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Abstract. Looking at current cryptographic-based e-voting protocols,
one can distinguish three basic design paradigms (or approaches): (a)
Mix-Networks based, (b) Homomorphic Encryption based, and (c) Blind
Signatures based. Each of the three possesses different advantages and
disadvantages w.r.t. the basic properties of (i) efficient tallying, (ii) uni-
versal verifiability, and (iii) allowing write-in ballot capability (in addi-
tion to predetermined candidates). In fact, none of the approaches results
in a scheme that simultaneously achieves all three. This is unfortunate,
since the three basic properties are crucial for efficiency, integrity and
versatility (flexibility), respectively. Further, one can argue that a seri-
ous business offering of voting technology should offer a flexible technol-
ogy that achieves various election goals with a single user interface. This
motivates our goal, which is to suggest a new “vector-ballot” based ap-
proach for secret-ballot e-voting that is based on three new notions: Prov-
ably Consistent Vector Ballot Encodings, Shrink-and-Mix Networks and
Punch-Hole-Vector-Ballots. At the heart of our approach is the combi-
nation of mix networks and homomorphic encryption under a single user
interface; given this, it is rather surprising that it achieves much more
than any of the previous approaches for e-voting achieved in terms of the
basic properties. Our approach is presented in two generic designs called
“homomorphic vector-ballots with write-in votes” and “multi-candidate
punch-hole vector-ballots”; both of our designs can be instantiated over
any homomorphic encryption function.

1 Introduction

There are three basic paradigms for cryptographic secure ballot elections. The
first method is based on mix-networks where the tallying officials move the bal-
lots between them and permute them in the process while changing their repre-
sentation (e.g., partially decrypting them). Methods for doing this robustly and
correctly have been designed in the last 20 years, starting with the initial work of
Chaum [7]. In practical implementations, this approach in its fully robust form
(i.e., proving the correctness of the shuffling) is still considered a slow tallying
process, even though there have been several steps toward more efficient designs,
see e.g. [33, 6, 20, 24, 1, 26, 18]. The second method is based on homomorphic en-
cryption (started by Benaloh [9, 4, 3], and then followed by many other works
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including [12, 10, 35, 16, 13, 2]). In this general approach the ballots are encrypted
and then “compressed” via a homomorphic encryption scheme into a tally. This
compression property allows fast tallying, and is what makes this approach at-
tractive. However the drawback is that pure “compressible” homomorphic en-
cryption is not suitable to deal with write-in ballots. In fact, compression of the
write-in ballots content is not possible since, information theoretically, if this
content has no redundancy (which is always possible in the write-in ballots case)
compression will ruin it. A third approach is based on blind signatures, [17], and
relies on the voters obtaining a certified secret ballot from the authorities by
employing the blind signature module. This enables them to embed any form
of ballot (including write-in). Subsequently, this approach requires the employ-
ment of an anonymous channel between the voter and the tallying authorities,
to hide the identity of the user at the “ballot casting stage.” This requirement
may be inhibiting and thus people have suggested to combine this approach
with the mix-net one so that the “anonymous channel” is implemented formally.
Furthermore, while the previous paradigms support universal verifiability which
assures robustness, this approach relies on tallier – voter interaction and does
not support it.

In recent years, due to the aftermath of the USA 2000 presidential election
debacle as well as other initiatives, e-voting technology has gained high level of
interest (see [21]). One effort that took place is the joint Caltech-MIT electronic
voting project. Rivest, who participated in this project, has raised the question
whether it is possible to incorporate write-in ballots in homomorphic encryption
based elections in a way that will still maintain its advantages and keep some of
its computational gains. In fact, Rivest’s question raises the more general concern
that the cryptographic paradigms optimize different goals, and business wise it
may be smart to combine them under a single user interface and hope to retain
some of their individual advantages and to try to gain more by a combinational
approach.

Homomorphic Vector-Ballot with Write-In Votes. Motivated by this ques-
tion and issues, we started by attacking the problem of allowing write-in ballots
as follows: since homomorphic encryption elections are based on a summation
register (ciphertexts are modular-multiplied together which effectively sums-up
the ballots under the encryption), write-in ballots need to be read individually.

To incorporate a write-in choice into a homomorphic encryption based scheme,
we suggest the design of a composed ballot or a “vector ballot” that is cast by
each user, and is either a regular (predetermined candidate) ballot or a write-in
one with indistinguishable external representation in either case. This is the base
of the vector-ballot approach. This sounds simple, but if done in a straightfor-
ward fashion this may give voters more “free choice” in ballot representation
and in cheating, and it may also give more ways to distinguish between users’
ballots. Thus, this new design leads to new concerns regarding ballot validity
and ballot uniformity. In particular, it leads us to the simple yet crucial notion
of provably consistent vector ballot encodings, which assures that in spite of the
extended scenario the ballot is nevertheless legal, i.e. the voter is forced to ei-
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ther select a write-in, or a predetermined choice, but not both at the same time.
Further, whenever the voter makes one of the two choices, she is forced to enter
a “neutral” value in the other portion of the vector ballot. The added validation
proofs by the voter makes the ballot longer, however this price (constant increase
in validity proof) is reasonable given the enhancement (to be described below)
it enables. The ballot representation looks the same regardless of whether the
user votes for a predetermined candidate or casts a write-in ballot. After the
ballot casting, the vector ballot is split into a “supposedly regular portion” and
a “supposedly write-in portion” and they are processed (tallied) independently.

