithm , in

contrast , might compute a solution with as many as d'n internal contact points (where n denotes

the number of nets) . Recall that d/2 is a lower bound on the routing region height necessary for

such a problem instance to have a solution .

Once again , let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin

channel routing problem such that M = (R , o , p) denotes a wiring model in which

R= (1, h , A , V, E) is a A = 2 layer rectilinear routing region , o = 1 , and p = Ø . We will now

present an efficient polynomial-time algorithm that is guaranteed to compute a solution to RCRP

as long as h≥2d+ 1 , where d denotes the channel density of RCRP . The basic approach taken

by this algorithm is to generate a set of pairwise compatible wiring trees which satisfies the

following properties .

P1) If there are exactly k nets which cross j , then exactly k of the horizontal

routing edges connecting a grid point in column j with a grid point in column

j+ 1 belong to a wiring tree . Further , each of these routing edges belongs to

a distinct wiring tree and lies on a distinct track .

P2) If exactly r of the k nets which cross j are rising and fare falling (so that

r+f= k) , then between columns j and j + 1 :

a) The top-most 2r tracks (excluding track h + 1) are devoted

to wiring trees implementing rising nets .

b) The bottom-most 2f tracks (excluding track) are devoted

to wiring trees implementing falling nets .

c) The middle h-2k tracks are unused .

93

iP3) For each wiring tree T, which implements a falling net (a , b): If T, enters

column b, on track 7 (i.e. , T, contains a horizontal edge connecting grid

points (b-1 , T) and (b,, r)) , then no horizontal edge connecting grid points

(b;1,7 + 1) and (b₁ , T + 1) belongs to a wiring tree . Similarly , for each

wiring tree T which implements a rising net (a , b): If T enters column a

on track r' , then no horizontal edge connecting grid points (a/-1 , 7'- 1) and

(a , 7'- 1) belongs to a wiring tree .

In addition to these three properties , the algorithm attempts to generate wiring trees such

that all horizontal edges belonging to wiring trees implementing falling nets are on conducting

layer 1 , and all horizontal edges belonging to wiring trees implementing rising nets are on

conducting layer 2. Notice that for h>2d+ 1 there is guaranteed (by property P2) to be at least

one unused track through the middle of R. We are now ready to describe the algorithm .

Algorithm 4.4:

This algorithm proceeds column by column extending the wiring trees for all nets which

cross j in step j . The wiring tree extensions across column j are generated as follows:

1) If column j contains a trivial net (a;=j , b;=j) , the net is wired straight across

the column utilizing any free middle track to change layers as shown in Figure

4.19a .

2) If column j contains a rising net (a¡ , b;=j) and exactly r rising nets cross j , the

wiring tree for net (a , b) is extended vertically upward from grid point (j ,) to

the highest available track below track h-2r + 3 , as shown in Figure 4.19b .

Additional extension upward may then be added as required by step (3)

below . Falling nets with entry coordinate j are handled similarly as shown in

Figure 4.19c . Notice the use of edge overlap when the wiring trees for a

rising net and a falling net cross each other over the otherwise empty middle

tracks of the routing region .

a) b) .

口

SERTE

94

Figure 4.19

c)

个

-

d)

1

11-13

+2Track zIN

95

3) If a wiring tree T, for a falling net (a,, b;=j) enters column j on track z , the

tree T; is extended vertically downward from grid point (j , z) to grid point (j ,)

as shown in Figure 4.19d . In order to insure the preservation of property

P2 , however , some other wiring tree for a falling net (if any) must replace T

on track z . Furthermore , this replacement tree T should be the one which

enters column j on the highest track (including track h + 1) . The necessary

wiring tree extensions are then generated as shown in Figure 4.20 . The only

problem arises when I corresponds to a falling net with exit coordinate j+ 1 .

In this case , the preservation of property P3 requires that the next lower

wiring tree (i.e. , below T' in column j) be used for replacement instead of T

(see Figure 4.21) . Finally , rising nets with entry coordinate j are handled

similarly .

An example of a set of wiring trees that might be generated by Algorithm 4.4 is shown in

Figure 4.22 . We now have the following theorem .

