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Introduction 

 
The chief problems that software engineering will face over at least the next two 

decades are increasing application complexity, and the need for autonomy and serious 
application robustness.  In other words, how do we actually get to declare success 
when trying to build applications one or two orders of magnitude more complex than 
today’s applications? And, having declared success when building, how do we keep 
them from absorbing all our productivity to keep them patched together and running 
with more than just a vague semblance of doing what we want? The sources of 
increasing application complexity are: 
 
1. simple growth in problem size, as a result of success at previous problem sizes 

and increased hardware capacity; 
2. the fact that many applications are now more closely tethered to the real world, 

actively utilizing sensors and actuators, or being required to respond in real-time;  
3. the enmeshed nature of today’s applications – such as enterprise requirements to 

link all the elements of business process where it is useful to do so. 
 
There has always been a significant difficulty with software robustness, for which 

the chief causes were high part counts, insufficient natural constraints, and 
requirements of interpretation of results; all of which make software innately difficult 
to make robust.  In addition to these problems, further causes of insufficient 
robustness in the future will be: 

 
1. The increase in software complexity that we discussed above; 
2. The difficulty in getting modules built by one individual or team to interface with 

others, not quite so organically connected during the development cycle; and 
3. Requirements change - the fact that as we use software, we discover that it can 

“almost” do more than we originally thought, or that we didn’t quite understand 
precisely what we wanted the software for. 

 
These dramatic problems, new at least in scale for the upcoming decades, require 

changes in our approach to software engineering.  The old approaches to these 
problems: object oriented programming, client-server architectures, middleware 
architectures, distributed computation, verification, and exhaustive or statistical 
testing, etc. are all clearly insufficient to the task.  While significant improvements to 



all these technologies are possible and also highly desirable, those improvements 
themselves won’t be sufficient to the task. 

 
We are proposing a collection of novel approaches that are informed by a single 

theme: that software must take active responsibility for its own robustness, and the 
management of its own complexity. 

 
Naturally software can only do this if the software designer is able to program the 

software to take on these meta-tasks, and to supply the program with appropriate meta 
information: designs, alternative computations, goals and world state.  This can only 
be done when we supply the designer with new tools, architectures, and patterns.  
Among these technologies, I want to mention the following four: tolerant software; 
self-adaptive software; physically grounded software and negotiated coordination.   
 

Problems with Software 

 
There are three principal interrelated problems facing the software industry.  These 

are escalating complexity of application functionality, insufficient robustness of 
applications, and the need for autonomy.  These are the problems that must be 
addressed if we are to continue to meet the software challenges of the future.  These 
problems are interrelated because in general, greater robustness is necessary but not 
sufficient to deal with more complex operations, and autonomy generally increases 
complexity, and requires great robustness.  Before considering how best to deal with 
these problems, we first consider how they arise and interrelate. 

 
Lack of inherent limits on software functionality, combined with current successful 

applications, creates a demand for ever increasing software functionality, and without 
significant additional effort, this increased functionality will come with increased 
complexity.  The decreasing cost of computational hardware, as compared to 
mechanical hardware and personnel costs, and the non-recurring nature of software 
development expense, provide economic incentives for software to assume more 
functional burden, and hence more complexity.  Networking and communication 
between processing nodes also increases software complexity. 

 
A second, and significantly more important source of complexity is an increasing 

emphasis on embedded software.  It has been true for some time that 98% of the 
processors produced each year are utilized in embedded applications.  The vast 
majority of those applications use less sophisticated and powerful processors, but use 
of more powerful processors and memory in embedded applications is growing even 
more quickly than that of less powerful processors.  The physical reality of sensors 
and effectors guarantees that there will be cross cutting constraints that complicate 
tasks, violate modularity boundaries, and in general, make software more difficult to 
write, read, and update.  Most microcontrollers have been used in point solutions, 



controlling a single device or sensor.  Networking of controllers, and sharing 
information and coordinating control of complex assemblies of sensors and effectors, 
is happening rapidly today.  For example, today cars mostly use microcontrollers to 
deploy a single airbag, or modulate a single brake.  Tomorrow’s cars will provide 
generalized traction control, using engine, transmission, and breaks and generalized 
accident response, coordinating multiple airbags, engine response, and notification to 
emergency channels.  This type of networked, coordinated control will bring 
significant additional complexity to embedded applications. 

 
It is also the number, breadth and pervasiveness of embedded applications that 

drive the requirement of autonomy.  As embedded applications deal with both more 
data, and more data sources, it becomes more difficult to count on human beings to 
directly manage systems.  Even in situations where a human being will exercise 
significant control, it is essential for the embedded system to be capable of 
autonomous operation, in order for it to have sufficient capability of informing, 
supporting and guiding the human controller. 