What we have described so far is a combination of two voting approaches:
homomorphic encryption based and mix-net based. While this is important (as it
allows the unification under the same user-interface of the efficient homomorphic
encryption based voting with the write-in “friendly” mix-net voting), by itself
the resulting scheme as a whole is not more efficient than the two individual
approaches (and clearly the real bottleneck is the slow tallying robust mix-net
approach).

It is thus, perhaps surprising that our approach that is based on the vector
ballots has the potential to achieve more efficient tallying than any previous
proposal for e-voting that allowed write-in ballots and is universally verifiable at
the same time. The two major points that allow this are explained below:

1. The predetermined candidate portions of all ballots can be compressed using
the efficient homomorphic encryption based tallying.

2. The write-in portions of all ballots are based on an indicator and a write-in
portion. Based on such indicators we show that they can be processed using
the new efficient method of shrink-and-mix that we propose. The method
takes advantage of the fact that the vector ballots are based on homomorphic
encryption and the fact that, usually, most of the voters select one of the
predetermined candidates. Thus, using the compressibility of indicators we
can eliminate a great number of unused neutral write-in portions. We note
that in a typical scenario, the method achieves a five-fold improvement over
stand alone mix-network based election (and this will be a noticeable factor
in practice, since the gain is within the system’s performance bottleneck
component).

Further, the two tallying procedures above are independent. Thus, the tal-
lying can be performed in two phases. An on-line phase can just perform the
homomorphic encryption tallying process of the predetermined candidate por-
tions. This is a very efficient mechanism. In most cases the actual tally and
winner(s) can be declared based on the these regular votes only and the slower
tallying of the write-in portions can, in this case, be done off-line and a later
time. Typically, the winner will be one selected among the leading predetermined
candidates of the established parties, whereas, say, Mickey Mouse (a popular
write-in candidate in US elections) can afford waiting a bit longer till he knows
the actual number of votes he won.

The above is the first construction within the vector-ballot approach. It shows
how we achieve simultaneously the basic properties of universal verifiability and
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support for write-in ballots together with an efficient tallying procedure. Com-
parison to previous election paradigms is given in Figure 1.
Multi-Candidate Punch-Hole Vector-Ballot. A modular extension of our
new approach employs our notion of punch-hole vector ballots which enables
a more suitable scheme for voting with a large number of predetermined can-
didates. It extends the functionality of our vector-ballot encodings (and thus
write-ins can still be incorporated). The method introduces a multitude of c
summation ciphertext registers, one per candidate, while earlier schemes packed
all the candidate tallies into a single summation register. Note that the vector
ballot portions in the ballot design correspond to various candidates and to the
corresponding summation registers. Note further that a ballot needs to have a
consistent valid encoding and the voter has to prove this validity. This is different
from the simplistic multi-election ballot in [4].

Employing separate registers relaxes the burden of participants by allow-
ing them to deal with smaller ciphertexts. The gain is especially noticeable in
case of many candidates. To formalize the ciphertext summation register size re-
quirement, we introduce the notion of “capacity” of an homomorphic encryption
function, which measures how many integers can be represented as plaintexts
within a given summation register. Our punch-hole vector ballot design requires
the capacity of the underlying encryption to be only n (the number of vot-
ers), instead of nc required for a single summation register used previously. In
fact, all leading proposed election methods in the literature that employ sum-
mation registers, [10, 16, 13], and allow for n voters and c candidates, indeed,
require capacity of nc. Note that this may cause problems in selecting the secu-
rity parameter when the number of candidates is very large: e.g., if the security
parameter is 768 bits, this restricts the capacity to 2768, and if the number of
candidates is large, e.g. c = 50, and the voting population close to 35, 000, then
the capacity cannot contain the summation register.

An important and substantial gain in efficiency of tallying, results from the
new approach when applied over the ElGamal encryption. The recovery of the
final tally requires only time O(cn) which is polynomial in the number of candi-
dates, instead of O(nc) which is exponential in c, as is the case in the state of
the art discrete-log based scheme of [10]. We remark that this exponential gain
is traded against a quadratic – rather than linear – (in c) work done for validity
checking of ballots; this is a reasonable price to pay for such a gain.

2 Preliminaries

Requirements For Voting Schemes. A voting-scheme needs to fulfill a vari-
ety of requirements to become useful. A brief presentation of these requirements
follows.
Secrecy. Ensures the security of the contents of ballots. This is typically achieved
by relying on the honesty of a sufficient number of the participating authori-
ties and at the same time on some cryptographic intractability assumption. In
particular, any polynomial-time probabilistic adversary that controls some arbi-
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Approaches Efficient Tallying Univ. Verifiability Write-ins

Homomorphic Encryption
√ √

×

Mix-networks ×
√ √

Blind-Signatures
√

×
√

Vector-Ballot approach
√ √ √

Fig. 1. A comparison of our new approach with previous work with respect to the
following three important properties: (i) efficient-tallying: tallying does not require the
application of a robust-mix to the total number of ballots; (ii) universal-verifiability:
any interested third party may verify that the election protocol is executed correctly;
(iii) write-ins: voters are allowed to enter write-in votes.

trary number of voters and a number of authorities (below some predetermined
threshold) should be incapable of distinguishing which one of the predetermined
choices a certain voter selected or whether the voter entered a write-in. In all
voting schemes, once a certain number of votes have been aggregated into a
partial tally, secrecy is not mandatory, e.g., once the votes of a precinct have
been aggregated it is ok to reveal the partial tally (in fact in many cases it is not
even desired to keep the partial tallies secret, if some regional statistics are to be
extracted from the election results). Thus, voter secrecy will have an associated
Privacy Perimeter b which will refer to the smallest number of votes that need
to be aggregated into a partial tally before some information about the partial
tally can be revealed; we will talk of secrecy with b-perimeter in this case. A
more formal discussion of secrecy is deferred to the full version of this paper.