Proof:

Theorem 4.7:

Algorithm 4.4 will correctly compute a solution to RCRP providing the associated routing

region has height at least 2d+ 1 , where d denotes the channel density of RCRP.

Let
rj denote the number of rising nets which cross j and let f; denote the number of

falling nets which cross j . It should be clear that Algorithm 4.4 will maintain properties P1 , P2 ,

and P3 as the wiring trees for RCRP are extended from column to column , providing the height h

of the associated routing region is at least Max{2r;+ 2f;+1 | 1<j≤/} . Furthermore , it follows

directly from the description of Algorithm 4.4 that the compatibility of wiring trees generated by

this algorithm will be maintained from column to column providing properties P1 , P2 , and P3

are maintained from column to column . Therefore , Algorithm 4.4 is guaranteed to compute a

set of compatible wiring trees for RCRP if h≥Max{2r;+2f;+1 | 1<i</} . Notice , however , that

Max{r;+fj | ¹<i<l}= d and thus Max{2r;+2f;+1 | 1<j≤l} = 2d+ 1 . The theorem then follows .

a)

Ti

a)

Ti

T'

154

bi = j

T'

b;=j

b) .

Ti

96

T'

b) .

H

b;=j

Figure 4.20

➜

7²

HHH

b²=s

Figure 4.21

c) .

I'm

Ti

H

c)
.

T'+

Ti

b;=j

bi =o

[Ifthere is no

falling net with

entry coordinate j]

+ [Ifthere is no

falling net with

entry coordinate j]

ai ad

+

by bg bs

97

dif

C

8 8

ab
JO

b6 by b3 bi

A Set ofWiring Trees Generated by Algorithm 4.4

Figure 4.22

98

It now follows from Lemma 4.9 and Theorem 4.7 that Algorithm 4.4 is guaranteed to

compute a solution to RCRP if the associated routing region has height greater than four times the

minimum necessary for a solution to exist . Further , notice that any such solution will contain at

most 4'n total internal contact points and at most d internal contact points in any one wiring tree ,

where n denotes the number of nets in RCRP and d denotes the channel density of RCRP.

Finally , it should be clear that the worst case time complexity of Algorithm 4.4 is bounded by

the product of the number of columns which must be processed and the complexity of processing

any one column . In practice , if we represent each wiring tree by the endpoints of its maximal

length line segments then we only need process columns having index equal to some net entry or

exit coordinate . Furthermore , the complexity of processing any one column under this

representation will be O(d) . Therefore , Algorithm 4.4 has worst case time complexity O(din)

under a practical implementation .

4.5.4 An Algorithm for Augmented Rectilinear Wiring Models .

In this section we show how the result of Section 4.5.3 can be substantially improved

under a diagonally augmented rectilinear wiring model . In particular , we present a very simple

polynomial-time algorithm which is guaranteed to compute a solution to any given instance of the

restricted two-pin channel routing problem providing the associated routing region is an

augmented rectilinear routing region and has height greater than the problem channel density

(i.e. , hd+ 1) . Further , each wiring tree generated by this algorithm will contain at most one

internal contact point .

Let RCRP= (M , PS , Nets) denote any instance of the restricted two-pin channel routing

problem such that M = (R , σ , p) denotes a wiring model in which R= (1, h , ^ , V, E) is a A = 2

layer augmented rectilinear routing region , o = √2/2 , and p = Ø . We will now present an

efficient polynomial-time algorithm that is guaranteed to compute a solution to RCRP as long as

h> d+ 1 , where d denotes the channel density of RCRP . Similar to Algorithm 4.4 , the basic

approach taken by this algorithm is to generate a set of pairwise compatible wiring trees which

satisfies the following properties .

99

P1) If there are exactly k nets which cross j , then exactly k of the routing edges

connecting a grid point in column j with a grid point in column j+ 1 belong

to a wiring tree . Further , each of these routing edges belongs to a distinct

wiring tree .

P2) If exactly r of the k nets which cross j are rising and fare falling (so that

r+f= k) , then between columns j and j+ 1 :

a) The top-most r tracks (excluding track h + 1) are devoted to

wiring trees implementing rising nets .

b) The bottom-most f tracks (excluding track) are devoted to

wiring trees implementing falling nets .

c) The middle h- k tracks are unused .