 
In assessing the degree of functional complexity, physically embedding, and 

autonomy we are likely to see in the near future, let’s consider the emerging 
computational infrastructure in general.  We will see variations of several orders of 
magnitude in communication bandwidth, further chaotic, emergent and unreliable 
behavior from networks, huge numbers, great heterogeneity and unreliability of host 
nodes, no possibility of centralized control, and serious concerns about deliberate 
attempts to compromise systems.  Data sets and work loads can be expected to be 
extremely dynamic, and control functions will also be dynamic and situation 
dependent.  We can also expect weak theories of system behavior, for perception and 
sensing in particular, and weak knowledge about the degree of trust we can have in 
operability and intentions of system components – hardware and software. 

 
In the area of robustness, there is a significant irony.  We mentioned above that the 

malleability and unlimited quality of software contribute to software taking on more 
of the functional burden in systems.  Despite the enormous malleability of software 
itself, software applications are incredibly brittle.  They tend to work only in a narrow 
domain of utilization, and exclusively in a predetermined subset of that domain.  
Outside the intended use of its creators, software applications fail miserably.  They 
also evidence lack of robustness over time.  As functional and performance changes 
are required, software applications are difficult to maintain, difficult to pass from one 
programming team to another, and difficult to update, preserving correctness, 
performance, and maintainability.  

 
The inherent complexity of software systems makes testing and proving 

correctness each suffer from combinatorial overload.  Imagine the complexity of an 
automobile engine, if we built it atom by atom.  Our “character set” would consist of 
a subset of the elements, and the number of possible combinations would be 
staggeringly huge.  Despite larger numbers of such character-atoms, there is 
considerably less freedom in combining the mechanical atoms, than in combining 
characters into programs.  The complexity induced conceptual overload means that 



testing and verification are even more limited than the domain of applicability, and 
increasing that domain exacerbates the testing and verification problems.  In a sense, 
we are deliberately reducing robustness, in the form of ability to accommodate a wide 
range of domain conditions, in order to make the program more understandable.  
However, what we chiefly understand about such programs is that they are brittle and 
fragile. 

 

Are current methods enough? 

 
One might, however, stipulate that everything discussed above is true, but that 

current methods and technology of software development will continue to be adequate 
to the tasks ahead.  We make the strong claim that this is not so.  Instead we believe 
that two features create, exacerbate and interrelate the problems mentioned above: 
meeting the needs of embedded systems, and software development technology that 
provides insufficient support for modifiability of software applications.  Further, the 
lack in current development technology to support both highly modifiable and 
physically grounded software systems, will ensure that the challenges indicated above 
will not be met by current technology.  Physical interactions of embedded systems 
violate functional modularity, and hence make systems more complex, less robust, 
and more difficult to operate autonomously.  Systems that are built using tools that are 
oriented to building things once, and right, make it difficult to add complex 
functionality incrementally, which in turn makes it difficult to build in sufficient 
robustness and autonomy. 

 
To see why this is so, first consider how we currently manage complexity. The 

chief tool we have for dealing with computational complexity is an abstraction 
mechanism: functional decomposition.  Functional decomposition includes breaking 
problems down into functional components, recursively.  These components can be 
individually programmed, and then combined in relatively simple ways.  The 
principle that makes functional decomposition generally work is that we can limit the 
complexity of interactions among functional units.   

 
For non-embedded applications, it is relatively easy to limit interaction complexity 

to clean interfaces between functional modules.  Even these non-embedded 
applications have real world context that adds interaction complexity, such as 
deadlines, and resource scarcity, such as memory, processors, communication 
bandwidth, OS process time slots, and other similar resources.  We typically handle 
these issues via Operating System policies of sharing, priority and fairness, and by 
depending on the programmer to build in sufficient capacity. 

 
With embedded applications, it is impossible to prevent pervasive intrusion of real 

world concerns. This intrusion increases complexity and results in tighter constraints 
on the computational resources, which we deal with by using explicit resource 



control, or using special real-time capable Operating Systems.  In highly connected 
and decentralized embedded systems, higher level general resource managers may not 
always be a workable option.  Even when there is some approach to dealing with 
resource allocation issues, the remaining interaction constraints are still the individual 
responsibility of the programmer, adding to his conceptual burden.  Therefore, the 
cleanliness and value of functional decomposition is dramatically reduced.   Also, 
resource conflicts are a chief source of interaction complexity themselves, which 
necessarily violates modularity based principally on functional decomposition.  Since 
we generally handle resource management implicitly, we don’t replace the violated 
functional modularity with any other form of modularity.   

 
Even worse than the modularity violations, the implicit management of resources is 

handled statically, rather than dynamically. It is clearly advantageous to late bind the 
decisions about resource management and conflict resolution, since the exact nature 
of these conflicts is highly context dependent.  In order to late bind resource conflict 
resolution policy implementations, we must explicitly represent and reason about such 
resource management issues. 