Universal-Verifiability. Ensures that any party, including an outsider, can be
convinced that all valid votes have been included in the final tally.

Robustness. Ensures that the system can tolerate a certain number of faulty
participants.

Fairness. It should be ensured that no partial results become known prior to
the end of the election procedure.

Another property, which we do not deal with here explicitly, is Receipt-

Freeness [5, 34, 27, 22, 25]. Standard techniques that use re-randomizers (see
e.g. [2]) can be readily employed in our schemes to allow this property.

Homomorphic Encryption Schemes. An encryption scheme is a triple 〈K, E ,
D〉. The key-generation K is a probabilistic TM which on input a parameter 1w

(which specifies the key-length) outputs a key-pair pk, sk (public-key and secret-
key respectively). The encryption function is a probabilistic TM Epk : R×P → C,
where R is the randomness space, P is the plaintext space, and C the ciphertext
space. When P = Za for some integer a, we will say that the encryption function
has “additive capacity” (or just capacity) a. The basic property of the encryption
scheme is that Dsk(Esk(·, x)) = x for all x independently of the coin tosses of the
encryption function E . If we want to specify the coin tosses of E we will write
Epk(r, x) to denote the ciphertext that corresponds to the plaintext x when the
encryption function Epk makes the coin tosses r. Otherwise we will consider Epk(x)
to be a random variable. For homomorphic encryption, we assume additionally
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the operations +,⊕,
⊙

defined over the respective spaces P, R, C, so that 〈P,+〉,
〈R,⊕〉, 〈C,

⊙

〉 are groups written additively (the first two) and multiplicatively
respectively.

Definition 1. An encryption function E is homomorphic if, for all r1, r2 ∈ R

and all x1, x2 ∈ P, it holds that Epk(r1, x1)
⊙

Epk(r2, x2) = Epk(r1 ⊕ r2, x1 + x2).

We will consider two examples of Homomorphic Encryption schemes: “addi-
tive ElGamal” and Paillier Encryption. Both have been employed in the design
of e-voting schemes in the past, see [10] and [13, 2] respectively (which are also
the current state-of-the-art schemes in the homomorphic encryption based ap-
proach). We define them below:
Additive ElGamal Encryption. It is defined by a triple 〈K, E ,D〉: the key-generation
K outputs the description of a finite multiplicative group G of prime order q,
with three generators 〈g, h, f〉 which are set to be the public-key of the system
pk; the secret-key sk is set to the value logg h. For a public-key 〈g, h, f〉 the en-
cryption function E(r, x) equals the tuple 〈gr, hrfx〉, and the domains P := Zq,
R := Zq and C := G × G. The operations +,⊕ are defined as addition modulo
q and the operation

⊙

is defined as point-wise multiplication over G × G. The
decryption function D for a secret-key logg h given 〈G,H〉 it returns H/Glogg h,
and then it performs a brute-force search over all possible values fx to recover x.
Observe that 〈P,+〉, 〈R,⊕〉 and 〈C,

⊙

〉 are all groups, and the encryption E is
homomorphic with respect to these operations. Finally notice that the capacity
of E is q.
Paillier Encryption. [28]. It is a triple 〈K, E ,D〉, defined as follows: the key-
generation K outputs an integer N , that is a product of two safe primes, and
an element g ∈ Z

∗

N2 of order a multiple of N . The public-key of the system
pk is set to 〈g,N〉 and the secret-key sk is set to the factorization of N . For
a public-key 〈g,N〉, the encryption function E(r, x) equals the value gxrN (mod
N2) and the domains P := ZN , R := Z

∗

N2 , and C := Z
∗

N2 . The operation
+ is defined as addition modulo N , and the operations ⊕,

⊙

are defined as
multiplication modulo N2. The decryption function D for a secret-key p, q it
operates as follows: first it computes λ := λ(N) the Carmichael function of
N , and given a ciphertext c, it returns L(cλ(modN2))/L(gλ(modN2)) where
L(u) = u−1

N
and L is defined over the set of integers {u | u ≡ 1( mod N)}. Again,

observe that 〈P,+〉, 〈R,⊕〉 and C,
⊙

〉 are all groups, and the encryption E is
homomorphic with respect to these operations. Finally notice that the capacity
of E is N .

Proofs of Knowledge. Proofs of knowledge are protocols between two play-
ers, the Prover and the Verifier. In such protocols there is a publicly known
predicate Q for which the prover knows some witness x, i.e. Q(x) = 1. The goal
of such protocols is for the prover to convince the verifier that he indeed knows
such witness. We will concentrate on “3-move” protocols for which the prover
acts in the first and third move, and the verifier challenges in the second move
with a random value from the proper domain (see [11]). Conversations in such
protocols will be of the form 〈a, c, r〉, and the verifier will accept provided that
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a, c, r satisfy some conditions given as part of the specifications of the protocol.
Proofs of knowledge can be made non-interactive by employing the Fiat-Shamir
heuristics, [15] (and then, security is shown in the random-oracle model, or al-
ternatively assuming a beacon, [32]). If the predicate Q accepts a non-interactive
zero-knowledge proof, and an agent possesses a witness for Q that he wants to
prove knowledge of, we will say that the agent “writes a proof for Q.” Proofs of
knowledge of the above type can be combined in “AND” and “OR” fashion in
an efficient manner.