P3) All horizontal and diagonal routing edges belonging to wiring trees for falling

nets are on conducting layer 1 and all horizontal and diagonal routing edges

belonging to wiring trees for rising nets are on conducting layer 2 .

We are now ready to describe the algorithm .

Algorithm 4.5:

This algorithm proceeds column by column extending the wiring trees for all nets which

cross j in step j . The wiring tree extensions across column jare generated as follows :

1) If column j contains a trivial net (a; =j , b;=j) , the net is wired straight across

the column utilizing any free middle track to change layers as shown in Figure

4.23a .

2) If column j contains a rising net (a,, b =j) , the wiring tree for net (a ,b) is

extended vertically upward from grid point (,) as far as possible on

conducting layer 2 (see Figure 4.23b) . Falling nets with entry coordinate j

are handled similarly on conducting layer 1 as shown in Figure 4.23c.

3) If a wiring tree T; for a falling net (a₁, b =j) enters column j on track z , the

tree T; is extended vertically downward on layer 2 from grid point (j , z) to grid

a)
H
H

b)

100

d) *

I

I
P
:

Figure

4.23

1
3

Ti +

point (,) as shown in Figure 4.23d . In order to maintain property P2 ,

however , the algorithm must then "close up ranks " between columns j and

j+ 1 so that all empty tracks remain in the middle of the routing region .

Figure 4.24 illustrates how such a wiring can be generated . Finally , rising

nets with entry coordinate j are handled similarly .

An example of a set of wiring trees that might be generated by Algorithm 4.5 is shown in

Figure 4.25 . We now have the following theorem .

b;=3

101

Figure 4.24

"close up ranks "

a₁ a2 a3 a4 a5 a6 a7 ag

8

67 68 b5 b2 b6 b 4 b 3 bi

Example of Wiring Trees Generated by Algorithm 4.5

Figure 4.25

102

Theorem 4.8:

Algorithm 4.5 will correctly compute a solution to RCRP providing the associated routing

region has height at least d+ 1 , where d denotes the channel density of RCRP .

Proof:

The proof of this theorem follows trivially from the description of Algorithm 4.5 .

It now follows from Lemma 4.10 and Theorem 4.8 that Algorithm 4.5 is guaranteed to

compute a solution to RCRP if the associated routing region has height greater than twice the

minimum necessary for a solution to exist . Further , notice that any such solution will contain at

most one internal contact point for each wiring tree . Thus there will be at most n total internal

contact points , where n denotes the number of nets in RCRP . Finally we note that Algorithm

4.5 , like Algorithm 4.4 , has worst case time complexity O(dn) if each wiring tree is represented

by the endpoints of its maximal length line segments .

4.5.5 Further Channel Routing Results .

We shall now briefly discuss two extensions of the results presented in Sections 4.5.3 and

4.5.4 . We shall first consider problem instances composed of nets containing more than two

pins (i.e. , composed of multi-pin nets) . We then consider problem instances for which the

associated wiring model prohibits edge overlap (i.e. , NEOEp) . In each case we shall describe

how similar provably good algorithms can be developed .

Let us first consider any instance of the channel routing problem which contains no pins

constrained to lie on the left or right sides of the routing region but which may contain nets with

more than two pins . If the associated wiring model contains an augmented rectilinear routing

region and has o = √2/2 and p = , then a straightforward generalization of Algorithm 4.5 can

be applied . This generalized algorithm once again procceds column by column , extending the

wiring trees for all nets which cross j in step j . However , at any step ja net is considered to be

rising or falling depending on the location (top or bottom of the routing region) of its pin placed

with lowest x-coordinate greater than j . In addition , step (3) of the algorithm is modified so that

103

a wiring tree may both contact a pin and continue on in any one column (see Figure 4.26a) .

Finally , we note that this generalized algorithm requires a routing region with height at least d+ 2

and will then generate a solution containing at most |P| internal contact points (see Figure 4.26b) .

