

Active Software

Robert Laddaga

MIT AI Lab

Introduction

The chief problems that software engineering will face over at least the next two

decades are increasing application complexity, and the need for autonomy and serious
application robustness. In other words, how do we actually get to declare success
when trying to build applications one or two orders of magnitude more complex than
today’s applications? And, having declared success when building, how do we keep
them from absorbing all our productivity to keep them patched together and running
with more than just a vague semblance of doing what we want? The sources of
increasing application complexity are:

1. simple growth in problem size, as a result of success at previous problem sizes

and increased hardware capacity;
2. the fact that many applications are now more closely tethered to the real world,

actively utilizing sensors and actuators, or being required to respond in real-time;
3. the enmeshed nature of today’s applications – such as enterprise requirements to

link all the elements of business process where it is useful to do so.

There has always been a significant difficulty with software robustness, for which

the chief causes were high part counts, insufficient natural constraints, and
requirements of interpretation of results; all of which make software innately difficult
to make robust. In addition to these problems, further causes of insufficient
robustness in the future will be:

1. The increase in software complexity that we discussed above;
2. The difficulty in getting modules built by one individual or team to interface with

others, not quite so organically connected during the development cycle; and
3. Requirements change - the fact that as we use software, we discover that it can

“almost” do more than we originally thought, or that we didn’t quite understand
precisely what we wanted the software for.

These dramatic problems, new at least in scale for the upcoming decades, require

changes in our approach to software engineering. The old approaches to these
problems: object oriented programming, client-server architectures, middleware
architectures, distributed computation, verification, and exhaustive or statistical
testing, etc. are all clearly insufficient to the task. While significant improvements to

all these technologies are possible and also highly desirable, those improvements
themselves won’t be sufficient to the task.

We are proposing a collection of novel approaches that are informed by a single

theme: that software must take active responsibility for its own robustness, and the
management of its own complexity.

Naturally software can only do this if the software designer is able to program the

software to take on these meta-tasks, and to supply the program with appropriate meta
information: designs, alternative computations, goals and world state. This can only
be done when we supply the designer with new tools, architectures, and patterns.
Among these technologies, I want to mention the following four: tolerant software;
self-adaptive software; physically grounded software and negotiated coordination.

Problems with Software

There are three principal interrelated problems facing the software industry. These

are escalating complexity of application functionality, insufficient robustness of
applications, and the need for autonomy. These are the problems that must be
addressed if we are to continue to meet the software challenges of the future. These
problems are interrelated because in general, greater robustness is necessary but not
sufficient to deal with more complex operations, and autonomy generally increases
complexity, and requires great robustness. Before considering how best to deal with
these problems, we first consider how they arise and interrelate.

Lack of inherent limits on software functionality, combined with current successful

applications, creates a demand for ever increasing software functionality, and without
significant additional effort, this increased functionality will come with increased
complexity. The decreasing cost of computational hardware, as compared to
mechanical hardware and personnel costs, and the non-recurring nature of software
development expense, provide economic incentives for software to assume more
functional burden, and hence more complexity. Networking and communication
between processing nodes also increases software complexity.

A second, and significantly more important source of complexity is an increasing

emphasis on embedded software. It has been true for some time that 98% of the
processors produced each year are utilized in embedded applications. The vast
majority of those applications use less sophisticated and powerful processors, but use
of more powerful processors and memory in embedded applications is growing even
more quickly than that of less powerful processors. The physical reality of sensors
and effectors guarantees that there will be cross cutting constraints that complicate
tasks, violate modularity boundaries, and in general, make software more difficult to
write, read, and update. Most microcontrollers have been used in point solutions,

controlling a single device or sensor. Networking of controllers, and sharing
information and coordinating control of complex assemblies of sensors and effectors,
is happening rapidly today. For example, today cars mostly use microcontrollers to
deploy a single airbag, or modulate a single brake. Tomorrow’s cars will provide
generalized traction control, using engine, transmission, and breaks and generalized
accident response, coordinating multiple airbags, engine response, and notification to
emergency channels. This type of networked, coordinated control will bring
significant additional complexity to embedded applications.

It is also the number, breadth and pervasiveness of embedded applications that

drive the requirement of autonomy. As embedded applications deal with both more
data, and more data sources, it becomes more difficult to count on human beings to
directly manage systems. Even in situations where a human being will exercise
significant control, it is essential for the embedded system to be capable of
autonomous operation, in order for it to have sufficient capability of informing,
supporting and guiding the human controller.

In assessing the degree of functional complexity, physically embedding, and

autonomy we are likely to see in the near future, let’s consider the emerging
computational infrastructure in general. We will see variations of several orders of
magnitude in communication bandwidth, further chaotic, emergent and unreliable
behavior from networks, huge numbers, great heterogeneity and unreliability of host
nodes, no possibility of centralized control, and serious concerns about deliberate
attempts to compromise systems. Data sets and work loads can be expected to be
extremely dynamic, and control functions will also be dynamic and situation
dependent. We can also expect weak theories of system behavior, for perception and
sensing in particular, and weak knowledge about the degree of trust we can have in
operability and intentions of system components – hardware and software.