Proofs of Knowledge for Homomorphic Encryption. Let 〈K, E ,D〉 be
a homomorphic encryption scheme. Below, we identify useful proof protocols
(which have been used in various settings and environments).

Proof of Knowledge of Properly Formed Ciphertext for a Public Plain-

text. A useful proof of knowledge in the context of e-voting is a proof that shows
that a ciphertext that encrypts a publicly known plaintext is properly formed. We
define the predicate Qm,V

cipher as follows Qm,V
cipher(r) = 1 if and only if Epk(r,m) = V .

We remark that proofs of knowledge for the two homomorphic encryptions that
we consider here (additive ElGamal, and Paillier) are standard and can be done
efficiently.

Proof of Knowledge for a Random Shuffle. Observe that using a homomor-
phic encryption scheme one can “re-randomize” a ciphertext C by computing
C ′ := Epk(0)

⊙

C (i.e., C ′ is uniformly distributed over all ciphertexts that corre-
spond to the plaintext of C). Suppose now that C1, . . . , Ck is a sequence of cipher-
texts and C ′

1, . . . , C
′

k is a random re-encrypted permutation of these ciphertexts.

We define a predicate Q
C1,...,Ck,C′

1,...,C′

k

shuffle so that Q
C1,...,Ck,C′

1,...,C′

k

shuffle (r1, . . . , rk, π) =
1 if and only if C ′

π(j) = Epk(rj , 0)
⊙

Cj , for j = 1, . . . , k.

A straightforward approach for a proof for Q
C1,...,Ck,C′

1,...,C′

k

shuffle would require
O(k2) space. Discovering more efficient proofs is a very active area of research
(as such proofs constitute the basic operation of a robust mix-network, a fun-
damental primitive for elections based on mixes) and several papers provided
sophisticated techniques of shortening the proof as well as relaxing the robust-
ness model to allow more efficient implementations, [20, 24, 26, 18]. Two of the
most efficient recent protocols are that of [18] and [26], that allow O(k)-size
proofs with relatively small constant.

Threshold Homomorphic Encryption Schemes. A (t,m)-threshold homo-
morphic encryption scheme is a triple 〈K, E ,D〉 so that K is a protocol between
a set of participants A1, . . . , Am, that results in the publication of the public-key
pk and the sharing of the secret-key sk so that any t of them can reconstruct
it. Additionally, D is also a protocol between the participants A1, . . . , Am that
results in the decryption of the given ciphertext in a publicly verifiable manner
(i.e. each participant writes a proof that he follows the decryption protocol ac-
cording to the specifications). Both Additive ElGamal and Paillier encryptions
have threshold variants, see [30, 31, 19] and [16, 13] respectively.
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3 The Vector Ballot Approach

The participants in our schemes are the voters V1, . . . , Vn, the authorities A1, . . . ,
Am, and the bulletin board server which is responsible for maintaining an au-
thenticated communication transcript. Voter eligibility as well as basic ciphertext
processing operations are also handled by the bulletin board server. Our voting
approach is divided in four major steps: Setup, Ballot-Casting, Tallying,
Announcement of the Results.

In our approach, every encrypted ballot is in fact a “vector-ballot” that has
three coordinates: the first is a ciphertext that contains possibly one of the pre-
determined election choices, the second is a flag-ciphertext that encrypts the
information whether the voter selects a write-in choice or not; finally, the third
coordinate possibly contains a write-in choice. A proof of “consistent ballot en-
coding” will be broken into a number of “consistency arguments” and will ensure
that the vector ballot is formed properly (i.e., it either contains a predetermined
choice in the first coordinate or a write-in choice in the last coordinate and fur-
thermore the “flag” value is encrypted consistently). The tallying phase has two
independent phases: (i) tallying the non-write-in election results using the ho-
momorphic encryption function properties; (iia) shrinking the number of write-
in votes using the flag-ciphertexts; (iib) employing a mix-net over the shrunk
write-in ballot sequence. The general overview of these procedures is presented
in Figure 2. We describe our approach in detail in the following subsections.

1 2 3

Vector Ballots

1 2 3

1 2 3

1 2 3

Tally
Ciphertext

Using
Homomorphic

Encryption

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

Shrinking
Using
Flag

Ciphertexts

Election Results
without Write-ins

Mix-net

Election
Write-in
Results

3

3

3

3

3

3

Voter

Voter

Voter

Voter

Voter

Fig. 2. The Vector-Ballot E-Voting Paradigm.
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3.1 Setup and Capacity Assumption

In our approach we will employ a threshold homomorphic encryption function
〈K, E ,D〉. We will also employ the necessary assumption regarding the capacity
of the encryption function:

Capacity Assumption. The capacity of the encryption function satisfies a >
M c where c is the number of candidates, and M an integer with M > n (the
number of voters).

Setup. The authorities A1, . . . , Am execute the protocol K which results in the
publication in the bulletin board of the public-key pk. At the same time the
secret-key sk is shared amongst the authorities A1, . . . , Am.

3.2 Ballot-Casting Step

Each eligible voter gets authorized to the bulletin board and reads the public-key
pk of the system. The set of choices is defined as Choices := {1,M,M2, . . . ,M c−1}
where M is an integer with the property M > n.