Now consider the case in which the problem instance is composed of a wiring model

which contains a rectilinear routing region and has o = 1 and p = . In this case it is not so easy

to generalize Algorithm 4.4 . The problem occurs in attempting to modify step (3) of the

algorithm so that a wiring tree can both contact a pin and continue on in any one column . This

problem can be avoided , however , at the price of requiring the associated routing region to have

height at least 4d+ 1 . The algorithm can then simply run two distinct horizontal extensions (one

within the top-most 4r tracks and the other within the bottom -most 4f tracks) for each net

containing pins placed along both the top and bottom sides of the routing region . This process is

illustrated in Figure 4.27 .

Finally , let us consider any instance of the restricted two-pin channel routing problem

under a two-layer rectilinear wiring model with NEOEp . For this case , R. Rivest and G.

Miller [RBM81] have developed a clever algorithm which generates wiring tree extensions track by

track rather than column by column . In addition , this algorithm utilizes at most 2d-1 tracks .

The algorithm simply proceeds by extending wiring trees horizontally within any given track.

(alternating between left-to - right and right-to-left extension for successive tracks) in a manner

which continually reduces the density of the remaining portion of the routing problem . The basic

goal is to always extend the wiring tree which requires farthest extension . An example of such a

routing is shown in Figure 4.28 . We now note that d (and not d/2) is a lower bound on the

required routing region height under this wiring model (i.e. , NEOEp) . Therefore , this

algorithm is guaranteed to compute a solution providing the associated routing region has height at

least twice the minimum necessary for a solution to exist . A major drawback of this algorithm is

that it may generate solutions containing a large number of internal contact points ; as many as

dn .

a) .

10

104

b) .

Figure 4.26

аз G4 95 Đ

64 b3 bz bi 6'3

(Density = 4)

b5

а ,

by

от

--

аз ау

b3 ba b

as až

Figure 4.27

b5

ne

105

В

аз

bs

аз ay as

is ba вы

Figure 4.28

еев аг

by вз

ад

5

106

4.6 The Quick Router : An Algorithm for the Fixed-Pin Routing Problem .

In this section we present a very efficient heuristic algorithm for computing a solution to

any given instance of the fixed-pin routing problem with a two-layer rectilinear wiring model .

The algorithm we shall describe , known as the quick routing algorithm , has been implemented

for use in the PI routing system and was briefly discussed in Section 2.6 . It is based on the

assumption that many of the instances of the fixed -pin routing problem which arise in practice can

be solved by applying a very simple set of heuristics .

Let FPRP= (M , PS , Nets) denote any instance of the fixed-pin routing problem such that

M= (R , σ , p) denotes a wiring model in which R = (1, h , A , V , E) is a A = 2 layer rectilinear

routing region and o = 1 . Since FPRP is an instance of the fixed-pin routing problem , the pin

structure PS must contain exactly one legal placement , 7 , and thus any algorithm for computing

a solution to FPRP need only generate the required set of compatible wiring trees . The quick

router computes such a solution in three steps . The first step consists of determining the topology

of each of the required wiring trees . Essentially no consideration is given to layer selection or

compatibility at this point . The second step then involves the assignment of conducting layers to

each of the segments composing the previously defined tree structures . This layer assignment is

performed in a manner which maximizes usage of one of the two available conducting layers . (In

practice the two layers are assumed to be metal and polysilicon and thus the use of metal is

preferred .) The third and final step consists of a compatibility (or design rule) check to verify the

legality of the solution generated . We shall now present the details of each of these three steps .

The first phase of the quick routing algorithm consists of determining the topology of each

of the required wiring trees . The algorithm begins by partitioning the set of nets into three

disjoint subsets (the easy nets , the hard nets , and the impossible nets) as follows :

1) The set of easy nets consists of all nets containing three or less pins with at

least one pin constrained to lie on the top or bottom side of the routing region

and at least one pin constrained to lie on the left or right side of the routing

region (see Figure 4.29a) .

a) Examples of

Easy Nets

b) Examples of

Legs

Hard Nets

6

H

107

Figure 4.29

11

:

Natural "L" Routing

108

2) The set of hard nets consists of all other nets containing three or less pins (see

Figure 4.29b) .

3) The set of impossible nets consists of all nets containing more than three pins .

Impossible nets are ignored in the current implementation of the quick router . In this sense the

algorithm is guaranteed to fail if FPRP contains a net with more than three pins . However , the

heuristics that will be described for nets with less than three pins can be generalized to handle nets

with more than three pins if desired .