In the area of robustness, there is a significant irony. We mentioned above that the

malleability and unlimited quality of software contribute to software taking on more
of the functional burden in systems. Despite the enormous malleability of software
itself, software applications are incredibly brittle. They tend to work only in a narrow
domain of utilization, and exclusively in a predetermined subset of that domain.
Outside the intended use of its creators, software applications fail miserably. They
also evidence lack of robustness over time. As functional and performance changes
are required, software applications are difficult to maintain, difficult to pass from one
programming team to another, and difficult to update, preserving correctness,
performance, and maintainability.

The inherent complexity of software systems makes testing and proving

correctness each suffer from combinatorial overload. Imagine the complexity of an
automobile engine, if we built it atom by atom. Our “character set” would consist of
a subset of the elements, and the number of possible combinations would be
staggeringly huge. Despite larger numbers of such character-atoms, there is
considerably less freedom in combining the mechanical atoms, than in combining
characters into programs. The complexity induced conceptual overload means that

testing and verification are even more limited than the domain of applicability, and
increasing that domain exacerbates the testing and verification problems. In a sense,
we are deliberately reducing robustness, in the form of ability to accommodate a wide
range of domain conditions, in order to make the program more understandable.
However, what we chiefly understand about such programs is that they are brittle and
fragile.

Are current methods enough?

One might, however, stipulate that everything discussed above is true, but that

current methods and technology of software development will continue to be adequate
to the tasks ahead. We make the strong claim that this is not so. Instead we believe
that two features create, exacerbate and interrelate the problems mentioned above:
meeting the needs of embedded systems, and software development technology that
provides insufficient support for modifiability of software applications. Further, the
lack in current development technology to support both highly modifiable and
physically grounded software systems, will ensure that the challenges indicated above
will not be met by current technology. Physical interactions of embedded systems
violate functional modularity, and hence make systems more complex, less robust,
and more difficult to operate autonomously. Systems that are built using tools that are
oriented to building things once, and right, make it difficult to add complex
functionality incrementally, which in turn makes it difficult to build in sufficient
robustness and autonomy.

To see why this is so, first consider how we currently manage complexity. The

chief tool we have for dealing with computational complexity is an abstraction
mechanism: functional decomposition. Functional decomposition includes breaking
problems down into functional components, recursively. These components can be
individually programmed, and then combined in relatively simple ways. The
principle that makes functional decomposition generally work is that we can limit the
complexity of interactions among functional units.

For non-embedded applications, it is relatively easy to limit interaction complexity

to clean interfaces between functional modules. Even these non-embedded
applications have real world context that adds interaction complexity, such as
deadlines, and resource scarcity, such as memory, processors, communication
bandwidth, OS process time slots, and other similar resources. We typically handle
these issues via Operating System policies of sharing, priority and fairness, and by
depending on the programmer to build in sufficient capacity.

With embedded applications, it is impossible to prevent pervasive intrusion of real

world concerns. This intrusion increases complexity and results in tighter constraints
on the computational resources, which we deal with by using explicit resource

control, or using special real-time capable Operating Systems. In highly connected
and decentralized embedded systems, higher level general resource managers may not
always be a workable option. Even when there is some approach to dealing with
resource allocation issues, the remaining interaction constraints are still the individual
responsibility of the programmer, adding to his conceptual burden. Therefore, the
cleanliness and value of functional decomposition is dramatically reduced. Also,
resource conflicts are a chief source of interaction complexity themselves, which
necessarily violates modularity based principally on functional decomposition. Since
we generally handle resource management implicitly, we don’t replace the violated
functional modularity with any other form of modularity.

Even worse than the modularity violations, the implicit management of resources is

handled statically, rather than dynamically. It is clearly advantageous to late bind the
decisions about resource management and conflict resolution, since the exact nature
of these conflicts is highly context dependent. In order to late bind resource conflict
resolution policy implementations, we must explicitly represent and reason about such
resource management issues.

There are some excellent evolutionary programming methodologies, that make it

relatively easy to modify software over time. We might speculate that if we simply
shifted to more use of those technologies, we could converge to sufficiently robust
applications. However we modify our software, returning the software/system to the
shop to redesign, reimplement and retest involves a very large response time delay.
That delay is often critical, and in general it means that we run software “open loop”.
Of course, it is much more desirable to run software “closed loop”, in which
evaluation and adjustment happens in real time.

Software is the most malleable part of most systems that we build, but the software

applications themselves, once built, are remarkably rigid and fragile. They only work
for the set of originally envisioned cases, which is often only a proper subset of the
cases we need to have the software handle. Traditional approaches to enhancing the
robustness of software have depended on making all the abstractions (requirements,
specifications, designs, and interfaces) more mathematically precise. Given such
precision we could attempt to prove assertions about the attributes of the resulting
artifacts. Then, whether precisely specified or not, the software systems would be
extensively tested. For complex software artifacts, operating in complex
environments, extensive testing is never exhaustive, leaving room for failure, and
even catastrophic failure. Also, often, the precision of specification works against
producing systems that reliably provide service which good enough, delivered soon
enough. However, there is significant distinction between engineered tolerance and
simple sloppiness. Much software is today is built on the assumption that software
will have bugs and that systems will simply crash for that reason. The further
assumption is that regardless of how much testing is done “in the factory”, the bulk of
the “testing” will happen while the software is in service, and all repairs will happen
“in the shop”. We mean something very different by software tolerance.