Formation the Vector-Ballot. Each voter Vi publishes a vector ballot 〈C1[i], C2[i],
C3[i]〉. If the voter wishes to select one of the predetermined choices of the
election she selects C1[i] to be an encryption of one of the values in the set Choices

while C2[i], C3[i] are encryptions of 0; in particular C1[i] := Epk(M
ℓi−1) where

ℓi ∈ {1, . . . , c} is the personal choice of the voter, and C2[i] := Epk(0), C3[i] :=
Epk(0). If the voter wishes to enter a write-in ballot she selects C1[i] to be an
encryption of 0, C2[i] to be an encryption of 1, and C3[i] to be an encryption of
some string stringi which is the voter’s write-in entry. Formally, C1[i] := Epk(0),
C2[i] := Epk(1) and C3[i] := Epk(stringi). Together with her vector ballot the voter
must publish a proof of “consistent ballot encoding.” In particular Vi writes a
proof for the following predicate:

(

(Q
1,C1[i]
cipher ∨Q

M,C1[i]
cipher ∨ . . .∨Q

Mc−1,C1[i]
cipher )∧Q

0,C2[i]
cipher ∧Q

0,C3[i]
cipher

)

∨ (Q
0,C1[i]
cipher ∧Q

1,C2[i]
cipher )

The above proof can be done efficiently as discussed in section 2, since it
is an AND/OR composition of the proof of knowledge for the predicate Qm,V

cipher

which can be done quite efficiently for either of the two homomorphic encryption
functions that we consider. Moreover it only adds a small constant overhead
compared to proofs of previous homomorphic-encryption based voting schemes.

Regarding the above proof of consistent ballot encoding it is easy to prove
the following lemma:

Lemma 1. The only ballot encodings for 〈C1[i], C2[i], C3[i]〉 allowed are:
(i) The second ciphertext encrypts a 0, the first ciphertext contains a value from
the set Choices and the third ciphertext encrypts a 0.
(ii) The second ciphertext encrypts a 1, the first ciphertext encrypts a 0 and the
third ciphertext is unrestricted.
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3.3 Tallying Step

The Non-write-in Part. The vector ballots are parsed so that the first com-
ponent is collected and the sequence of ciphertexts C1[1], . . . , C1[n] is formed.
The “tally ciphertext” is defined as Ctally = C1[1]

⊙

. . .
⊙

C1[n]. It is easy to
see that due to the homomorphic property and the capacity assumption, Ctally

is a ciphertext that hides a value T that satisfies T =
∑

i∈V M ℓi (as an integer),
where V ⊆ {1, . . . , n} is the set of voters that did not select the write-in option.
Observe that if k0, . . . , kc−1 are the tallies won by each of the c candidates, it
holds that T = k0 + k1M + . . . + kc−1M

c−1, and k0, . . . , kc−1 < M , i.e., if we
write T as an integer in base M we can obtain the counts for each candidate.

Dealing with the Write-ins — Shrink-and-Mix networks. Write-in bal-
lots are not “compressible” into a single ciphertext like regular ballots and thus
they have to be mixed and revealed one by one. Nevertheless our approach al-
lows for a significant efficiency improvement that we call a Shrink-and-Mix

network. A shrink-and-mix network for voting is a mix-network that attempts
to shrink the input ballot sequence prior to the mix procedure in order to gain
efficiency. (Indeed gaining efficiency in settings where it is possible is crucial,
given the state of the art of Mix networks, see [20]). Shrink-and-mix is a concept
that naturally binds to our approach that combines write-in ballots with regular
homomorphic encryption based e-voting. This is because in our approach the
following unique properties are true:
1. Most voters will not cast a write-in ballot, but rather select one of the prede-
termined choices of the election.
2. There is a way to employ the homomorphic properties of the encryption
function to test whether a small batch of encrypted vector ballots contains a
write-in without violating the privacy of the voters (assuming a given security
perimeter b).
3. There is a way to find the exact number of write-in votes prior to opening
them, without violating the secrecy of the voters (assuming a given security
perimeter b).
Justification. For item 1, observe that in most settings the write-in option will
be used sparingly by the voters who will typically select one of the predeter-
mined candidates for the election. For item 2, recall that in the vector-ballot
approach, each vector ballot 〈C1[i], C2[i], C3[i]〉 contains a “flag-ciphertext” (the
value C2[i]) that encrypts the value 0 or 1 depending on whether the voter
voted with one of the predetermined choices (in C1[i]) or entered a write-in (in
C3[i]). Suppose now that we have a set of voters i1, . . . , ib and we want the
authorities to check whether one of them entered a write-in without violating
the privacy of the voters. Then, simply the authorities collect the flag cipher-
texts from the vector ballots of these voters C2[i1], . . . , C2[ib] and decrypt the
ciphertext Ci1,...,ib

:= C2[i1]
⊙

. . .
⊙

C2[ib]. Now observe that the decryption of
Ci1,...,ib

is the number of write-in votes entered by the voters {i1, . . . , ib} and
thus the authorities are capable of deducing whether there is a write-in entry
among the ciphertexts {C3[i1], . . . , C3[ib]}.
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For item 3, observe that the ciphertext C1,...,n := C2[1]
⊙

. . .
⊙

C2[n] is
an encryption of the number of write-in votes. Thus if the authorities wish to
find efficiently the exact number of write-ins they have to compute C1,...,n and
decrypt it (recall that linear computations in the number of voters constitute
practically optimal complexity for the tallying phase).

Given the above properties we can now describe the shrink-and-mix method
which is divided in two separate stages (perhaps not surprisingly named): (a)
shrink and (b) mix.