Once the set of nets has been partitioned , a tree structure is generated for each easy net ,

independently , as follows:

1) For each easy net containing exactly two pins , the quick router generates the

natural "L" structure as shown in Figure 4.29a .

2) For each easy net containing exactly three pins , the quick router produces a

topology containing a straight line extension from the pin lying on the side of

the routing region having unique orientation (horizontal vs. vertical) , with legs

extending out to the other two pins as shown in Figure 4.29a .

It will then remain only to generate topologies for the wiring trees implementing hard nets .

Notice that for each hard net there is need to find a jog- track where a portion of the

corresponding tree can be placed .

The quick router simply processes the hard nets in order according to the reverse of their

sequence of visitation in a counter-clockwise traversal , beginning at the lower-left corner , around

the perimeter of the routing region (see Figure 4.30) . A jog track is selected for each net in turn

as follows:

1) If a net contains exactly two pins , the algorithm searches for a clear jog track

by proceeding bottom -up if the pin placed with lower x-coordinate is on the

bottom of the routing region , top-down if the pin placed with lower x

coordinate is on the top of the routing region , left-to - right if the pin placed

1

109

2 3

Figure 4.30

Counter-Clockwise

Traversal

with lower y-coordinate is on the left of the routing region , and right-to -left

otherwise .

110

2) If a net contains exactly three pins , then the algorithm searches for a clear jog

track by proceeding from the side of the routing region containing the majority

of the pin placements .

Once a jog track has been selected for a net , the topology of the associated wiring tree is

generated in the straightforward manner as shown in Figure 4.31 .

The second phase of the quick routing algorithm then consists of assigning a conducting

layer to each of the line segments composing the previously defined tree structures . This layer

assignment is performed by first assigning the preferred layer (call it layer 1) to all line segments

having orientation (horizontal vs. vertical) in the direction containing the maximum total length of

line segment . The algorithm then assigns layers to all remaining line segments such that layer 2 is

used whenever a segment on layer 1 is crossed and layer 1 is used otherwise .

If so , the

The third and final phase of the quick routing algorithm then consists of a simple

compatibility check to verify that all the wiring trees generated are compatible .

algorithm halts and outputs the generated set of wiring trees . If not , the algorithm fails and thus

sends an appropriate message .

jog track

(

19
:

Wiring Hard Nets

Figure 4.31

jog track

111

It should now be clear that the quick router is extremely efficient . If it succeeds in

computing a solution to FPRP , then it will have done so very quickly . If it fails , however , then

little time will have been wasted .

4.7 Summary.

This chapter has dealt with a general signal routing problem called the region routing

problem . An instance of the region routing problem is typically characterized by the

requirements that all connection points lie on the perimeter of a given rectangular region and that

all wiring be located entirely within this region . We have developed a formal mathematical model

for the general region routing problem and then used this model to derive new algorithms for

several classes of restricted region routing problems . Most importantly , we have presented

optimal polynomial- time algorithms for river routing with arbitrarily many conducting layers and

near optimal polynomial -time algorithms for channel routing under a two-layer wiring model

which allows limited wire overlap . We should note , however , that these new algorithms are

likely to be considered to be of mainly theoretical interest for the following reasons:

1) They all tend to generate wirings in which each conducting layer is used about

equally . (This can be highly undesirable in practice if each of the available

conducting layers has substantially different electrical properties .)

2) They all generate wirings which contain parallel runs of overlapping wires and

are thus susceptible to "cross- talk " via the capacitive coupling of long

overlapping wires .

Nonetheless , these results demonstrate that it is possible to develop provably good routing

algorithms and so perhaps some day we can have algorithms that are both good in theory and

good in practice .

112

[Aho77] Aho, A.V.; Garey, M.R. and Hwang, F.K. , "Rectilinear Steiner Trees : Efficient Special

Case Algorithms, " Networks, Vol . 7 , 1977 , 37-58.

Bibliography

[Aho74] Aho , A.V.; Hopcroft , J.E. and Ullman , J.D. , The Design and Analysis of Computer

Algorithms, Addison-Wesley Publishing Co., Reading , Mass. , 1974.