 
There are some excellent evolutionary programming methodologies, that make it 

relatively easy to modify software over time.  We might speculate that if we simply 
shifted to more use of those technologies, we could converge to sufficiently robust 
applications.  However we modify our software, returning the software/system to the 
shop to redesign, reimplement and retest involves a very large response time delay.  
That delay is often critical, and in general it means that we run software “open loop”.  
Of course, it is much more desirable to run software “closed loop”, in which 
evaluation and adjustment happens in real time.   

 
Software is the most malleable part of most systems that we build, but the software 

applications themselves, once built, are remarkably rigid and fragile. They only work 
for the set of originally envisioned cases, which is often only a proper subset of the 
cases we need to have the software handle. Traditional approaches to enhancing the 
robustness of software have depended on making all the abstractions (requirements, 
specifications, designs, and interfaces) more mathematically precise. Given such 
precision we could attempt to prove assertions about the attributes of the resulting 
artifacts. Then, whether precisely specified or not, the software systems would be 
extensively tested. For complex software artifacts, operating in complex 
environments, extensive testing is never exhaustive, leaving room for failure, and 
even catastrophic failure. Also, often, the precision of specification works against 
producing systems that reliably provide service which good enough, delivered soon 
enough. However, there is significant distinction between engineered tolerance and 
simple sloppiness. Much software is today is built on the assumption that software 
will have bugs and that systems will simply crash for that reason.  The further 
assumption is that regardless of how much testing is done “in the factory”, the bulk of 
the “testing” will happen while the software is in service, and all repairs will happen 
“in the shop”. We mean something very different by software tolerance. 



A New Approach to Software 

 
We have claimed that problems with future software development efforts center 

around handling increased functional complexity, providing substantially increased 
robustness, and providing autonomy.   These problems are all exacerbated by 
increasing emphasis on embedded systems, and by a “do it once, right” engineering 
approach.  What we are proposing is a radically new form of abstraction, that we call 
Active Software.  The overarching themes of the Active Software approach are that 
software must take active responsibility for its own robustness, and the management 
of its own complexity; and that to do so, software must incorporate representations 
of its goals, methods, alternatives, and environment. 

 
Research can provide us with software systems are active in several senses. They 

will be composed of modules that are nomadic, going where network connectivity 
permits. They will be able to register their capabilities, announce their needs for 
additional, perhaps temporary capability, evaluate their own progress, and find and 
install improvements and corrections as needed and as available anywhere in the 
network. They will manage their interfaces with other modules, by negotiation and by 
implementing flexible interfaces.  Thus active software is nomadic, self-regulating, 
self-correcting, and self aware. In order to accomplish these purposes, the underlying 
environments and system software must support these capabilities. 

 
We do not as yet have a clear and unambiguous understanding of this new 

approach.  What we do have is a collection of technologies that can be viewed as 
component technologies under Active Software.  By discussing and comparing the 
component technologies, we will attempt to get a clearer picture of the Active 
Software concept.  In fact, the concept of Active Software derives from some 
common aspects of the component technologies. 

 
The component technologies are self adaptive software, negotiated coordination, 

tolerant software and physically grounded software.  Self adaptive software evaluates 
its behavior and environment against its goals, and revises behavior in response to the 
evaluation.  Negotiated coordination is the coordination of independent software 
entities via mutual rational agreement on exchange conditions.  Tolerant software is 
software that can accommodate any alternatives within a given region.  Physically 
grounded software is software that takes explicit account of spatio-temporal 
coordinates and other physical factors in the context of embedded systems. 

 
The four listed technologies are not a partition of the concept of Active Software.  

It would probably be useful to have a partition of the concept, but the current four 
components are certainly not exclusive, and they are probably not exhaustive either.  
For example, negotiation of interfaces can provide tolerant interfaces, but there are 
certainly other ways to get tolerance.  Also, physically grounded software is necessary 
for self adaptive embedded systems, but physically grounded software need not be 
self adaptive.  Neither is active software the only new approach to building software 



able to address the challenges we have discussed.  Aspect oriented programming is an 
extremely interesting alternative, and complementary approach [7].  

 

Self Adaptive Software 

Software design consists in large part in analyzing the cases the software will be 
presented with, and ensuring that requirements are met for those cases.  It is always 
difficult to get good coverage of cases, and impossible to assure that coverage is 
complete.  If program behaviors are determined in advance, the exact runtime inputs 
and conditions are not used in deciding what the software will do.  The state of the art 
in software development is to adapt to new conditions via off-line maintenance. The 
required human intervention delays change.  The premise of self adaptive software is 
that the need for change should be detected, and the required change effected, while 
the program is running (at run-time). 

 
The goal of self adaptive software is the creation of technology to enable programs 

to understand, monitor and modify themselves. Self adaptive software understands: 
what it does; how it does it; how to evaluate its own performance; and thus how to 
respond to changing conditions. We believe that self adaptive software will identify, 
promote and evaluate new models of code design and run-time support.  These new 
models will allow software to modify its own behavior in order to adapt, at runtime, 
when exact conditions and inputs are known, to discovered changes in requirements, 
inputs, and internal and external conditions. 