Shrink Stage. First we describe the shrink stage in detail below:

Functionality Input: the sequence of all vector-ballots. Let V ⊆ {1, . . . , n} be
the subset of voters that entered a non-write-in ballot and denote by V ′ the set
{1, . . . , n} − V (the subset of voters that entered a write-in).
Output: a set V ∗ such that V ′ ⊆ V ∗ ⊆ {1, . . . , n}.

Initialize. The authorities A1, . . . , Am compute the number of write-ins h
(feasible by item 3 above). Let p denote the probability that an arbitrary voter
enters a write-in defined as p := h/n. Let b be the desired privacy perimeter for
the elections.

Shrink. Let σ := 〈C2[1], . . . , C2[n]〉 be the sequence of the second components
of all ballot vectors and let V ∗ initially defined to {1, . . . , n}. The authorities
divide σ into n/b batches so that each batch contains b ciphertexts. Since the
probability of an arbitrary voter to enter a write-in is p it follows that the
probability that a batch contains no write-in is (1 − p)b. The authorities test
whether each one of the n/b batches contains a write-in or not (as described
in the item 2 above). If the batch of flag-ciphertexts that corresponds to the
voters {i1, . . . , ib} does not contain a write-in we modify V ∗ = V ∗−{i1, . . . , ib}.
Assuming that each batch is independent from the other, it follows that the
expected number of batches without a write-in is n

b
(1− p)b, so the expected size

of V ∗ will be n−n(1− p)b. Observe that the correctness of the shrink stage (i.e.
V ′ ⊆ V ∗ ⊆ {1, . . . , n}) follows easily. The closeness of V ∗ to V ′ can be calibrated
by lowering the parameter b.

Mix Stage. The mix-stage follows.

Functionality Input: A sequence of ciphertexts σ∗ := 〈G[i]〉i=1,...,n∗ , where
n∗ = |V ∗|, V ∗ is the output of shrink and 〈G[1], . . . , G[n∗]〉 = 〈V3[i] | i ∈ V ∗〉.
Output: a sequence of ciphertexts 〈G′[i]〉i=1,...,n∗ so that there is a permutation π
on {1, . . . , n∗} that satisfies G′[i] is a random re-encryption of G[π(i)]. Mix. The
authorities A1, . . . , Am execute a “robust mix” for the sequence of ciphertexts
σ∗ = 〈G[1], . . . , G[n∗]〉. This can be accomplished by employing any existing
robust-mix method, [20, 24, 26, 18]. The most straightforward robust mix tech-
nique has each authority re-encrypting each ciphertext G[i] and permuting the
whole sequence randomly to obtain the sequence 〈G′[1], . . . , G′[n∗]〉 and also

writing a proof for Q
G[1],...,G[n∗],G′[1],...,G′[n∗]
shuffle . Note that authorities perform the

above steps in sequence by acting on the output of the previous authority.

We remark that robust mixes are expensive in terms of computation and
space, for this reason the shrink stage that our model allows can be crucial for
the improvement of the efficiency of the mixing. The shrink ratio for a shrink-
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and-mix network is the expected reduction percentage of the given sequence of
ciphertexts 〈C3[i]〉i∈V ∗ i.e., the fraction (n− |V ∗|)/n. Observe that it holds that
(n − |V ∗|)/n = (1 − p)b and thus the shrink ratio equals is (1 − p)b (employing
average-case analysis). To illustrate the gain we obtain using the shrink-and-mix
network consider the following scenario: in many elections it is reasonable to
expect a write-in probability 1/100, so by setting the privacy perimeter b = 20
(which is reasonable for the privacy of the voters in most settings) we obtain
a shrink ratio of approximately 0.81, which means that 81% of the ciphertexts
will be discarded prior to the execution of the robust mix. This translates to a
significant gain in the efficiency of the mixing procedure.

3.4 Announcement of the results

First the authorities announce the results for the non-write-in part of the election
(in fact, this step can be performed prior to the execution of the shrink-and-mix
network). The authorities A1, . . . , Am execute the protocol D on the ciphertext
Ctally to reveal the the value T . Due to the properties of the value T it holds that
if T , as an integer, is written in base M , then the tallies for each candidate are
revealed (cf. section 3.3); note that due to the capacity assumption there will be
no wrap-arounds during the computation of the tally ciphertext Ctally.

Subsequently the authorities execute the shrink-and-mix network (and fre-
quently this will be done after the winner of the election is already determined
from the non-write-in votes) and then they execute the protocol D for each of
the ciphertexts G∗[1], . . . , G∗[n

∗] that belong to the output of the shrink-and-
mix network. This will reveal all the strings stringi for i ∈ V ∗, where V ∗ is the
output of the shrink stage. Since V ′ ⊆ V ∗ ⊆ {1, . . . , n} all entered write-ins will
be revealed (with, perhaps, a number of 0’s that correspond to the ciphertexts
that were entered by the voters in V ∗ − V ′). When stringi = 0 the entry will be
removed from the write-in vote listing (recall that “0” is not considered a valid
write-in vote). The final elections results consist of the counts for each of the
pre-determined candidates as well as counts for the write-in selections.