[Des72]

[Bre77] Breuer, M.A., "Min -Cut Placement, " Journal of Design Automation and Fault-Tolerant

Computing, Vol. 1 , No. 4 , 1977, 343-362.

Breuer, M. , ed. Design Automation of Digital Systems, Volumn 1 : Theory and Techniques,

Prentice-Hall, Inc. Englewood Cliffs , N.J., 1972.

[Deu76] Deutsch, D.N., "A ' Dogleg ' Channel Router, " Proceedings of the Thirteenth Design

Automation Conference, IEEE, 1976 , 425-433 .

[EA78]

[Do181] Dolev, D.; Karplus, K ; Siegel , A.; Strong, A. and Ullman, J. D. , "Optimal Wiring

Between Rectangles, " Proceedings of the Thirteenth Annual ACM Symposium on Theory

of Computing, 1981, 312-317.

[DS81] Dolev, D. and Siegel, A. , "The Separation Required for Arbitrary Wiring Barriers, "

Stanford University (Preprint), 1981.

El-Arbi, C., "Une Heuristique Pour Le Probleme De L'Arbre De Steiner, " R.A.I.R.O.,

Vol. 12, No. 2 , 1978 , 207-212.

[Gar77] Garey, M.R.; Graham, R.L. and Johnson, D.S. , "The Complexity of Computing Steiner

Minimal Trees," SIAM Journal of Applied Mathematics, Vol. 32 , 1977 , 835-859.

[GJ77] Garey, M.R. and Johnson , D.S. , "The Rectilinear Steiner Tree Problem is NP

Complete, " SIAM Journal of Applied Mathematics, Vol. 32 , 1977, 826-834.

[Gar79] Garey, M.R. and Johnson , D.S. , Computers and Intractability, W.H. Freeman and

Company, San Francisco , CA , 1979.

[Gup79] Gupta, U.; Lee, D. and Leung, J. , "An Optimal Solution for the Channel-Assignment

Problem, " IEEE Transactions on Computers, Vol . C-28 , No. 11 , 1979 , 807.

[Han72] Hanan , M. and Kurtzberg , J. , " A Review of the Placement and Quadratic Assignment

Problems," SIAM Review, Vol . 14, No. 2 , 1972 , 324-342.

113

[Han76] Hanan, M .; Wolff, P.K. and Agule, B.J. , "A Study of Placement Techniques," Journal of

Design Automation and Fault- Tolerant Computing, Vol. 1 , No. 1 , 1976.

[Has71] Hashimoto , A. and Stevens , J. , "Wire Routing by Optimizing Channel Assignment

within Large Aperatures, " Proceedings of the Eighth Design Automation Workshop,

IEEE, 1971 , 155-169.

[Hig69] Hightower, D. , "A Solution to Line-Routing Problems on the Continuous Plane, "

Proceedings of the Sixth Design Automation Workshop, IEEE, 1969 , 1-24.

[Hig74] Hightower, D., "The Interconnection Problem : A Tutorial, " Computer, Vol. 7 , No. 4 ,

1974, 18-32.

[Hig80] Hightower, D.W. and Boyd, R.L., "A Generalized Channel Router, " Proceedings of the

Seventeenth Design Automation Conference, 1980, 12-21.

[Hit69] Hitchcock, R.B. , "Cellular Wiring and the Cellular Modeling Technique, " Proceedings of

the Sixth Design Automation Workshop, IEEE, 1969, 25-41 .

[Hwa78] Hwang, F.K., "The Rectilinear Steiner Problem, " Journal of Design Automation and

Fault-Tolerant Computing, Vol . 2 , No. 4 , 1978, 303-310.

[Kaw79] Kawamoto , T. and Kajitani , Y., "The Minimum Width Routing of a 2-Row 2-Layer

Polycell-Layout," Proceedings of the Sixteenth Design Automation Conference, IEEE,

1979, 290-296.

[Kos81] Koschella, J.J. , "A Placement/Interconnect Channel Router : Cutting your PI into

Slices," S.B. thesis , Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1981 .

[Kou81] Kou, L.; Markowsky , G. and Berman , L. , "A Fast Algorithm for Steiner Trees, " Acta

Informatica, Vol. 15 , 1981 , 141-145.