 
A definition of self adaptive software was provided in a DARPA Broad Agency 

Announcement on Self-adaptive Software [2]: 
 

Self-adaptive software evaluates its own behavior and changes behavior 
when the evaluation indicates that it is not accomplishing what the software 
is intended to do, or when better functionality or performance is possible. 

 
…This implies that the software has multiple ways of accomplishing its 

purpose, and has enough knowledge of its construction to make effective 
changes at runtime. Such software should include functionality for 
evaluating its behavior and performance, as well as the ability to replan and 
reconfigure its operations in order to improve its operation.  Self adaptive 
software should also include a set of components for each major function, 
along with descriptions of the components, so that components of systems 
can be selected and scheduled at runtime, in response to the evaluators.  It 
also requires the ability to impedance match input/output of sequenced 
components, and the ability to generate some of this code from 
specifications. In addition, DARPA seek this new basis of adaptation to be 
applied at runtime, as opposed to development/design time, or as a 
maintenance activity. 

 



 
Self adaptive software constantly evaluates its own performance, and when that 

performance is below criteria, changes its behavior.  To accomplish this, the runtime 
code includes the following things not currently included in shipped software: 

 
1. descriptions of software intentions (i.e. goals and designs) and of program 

structure; 
2. a collection of alternative implementations and algorithms (sometimes called a 

reuse asset base). 
 
Three metaphors have been useful to early researchers on self adaptive software: 

coding an application as a dynamic planning system, or coding an application as a 
control system, or coding a self aware system, [9].  The first two are operational 
metaphors, and the third deals with the information content and operational data of 
the program. 

 
In programming as planning, the application doesn’t simply execute specific 

algorithms, but instead plans its actions.  That plan is available for inspection, 
evaluation, and modification.  Replanning occurs at runtime in response to a negative 
evaluation of the effectiveness of the plan, or its execution.  The plan treats 
computational resources such as hardware, communication capacity, and code objects 
(components) as resources that the plan can schedule and configure.  See [1], [6], 
[11], and [16]. 

 
In program as control system, the runtime software behaves like a factory, with 

inputs and outputs, and a monitoring and control unit that manages the factory.  
Evaluation, measurement and control systems are layered on top of the application, 
and manage reconfiguration of the system.  Explicit models of the operation, purpose 
and structure of the application regulate the system’s behavior.  This approach is more 
complex than most control systems, because the effects of small changes are highly 
variable, and because complex filtering and diagnosis of results is required, before 
they can serve as feedback or feed-forward mechanisms.  Despite the difficulties of 
applying control theory to such highly non-linear systems, there are valuable insights 
to be drawn from control theory, and also hybrid control theory, including for 
example the concept of stability.  See [6], [8], and [13]. 

 
The key factor in a self aware program is having a self-modeling approach.  

Evaluation, revision and reconfiguration are driven by models of the operation of the 
software that are themselves contained in the running software.  Essentially, the 
applications are built to contain knowledge of their operation, and they use that 
knowledge to evaluate performance, to reconfigure and to adapt to changing 
circumstances (see [9], [17], and [14]).   The representation and meta-operation issues 
make this approach to software engineering also intriguing as an approach to creation 
of artificial intelligence. 

Problems, Future Issues: 
 



The hardest and most important problem for self adaptive software is evaluation. 
There is great variability in the ease with which evaluation can be accomplished.  The 
hardest case, where we have an analytic problem without ground truth available, may 
require us to use probabilistic reasoning to evaluate performance at runtime. There is 
still much work to be done in determining what classes of application require what 
forms of evaluation, which tools will provide better evaluation capability, and to what 
extent such tools will need to be specific to particular application domains. 

 
Because self-adaptive software is software that adapts and reconfigures at runtime., 

there are crucial issues of dynamism and software architecture representation to be 
addressed in building development tools.  Any piece of software that is revised on the 
basis of problems found in the field can be thought of as adaptive, but with human 
intervention and very high latency.  Thus, we can think of these problems as generally 
when and how we implement the functions of evaluating program performance, 
diagnosing program problems and opportunities, revising the program in response to 
problems/opportunities, and assuring that desirable program properties are preserved, 
and who implements these functions. The single large step of changing the binding 
time for these functions can provide a tremendous amount of help with these 
problems. If we evaluate and diagnose performance immediately, at run time, and if 
further we can revise the program in response to diagnostics, then we can build a 
significantly adaptive functionality.  In such a system, immediate evaluation, 
diagnosis and repair can play an enormous role in testing behavior and assuring the 
preservation of desirable features.  It is much easier to introduce this kind of late 
binding in dynamic languages and environments that already support significant late 
binding.  Similar concerns relate to explicit rendering of software structure or 
architecture:  reconfiguration causes one to pay close attention to modularity, and to 
the unit of code that is considered configurable or replaceable. However, current 
dynamic languages aren’t sufficient to the task, without the following improvements: 

 
1. More introspective languages, and better understanding of how to use 

introspection; 
2. Improving the debug-ability of embedded, very high level, domain specific 

languages; 
3. Better process description – including better event handling and description, and 

explicit consideration of real time; 
4. Better structural descriptions – inclusion of architecture description languages in 

programming languages (see [3], [4], [10], [11], and [12]. 
 