3.5 Properties of the Paradigm

Efficiency. First note that our vector-ballot approach can be readily instan-
tiated over the two homomorphic encryption functions (additive ElGamal or
Paillier) that we describe in section 2.
The Voters’ Perspective. The activity of each voter in the vector-ballot approach
includes the following operations: after the setup phase each voter must be au-
thenticated to the bulletin board server. The bulletin board server maintains
the listing with all eligible voters. After authentication, the voter reads from the
bulletin board the public-key of the authorities and all other information that is
pertinent to the election, i.e., the listing of predetermined candidates. The voter
privately decides on one of the predetermined candidates or to a certain write-in
choice and publishes her encrypted ballot which consists of the three ciphertexts
as described in section 3.2. Further she needs to publish the proof of consistent
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ballot-encoding. This is done by writing in the bulletin board the non-interactive
zero-knowledge proof as described in section 3.2. This proof has size linear to
the number of predetermined candidates and can be generated very efficiently
for the two homomorphic encryption schemes that we consider.
The Authorities’ Perspective. The work of the authorities is divided in two sep-
arate stages. (i) Before ballot-casting the authorities execute the Setup stage
of the election that requires them to run the key-generation protocol of the em-
ployed threshold homomorphic encryption scheme. (ii) After the ballot-casting
phase the authorities proceed to the tallying phase. The aggregation of the non-
writein part of voters’ encrypted ballots is a linear operation in the number of
voters that employs the homomorphic property of the underlying encryption
scheme. Observe that this task can be arbitrarily distributed to any number of
entities. Given the aggregated ciphertext the authorities decrypt it by execut-
ing the decryption protocol of the underlying homomorphic encryption scheme;
this reveals the counts for the predetermined candidates. It is highly likely that a
winner of the election can be already determined at this stage. Subsequently, the
authorities execute the shrink-and-mix protocol. This requires the authorities to
execute a robust-mix protocol, but only over the encrypted writein ballots that
remain after the shrinking phase. The shrinking phase by itself is efficient as it
is only linear in the number of encrypted ballots. Subsequently the execution
of the robust-mix is performed in the shrunk writein encrypted ballot sequence
which allows a significant gain as it is argued in section 3.3. Furthermore any
robust mix can be used in a black-box fashion by our shrink-and-mix method;
thus we can take advantage of any sophisticated robust shuffling protocol, e.g.
the schemes of [20, 24, 26, 18].

Comparison to Previous Work. We first observe that the efficiency of our
scheme is comparable to previous approaches in the homomorphic encryption
based election. In fact the only difference is the small constant overhead that
is introduced in the part of the voter since she has to provide a proof of a
consistent ballot encoding. In previous homomorphic encryption based solutions
the “proof of ballot-validity” is also linear in the number of candidates; note that
this cannot be improved further if we use encrypted-ballots coupled with a “1-
out-of-c” non-interactive zero-knowledge proof (which has by definition length
linear in c). Going beyond the homomorphic-encryption approach, our approach
allows the incorporation of writein votes. In this respect, we first observe that
our schemes achieve universal-verifiability, unlike the previous writein approach
based on blind signatures. When compared to the mix-network approach, we
also employ a “robust-mix” but we do so with a significant gain compared to
the previous mix network protocols: indeed since the great majority of the voters
will not cast a write-in vote, our shrink-and-mix approach will achieve a five-fold1

improvement in many typical scenarios. This is a very significant improvement
in any practical implementation.

1 Assuming writein probability of 1/100, see section 3.3.
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Security. Regarding the security properties of our scheme we make the following
claim: The e-voting approach described above satisfies secrecy with b-perimeter,
universal-verifiability, robustness and fairness provided that (i) less than t au-
thorities are malicious, (ii) the underlying homomorphic encryption scheme is
semantically secure, (iii) participants can consult a beacon for the purpose of
generating challenges for the zero-knowledge proofs.
Justification. First we argue about Universal-verifiability: a third party auditor
can verify that all votes have been counted by performing the following three
steps: (i) verifying the non-writein part: the auditor recomputes the tally cipher-
text Ctally from the first portion of every voter’s vector-ballot and verifies that
the authorities decrypted Ctally properly by checking the non-interactive zero-
knowledge proof of decryption; (ii) verifying the shrinking phase: the auditor
recomputes all ciphertexts Ci1,...,ib

that were used in the shrinking stage of the
shrink-and-mix network and verifies their decryption as in (i). (iii) verifying the
robust mix: the auditor checks all mixing proofs given by the shuffling authorities
during the mixing procedure.

Regarding fairness, we observe that no partial sum can be revealed to any
third party due to the semantic-security of the homomorphic encryption function
and the zero-knowledge properties of the proofs of consistent ballot encodings.
Regarding robustness observe that it is guaranteed unconditionally for voters:
any eligible voter may fail without having any impact on the protocol; further-
more, any number of authorities below the threshold t may fail without affecting
the protocol. Note that we do not deal with failures explicitly affecting the bul-
letin board server which is a formalism used in a black-box fashion in all the
cryptographic e-voting literature, [3]. Finally, secrecy with b-perimeter of our
scheme is justified based on the semantic security of the underlying homomor-
phic encryption scheme. More details will be provided in the full version.