[Kuh79] Kuh, E.S.; Kashiwabara, T. and Fujisawa, T. , "On Optimal Single-Row Routing," IEEE

Transactions on Circuits and Systems, Vol. CAS-26, No. 6 , 1979 , 361-368.

[LaP80] LaPaugh , A.S., "Algorithms for Integrated Circuit Layout : An Analytic Approach,"

Ph.D. dissertation , Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1980.

[Lau79] Lauther, U., "A Min-Cut Placement Algorithm for General Cell Assemblies Based on a

Graph Representation, " Proceedings of the Sixteenth Design Automation Conference,

IEEE, 1979, 1-10.

[Lee61] Lee, C.Y. , "An Algorithm for Path Connections and Its Applications, " IRE Transactions

on Electronic Computers, VEC- 10 , 1961 , 346-365.

[Lei80]

114

[Lei81] Leiserson , C.E., and Pinter , R.Y. , "Optimal Placement for River Routing" to appear in

Proceedings of the CMU Conference on VLSI Systems and Computations, Oct. 19-21,

1981.

Leiserson , C.E. , "Area- Efficient Graph Layouts (for VLSI), " Proceedings of the Twenty

First Annual Symposium on Foundations of Computer Science, IEEE, 1980 , 270-281.

[Mea79] Mead, C.A. and Conway, L.A., Introduction to VLSI Systems, Addison-Wesley

Publishing Co., Reading , Mass. , 1980.

[Pre78]

[Per77] Persky, G .; Deutsch, D.N. and Schweikert, D.G., "LTX - A_Minicomputer-Based

System For Automated LSI Layout, " Journal of Design Automation and Fault-Tolerant

Computing, Vol . 1 , No. 3 , 1977, 217-255.

Preas, 3.T. and Gwyn, C.W. , "Methods for Hierarchical Automatic Layout of Custom

LSI Circuit Masks ," Proceedings of the Fifteenth Design Automation Conference, 1978,

206-212.

[Riv81] Rivest, R.L., " The ' PI ' (Placement and Interconnect) System , " Massachusetts Institute

of Technology (Preprint), 1981.

[Tin76]

[RBM81] Rivest, R.L.; Baratz, A.E. and Miller , G. , "Provably Good Channel Routing Algorithms"

to appear in Proceedings of the CMU Conference on VLSI Systems and Computations,

Oct. 19-21, 1981.

[Szy81] Szymanski, T., Personal Communication through R. Rivest, 1981.

[Tho80] Thompson, C.D. , "A Complexity Theory for VLSI, " Ph.D. dissertation, Department of

Computer Science, Carnegie-Mellon University , 1980.

Ting, B.S .; Kuh, E.S. and Shirakawa, I. , " The Multilayer Routing Problem : Algorithms

and Necessary and Sufficient Conditions for the Single-Row Single -Layer Case, " IEEE

Transactions on Circuits and Systems, Vol. CAS-23, No. 12, 1976. , 768-778.

115

[Tom80] Tompa, M. , "An Optimal Solution to a Wire-Routing Problem, " Proceedings of the

Twelfth Annual ACM Symposium on Theory of Computing, 1980 , 161-176.

116

Biographical Note

Alan Edward Baratz was born in Philadelphia , Pennsylvania on November 10, 1954. At

the age of 8, he moved to Las Vegas , Nevada where he lived until graduating from Valley High

School in June 1972. Following his high school graduation , Mr. Baratz attended the University of

California at Los Angeles where he received his B.S. degree cum laude in Mathematics/Computer

Science in June 1976. The following September , Mr. Baratz began his graduate work in the

Department of Electrical Engineering and Computer Science at the Massachusetts Institute of

Technology. He soon joined the Theory of Computation research group in the Laboratory for

Computer Science, where he worked under the supervision of Dr. Ronald Rivest . Mr. Baratz

received his S.M. degree from the Department of Electrical Engineering and Computer Science in

June 1979, and his Ph.D. degree in September 1981. During this time he married the former

Raquel Sari Schlamm .

Mr. Baratz will be joining the Communication Network Group at the I.B.M. Thomas J.

Watson Research Center in September 1981.