 
We will also have problems with runtime performance. It takes time to evaluate 

outcomes of computations and determine if expectations are being met.  Most often, 
expectations will be met, and checking seems like pure overhead in those cases.  On 
the other hand, comprehensively evaluating what algorithms and implementations 
will be used is an advantage if it means that we can select the optimal or near optimal 
algorithm for the input and state context we have at runtime, rather than a preselected 
design time compromise.  Additionally, hardware performance keeps increasing, but 
perceived software robustness does not.  Even so, effort will need to go into finding 



ways to optimize evaluation cycles, and develop hierarchical systems with escalating 
amounts of evaluation as needed for a particular problem. 

 
Performance is also a problem at software creation time.  The kind of programming 

that delivers code able to evaluate and reconfigure itself is difficult to build by hand. 
We would therefore prefer automated code generation technology.  Specifically, we 
like approaches that generate evaluators from specifications of program requirements 
and detailed designs. 

 
Advances in computer hardware provide challenging opportunities. Self adaptive 

software runtime support also exploits opportunities identified by evaluators and 
replanning operations to restore/improve functionality or performance.  It is clear that 
reconfigurable software could provide a useful top level application programming 
level for reconfigurable hardware.  In such a system, the hardware configuration 
would simply be another resource to be scheduled and planned.  Another opportunity 
lies in helping to address the increasing mismatch between processor speed and 
memory access speeds.  One of the approaches being taken is to move portions of 
processing out to memory modules, to reduce the requirement to move all data to 
main microprocessor.  Self adaptive and reconfigurable software can play a role in 
dynamically determining the distribution of components in such highly parallel 
architectures. 

 

Negotiation 

 
One of the ancillary problems to be addressed in any software system, (and the 

primary problem of some systems), is resource allocation and resolution of resource 
contention.  The principal tool humans use for these problems is negotiation, and 
active software aims at the same goal.  The advantages of negotiation are that it is 
inherently distributed, inherently multi-dimensional, and robust against changes in 
circumstances.  Although centralized, one dimensional (e.g. price) negotiation is 
possible, it is neither necessary nor natural.  Negotiated settlements need not 
themselves be robust against changed circumstances, but then the answer is to simply 
renegotiate, so no special exception handling is required. 

 
Commercial business processes, logistics systems, and DoD weapon and C3 

systems, all have hierarchical control, gatekeeping barriers, and incur delays based on 
unnecessary human interaction. The hierarchical control induces a command fan-out 
and data fan-in problem that seriously limits the ability of such systems to scale with 
the problems they are designed to solve.  In many cases we improve our ability to 
manage such systems by distributing computing resources, but without making the 
crucial application changes needed to make these applications genuinely distributed in 
nature.  Organization with compartmented groups inhibits the flow of information and 
commands needed to rapidly respond to crises and an adversary’s moves.  In addition, 



passing data and commands across these organizational barriers includes further delay 
as items are added to input queues of human action processors.  

 
Logistics provides paradigm examples of systems that cannot afford centralized 

control and decision making, nor afford artificial limits on scalability. Weapon 
systems that must respond to attacks automatically, such as Aegis or Electronic 
Countermeasures (ECM), are extreme examples that add a requirement of hard real-
time response. What is needed are locally competent and efficient mechanisms for 
assessing situations and taking actions, which percolate information and intelligence 
up to higher levels, I.e. a bottom-up approach to system operation.  The bottom-up 
approach emphasizes peer-to-peer communication, and negotiation as a technique for 
resolving ambiguities and conflicts.  This entails a fundamentally new approach to 
how we build the complex systems of the future, (see [21]). 

 
The new approach promises multiple benefits: 

• Near linear scalable systems 
• Highly modular, recombinant systems with distributed problem solving 
• Removal of middle-man organizations in logistics and planning 

 
The goal of Negotiation Software Agents (NSA) is to autonomously negotiate the 

assignment and customization of dynamic resources to dynamic tasks.  To do this we 
must enable designers to build systems that operate effectively in highly decentralized 
environments, making maximum use of local information, providing solutions that are 
both good enough, and soon enough.  These systems will have components that 
communicate effectively with local peers, and also with information and command 
concentrators at higher levels of situation abstraction.  They will explicitly represent 
goals, values, and assessments of likelihood and assurance, and reason about those 
quantities and qualities in order to accomplish their task.   