4 Punch-Hole / Write-in Ballots

In settings where the number of candidates c and the number of voters n is
large it could be the case that it might be detrimental (in terms of efficiency)
to use any scheme based on the homomorphic encryption approach ([10, 16, 13])
as well as our approach of the previous section. This is because the capacity
assumption (employed by all the above protocols) mandates that the capacity
a of the encryption function satisfies the condition a > nc. Even worse if the
additive ElGamal instantiation is used (as e.g. in the case of the scheme of [10])
the tallying phase would require a brute-force step proportional to nc which is
very expensive. For such cases we introduce an alternative generic vector ballot
design for our e-voting approach that is capable of dealing with such settings
very efficiently. In the variant of our approach of this section, the ballot of each
voter consists of c + 2 ciphertexts (instead of 3) and the only allowed ballot
encodings are the following (i) encrypt a single “1” in the first c ciphertexts and
“0” everywhere else, or (ii) enter a write-in ballot in the last ciphertext, encrypt
a “0” in the first c ciphertexts and encrypt a ”1” in the (c + 1)-th ciphertext
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(which plays the role of the “flag-ciphertext”). The encoding can be thought
of as “punch-hole/write-in” voting because the voter either “punches” a hole
in the first c locations (by voting “1”) or enters his write-in choice in the last
location. In the remaining we briefly explain the approach, mentioning only the
cases where there is significant difference from our paradigm of section 3. More
details will be provided in the full version.

First we note that the capacity assumption will be relaxed as follows:

Relaxed Capacity Assumption. The capacity a of the encryption function
satisfies a > n (the number of voters).

Formation the Vector-Ballot. Each voter Vi publishes a vector ballot 〈C1[i], C2[i],
. . . , Cc+1[i], Cc+2[i]〉. If the voter wishes to select one of the predetermined
choices {1, . . . , c} of the election she selects Cℓi

[i] := Epk(1), where ℓi ∈ {1, . . . , c}
is her choice, and then sets Cℓ[i] := Epk(0) for all ℓ ∈ {1, . . . , c + 2} − {ℓi}. On
the other hand, if the voter wishes to enter a write-in she selects Cc+2[i] :=
Epk(stringi) where stringi is her write-in choice, and sets Cc+1[i] := Epk(1) as well
as Cℓ[i] := Epk(0) for ℓ = 1, . . . , c. Together with her vector ballot the voter
publishes a proof of a consistent vector ballot encoding to ensure that her ballot
is formed properly. More specifically this is done as follows:

(Consistency Argument #1) Vi shows that the first c + 1 locations of her vector
ballot contain only a single 1 among c 0’s; this is accomplished as follows: Vi pub-
lishes a random re-encrypted shuffle of the c+1 ciphertexts C1[i], C2[i], . . . , Cc+1[i]
denoted by 〈C ′

1[i], C
′

2[i], . . . , C
′

c+1[i]〉 and proves its correctness. Then, the voter
opens all ciphertexts C ′

ℓ[i] (by showing their coin-tosses); this allows any third
party to verify that the plaintexts encrypted in C ′

1[i], . . . , C
′

c+1[i] are exactly a
single 1, among c 0’s; due to the zero-knowledge proof this shows that the same
is true about the corresponding ciphertexts in the vector-ballot; note that due
to the zero-knowledge properties of the shuffle this step does not reveal any
information about the location of the 1.

(Consistency Argument #2). The voter shows that either the two last ciphertexts
in the vector ballot encrypt 0, or that the (c+1)-th ciphertext encrypts a 1, i.e.,

Vi writes a proof for the predicate (Q
0,Cc+1[i]
cipher ∧ Q

0,Cc+2[i]
cipher ) ∨ (Q

1,Cc+1[i]
cipher )

It is easy to verify that the above consistency arguments enforce the in-
tended ballot-encodings. In the tallying phase, the vector ballots are parsed so
that the first c components are collected and the c sequences of ciphertexts
Cℓ[1], . . . , Cℓ[n] are formed for ℓ = 1, . . . , c. We define c “tally ciphertexts” as
Cℓ

tally = Cℓ[1]
⊙

. . .
⊙

Cℓ[n]. It is easy to see that due to the homomorphic prop-

erty Cℓ
tally is a ciphertext that hides a integer value Tℓ that equals the number

of votes that were won by the predetermined election candidate ℓ ∈ {1, . . . , c}.
Decrypting these ciphertexts reveals the votes accumulated by each predeter-
mined candidate. Dealing with the write-in part of each vector-ballot is as in the
paradigm of section 3.

Security and Efficiency. The security of the punch-hole/write-in version of
our paradigm can be argued in similar terms as the main paradigm. Regarding
efficiency, the main difference between the punch-hole paradigm and the general
vector-ballot paradigm is that the encrypted ballot contains c + 2 ciphertexts
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instead of 3. While this may sound as a substantial increase in space it is not so:
indeed, the security parameter in the vector-ballot paradigm (as well as in any
homomorphic encryption scheme) must have a linear dependency on c, whereas
the security parameter in the punch-hole approach is independent of c. Thus
the two approaches do not differ (in the asymptotic sense) in terms of space. In
terms of time-efficiency, the punch-hole approach requires more work from the
voter in the proof of the vector-ballot consistency, but it yields a significant gain
from the fact that the security parameter does not have to be proportional to
the number of candidates and that tallying (as described below) can be done
very efficiently over additive ElGamal encryption — in fact, an exponential gain.
Exponential gain for the additive-ElGamal instantiation. Observe that
when the above protocol approach is instantiated with additive ElGamal encryp-
tion the announcement of the results requires c brute-force searches of a space
of size n instead of a brute-force step of a space of size nc−1 as it is the case with
previous ElGamal-based encryption-schemes (e.g. [10]). This emphasizes further
the usefulness of the “punch-hole” approach to increase the efficiency of the sys-
tem. We remark that this significant gain is independent of the addition of the
writein part of the election and in fact it can be also executed in the non-writein
setting of [10].
Acknowledgement. It has been brought to our attention that a scheme related
to the punch-hole approach (without the combination of vector-ballots/ write-in
votes, though) appeared in the Ph.D. Thesis of M. Hirt [23].
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