 
Negotiation systems will scale to much larger problem sizes by making maximum 

use of localized, rather than global information, and by explicitly making decision 
theoretic trade-offs with explicit time-bounds on calculation of actions. This new 
technology will enable us to build systems that are designed to utilize, at the 
application level, all the distributed, networked computational resources (hardware, 
operating systems, and communication) that have been developed over the past two 
decades.  These advantages will be especially effective in cooperative action, since 
the process of matching tasks and resources is naturally decentralized in the NSA 
approach. 

 
The first NSA task is development of the basic framework for bottom-up 

organization.  This includes three subtasks, the first of which is discovery of peer 
NSAs, and their capabilities, tasks and roles. Second, NSAs must be able to determine 
how to get access to data, information and authorizations, and they must have secure 
authorization procedures.  Finally, there must also be processes for coordination and 
information sharing at levels above the peer NSAs. 
 



 The second NSA task is reasoning based negotiation.  Its subtasks are: handling 
alternatives, tradeoffs, and uncertainty, including noting when new circumstances 
conflict with current plans; enabling speedy, optimized and time-bounded reasoning 
processes to allow for real-time response; and procedures for assuring that goals are 
met.   

 
A promising approach to reasoning under uncertainty is to use explicit decision 

theoretic methods, and develop heuristics and approximate decision theoretic 
approaches.  Use of market based trading ([18], [19] and [20]), and qualitative 
probabilities are alternative approximate approaches.  Satisficing and anytime 
algorithms will also be useful. 

 

Tolerant Software and Interfaces 

 
 
As an alternative to the approach of increasing precision to make applications 

“bullet-proof”, we envision that reliability will result from an ability to tolerate non-
critical variations from nominal specification. The concept of software tolerance 
derives from a consideration of the concept of mechanically interchangeable parts, 
and the role they played in the industrial revolution. In order for parts to be 
interchangeable (and hence significantly speedup the assembly of mechanical 
devices) there had to be a match between the ability to produce similar parts, and the 
ability of the overall design to accommodate whatever differences remained among 
the similar parts. Software systems today have highly intolerant designs, requiring 
components that exactly match rigid requirements. While this mechanical view of 
tolerance is useful, and has a direct analog in the area of component technology and 
software reuse, there are other significant aspects to tolerance. For example, we often 
don’t need mathematically exact answers to questions for which such answers are 
possible. We often don’t need exhaustive searches when those are conceptually 
possible but impractical. Tolerance involves a critical examination of acceptable 
variation, and engineering methods and technology in support of building systems 
with appropriate tolerance.  

 
Tolerant software covers three related concepts: 
 
1. Applications that don’t have to be 100% correct – these include algorithms 

that are inherently probabilistic, applications where the answer is always 
checked by humans, queries that are inherently inexact (e.g. “Show me a 
selection of restaurants in Oxford.”) 

2. Lower level software that is checked by higher level applications and system 
software – examples are disk controllers, memory subsystems, UDP network 
protocol (checked by TCP layer or application software).  



3. Analogy of mechanical tolerance, and interchangeable parts – this in particular 
includes software interfaces, word processor input formats, and middleware 
(RPC,RMI,CORBA [15]) information exchange, for example. 

 
Other examples include:  
• a web search engine, in which 24 by 7 availability is more important than 

being able to access the full database on every query;  
• mailer software advertising a conference, or new product - not every potential 

recipient needs to receive it;  
• object oriented programming systems, which often have highly specific code 

dispatched for arguments of specific types, and a more general (and less 
optimal) code for dealing with the remainder of cases.  

Tolerant interfaces 
 
We said the concept of interface tolerance derives from a consideration of the 

concept of mechanically interchangeable parts, and the role they played in the 
industrial revolution. The place where this analogy comes closest in software systems 
is in the interfaces between software modules or components, which play the role of 
mechanical parts.  Unlike the case of mechanical tolerances, based on standards and 
static design principles, tolerant interfaces are active interfaces. Tolerant interfaces 
know how they interface with other modules, know or can find out how other 
modules handle their own side of interfacing, and can modify their own interface 
behavior to meet the requirements of interfacing with other modules.   Thus tolerant 
interfaces can actively modify their interface behavior to meet interface requirements.  
They may also need to be able to negotiate interface responsibilities with other 
modules, in much the same way that modems today negotiate over the protocol they 
will use during data communication. 

 
Clearly, to have these capabilities, the code will need to contain and operate on 

explicit descriptions of intent, specifications, design, program structure and mapping 
of tasks to functions.  Also, the code will need to contain a large number of alternative 
interface implementations, or have access to such alternatives over network 
connections. 

 
Another important concept for tolerant interfaces is that of wrapped data (objects, 

agents or smart data).  Consider, for example, self-extracting compressed archives of 
programs.  The file contains the software needed to decompress, and install the 
program at your site.  Even now such installation programs accept some parameters 
from the user, but more could be done in this regard.  This type of approach is useful 
in situations where you have data exchange where provider and consumer share 
responsibility or capability to operate on the data. 

 
Imagine a sensor-actuator application, in which image data is gathered by a sensor, 

and delivered to a consumer that controls actuators.  The sensor module sends data 
wrapped/prefixed with code for interpretation of the data.  The consumer needs to 
change some operators or filters, in the context of the sensor’s interpretation code.  



The sensor and consumer code cooperatively arrange interfaces and a configuration 
suitable for the appropriate sharing of processing tasks and algorithms. 

 
Tolerant software requires research on: 
• Automated analysis and implementation of interface requirements 
• data wrapping/prefixing 
• calculation and mitigation of risks and consequences of software breakdown 
• assurance/validity checking for tolerant combinations 
• performance optimization 

 
We mentioned earlier that the relationships of these components of active software 

are not simple.  Negotiation technology can clearly be used to help build active 
tolerant interfaces, and tolerant interfaces are necessary for self adaptive software. 

 

Physically grounded software 

The most challenging software to write, debug, and maintain is software for 
embedded systems. Traditionally, we produce such software by writing relatively low 
level code, and counting cycles and memory usage in order to ensure real time 
requirements.  Behavioral assurance is very hard to obtain, requiring combinations of 
difficult verification technology and exhausting (but not exhaustive) testing.  This 
approach to embedded software will not continue to work as systems get more 
complex, more connected and require more functionality.  In place of traditional 
approaches, we are advocating Physically Grounded Software (PGS).  PGS is 
software that is thoroughly model based.  It incorporates models of its environment, 
of its operational theory, of its behavior and of crucial physical quantities, including 
time, space, information and computational requirements.  Those models will drive 
the design of systems, generation of code, refinement and maintenance of systems, 
and evaluation of behavior and behavioral guarantees.  

 
We argue that computational power for embedded systems is becoming abundant. 

We should use this power to ease the design problem of embedded systems.  This will 
require development of model driven simulations, for both design and runtime, 
development of language support for computations about time, space and other 
physical quantities, and special support for composition of such modules with 
behavioral guarantees, which we are calling a framework. 

 
The age of shoehorning complex embedded systems into feeble processors is 

coming to an end. In avionics, for example, today's embedded software systems are 
the glue which integrate the entire platform, presenting high level situation awareness 
to the pilot. But since these systems must evolve constantly; our traditional 
approaches of entangling concerns in order to meet space and time constraints has led 
to unmaintainable software systems which are inconsistent with the goal of evolution. 
 



Embedded systems that attempt to use software to integrate collections of systems, 
such as integrated avionics, require a model-based approach to be comprehensible, 
maintainable and evolvable.   Model based approaches must further tie together 
standard operational control and failure recovery via models that relate layered 
systems dealing with behavior at different levels of generality and abstraction.  In 
particular, an overall mission oriented model, with goals and plans is required to 
generate recovery actions.  Subgoals and subtasks must recurse through the layers of 
the embedded systems to assist in tying the relevant behavior models together. 

 
PGS is a prerequisite for successful autonomous systems.  The goals of 

autonomous systems are reliable, safe, and cooperative operation of free-ranging 
systems in the world.  There are numerous examples of autonomous systems: agent-
based software that ranges over cyberspace performing information services including 
retrieval and delivery of information [5]; autonomous air, land, or sea vehicles; 
autonomous mobile robots in physical proximity to humans; automated plants and 
factories; and automated maintenance and repair systems. Such systems need to 
cooperate with each other and with humans. 

 
Autonomous systems must also be reliable and robust enough to serve in real 

world, changing environments. A gross metric for the safety and reliability of such 
systems is that they be safe and reliable enough to actually be deployed and used 
where unsafe, unreliable operation would cause physical or economic harm. 
Reliability implies an element of goal driven operation, which requires the ability to 
dynamically structure and utilize resources to achieve a desired external state change, 
and the ability to handle uncertainty, and unpredicted situations.  Robustness means 
that a desired behavior or functionality is maintained under changing external and 
internal conditions.  Reliability and robustness assumes dynamic internal 
organization, integrated self-monitoring, diagnostics and control, and fully integrated 
design of the physical processes and information processing that forms the 
autonomous system. An increasingly important requirement for autonomous systems 
is cooperation. Cooperation is an ability to participate in the dynamic distribution of 
goals (and tasks) and in the coordinated execution of required behaviors. 

 
Embedded software should be developed against the backdrop of model based 

frameworks, each tailored to a single (or a small set of) issues. A framework, as we 
use the term, includes: 

 
• a set of properties with which the framework is concerned,  
• a formal ontology of the domain,  
• an axiomatization of the core domain theory,  
• analytic (and/or proof) techniques tailored to these properties and their domain 

theory,  
• a runtime infrastructure providing a rich set of services, and  
• an embedded language for describing how a specific application couples into 

the framework. 
   
A framework thus reifies a model in code, API, and in the constraints and 



guarantees the model provides.  Frameworks should be developed with a principled 
relation to the underlying model, and preferably generated from a specification of 
the model.  The specification of the model should be expressed in terms of an 
embedded language that captures the terms and concepts used by application 
domain experts. 
 
The ontology of each framework constitutes a component of a semantically rich 

meta-language in which to state annotations of the program (e.g. declarations, 
assertions, requirements). Such annotations inform program analysis. They also 
facilitate the writing of high level generators which produce the actual wrapper 
methods constituting the code of a particular aspect.  

 
Corresponding to each framework are analytic (or proof) tools that can be used to 

examine the code which couples to this framework. Each such analytic framework 
can show that a set of properties in its area of concern is guaranteed to hold as long as 
the remaining code satisfies a set of constraints. The analysis of the overall behavior 
of the system is, therefore, decomposed.  

 

References  

[1] I. Ben-Shaul, A. Cohen, O. Holder, and B. Lavva, ``HADAS: A network-centric 
system for interoperability programming,'' International Journal of Cooperative 
Information Systems (IJCIS),vol. 6, no. 3&4, pp. 293--314, 1997. 
[2] ``Self adaptive software,'' December, 1997. DARPA, BAA 98-12, Proposer 
Information Pamphlet, www.darpa.mil/ito/Solicitations/ PIP_9812.html.  
[3]Garlan, David & Shaw, Mary. "An Introduction to Software Architecture," 1-39. 
Advances in Software Engineering and Knowledge Engineering Volume 2. New 
York, NY: World Scientific Press, 1993.   
[4]Garlan, D.; Allen, R.; & Ockerbloom, J. "Exploiting Style in Architectural Design 
Environments." SIGSOFT Software Engineering Notes 19, 5 (December 1994): 175-
188.  
[5]Jennings, K. Sycara, and M. Wooldridge A Roadmap of Agent Research and 
Development.  In Autonomous Agents and Multi-Agent Systems, Vol. 1, No. 1, July, 
1998, pp. 7 - 38. 
[6] G. Karsai and J. Sztipanovits. A model-based approch to self-adaptive software. 
IEEE Intelligent Systems,May/June 1999:46{53,1999. 
[7]Kiczales G., Lamping J., Mendhekar A. et al. Aspect-Oriented Programming. In 
proc. European Conference on Object-Oriented Programming, Finland, 1997.  
[8] M. M. Kokar, K. Baclawski, and Y. Eracar. Control theory-based foundations of 
self-controlling software . IEEE Intelligent Systems,May/June 1999:37{45,1999.  
[9] R. Laddaga. Creating robust software through self-adaptation. IEEE Intelligent 
Systems, May/June 1999:26{29,1999.  



[10]Luckham, David C., et al. "Specification and Analysis of System Architecture 
Using Rapide." IEEE Transactions on Software Engineering 21, 6 (April 1995): 336-
355. 
[11] Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf. 
An Architecture-Based Approach to Self-Adaptive Software. IEEE Intelligent 
Systems and Their Applications, vol. 14, no. 3, pp. 54-62 (May/June 1999).  
[12]Nenad Medvidovic and Richard N. Taylor. Exploiting Architectural Style to 
Develop a Family of Applications. IEE Proceedings Software Engineering, vol. 144, 
no. 5-6, pp. 237-248 (October-December 1997). 
[13] D. J. Musliner, R. P.Goldman,M.J.Pelican, and K. D. Krebsbach, ``Self-Adaptive 
Software for Hard Real-Time Environments,'' IEEE Intelligent Systems,vol. 14, no. 4, 
pp. 23--29, July/August 1999. 
[14] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi: "Metamodeling - Rapid 
Design and Evolution of Domain-Specific Modeling Environments", Proceedings of 
the IEEE Conference and Workshop on Engineering of Computer Based Systems, 
April, 1999. 
[15] Object Management Group, The Common Object Request Broker: Architecture 
and Specification. Revision 2.2,February 1998. Available at: 
http://www.omg.org/corba/corbaiiop.html. 
[16] P. Robertson and J. M. Brady. Adaptive image analysis for aerial surveillance. 
IEEE Intelligent Systems,May/June 1999:30{36,1999. 
[17] J. Sztipanovits, G. Karsai: "Model-Integrated Computing", IEEE Computer, 
April, 1997 
[18] CA Waldspurger, T Hogg, B Huberman, JO Kephart, and WS Stornetta: Spawn: 
A Distributed Computational Economy.  IEEE Transactions on Software Engineering 
18:103-117.  
[19]Wellman, M: “Market-oriented programming: Some early lessons.” In Market-
Based Control: A Paradigm for Distributed Resource Allocation (S Clearwater, ed.). 
World Scientific, 1996. 
[20] Wellman, M:  A market-oriented programming environment and its application 
to distributed multicommodity flow problems. Journal of Artificial Intelligence 
Research, 1:1-23, 1993. 
[21] ``Autonomous Negotiating Teams,'' October, 1998. DARPA, BAA 99-05, 
Proposer Information Pamphlet, www.darpa.mil/ito/Solicitations/ PIP_9905.html. 

 
 
 