A New Approach to Software

We have claimed that problems with future software development efforts center

around handling increased functional complexity, providing substantially increased
robustness, and providing autonomy. These problems are all exacerbated by
increasing emphasis on embedded systems, and by a “do it once, right” engineering
approach. What we are proposing is a radically new form of abstraction, that we call
Active Software. The overarching themes of the Active Software approach are that
software must take active responsibility for its own robustness, and the management
of its own complexity; and that to do so, software must incorporate representations
of its goals, methods, alternatives, and environment.

Research can provide us with software systems are active in several senses. They

will be composed of modules that are nomadic, going where network connectivity
permits. They will be able to register their capabilities, announce their needs for
additional, perhaps temporary capability, evaluate their own progress, and find and
install improvements and corrections as needed and as available anywhere in the
network. They will manage their interfaces with other modules, by negotiation and by
implementing flexible interfaces. Thus active software is nomadic, self-regulating,
self-correcting, and self aware. In order to accomplish these purposes, the underlying
environments and system software must support these capabilities.

We do not as yet have a clear and unambiguous understanding of this new

approach. What we do have is a collection of technologies that can be viewed as
component technologies under Active Software. By discussing and comparing the
component technologies, we will attempt to get a clearer picture of the Active
Software concept. In fact, the concept of Active Software derives from some
common aspects of the component technologies.

The component technologies are self adaptive software, negotiated coordination,

tolerant software and physically grounded software. Self adaptive software evaluates
its behavior and environment against its goals, and revises behavior in response to the
evaluation. Negotiated coordination is the coordination of independent software
entities via mutual rational agreement on exchange conditions. Tolerant software is
software that can accommodate any alternatives within a given region. Physically
grounded software is software that takes explicit account of spatio-temporal
coordinates and other physical factors in the context of embedded systems.

The four listed technologies are not a partition of the concept of Active Software.

It would probably be useful to have a partition of the concept, but the current four
components are certainly not exclusive, and they are probably not exhaustive either.
For example, negotiation of interfaces can provide tolerant interfaces, but there are
certainly other ways to get tolerance. Also, physically grounded software is necessary
for self adaptive embedded systems, but physically grounded software need not be
self adaptive. Neither is active software the only new approach to building software

able to address the challenges we have discussed. Aspect oriented programming is an
extremely interesting alternative, and complementary approach [7].

Self Adaptive Software

Software design consists in large part in analyzing the cases the software will be
presented with, and ensuring that requirements are met for those cases. It is always
difficult to get good coverage of cases, and impossible to assure that coverage is
complete. If program behaviors are determined in advance, the exact runtime inputs
and conditions are not used in deciding what the software will do. The state of the art
in software development is to adapt to new conditions via off-line maintenance. The
required human intervention delays change. The premise of self adaptive software is
that the need for change should be detected, and the required change effected, while
the program is running (at run-time).

The goal of self adaptive software is the creation of technology to enable programs

to understand, monitor and modify themselves. Self adaptive software understands:
what it does; how it does it; how to evaluate its own performance; and thus how to
respond to changing conditions. We believe that self adaptive software will identify,
promote and evaluate new models of code design and run-time support. These new
models will allow software to modify its own behavior in order to adapt, at runtime,
when exact conditions and inputs are known, to discovered changes in requirements,
inputs, and internal and external conditions.

A definition of self adaptive software was provided in a DARPA Broad Agency

Announcement on Self-adaptive Software [2]:

Self-adaptive software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software
is intended to do, or when better functionality or performance is possible.

…This implies that the software has multiple ways of accomplishing its

purpose, and has enough knowledge of its construction to make effective
changes at runtime. Such software should include functionality for
evaluating its behavior and performance, as well as the ability to replan and
reconfigure its operations in order to improve its operation. Self adaptive
software should also include a set of components for each major function,
along with descriptions of the components, so that components of systems
can be selected and scheduled at runtime, in response to the evaluators. It
also requires the ability to impedance match input/output of sequenced
components, and the ability to generate some of this code from
specifications. In addition, DARPA seek this new basis of adaptation to be
applied at runtime, as opposed to development/design time, or as a
maintenance activity.

Self adaptive software constantly evaluates its own performance, and when that

performance is below criteria, changes its behavior. To accomplish this, the runtime
code includes the following things not currently included in shipped software:

1. descriptions of software intentions (i.e. goals and designs) and of program

structure;
2. a collection of alternative implementations and algorithms (sometimes called a

reuse asset base).

Three metaphors have been useful to early researchers on self adaptive software:

coding an application as a dynamic planning system, or coding an application as a
control system, or coding a self aware system, [9]. The first two are operational
metaphors, and the third deals with the information content and operational data of
the program.

In programming as planning, the application doesn’t simply execute specific

algorithms, but instead plans its actions. That plan is available for inspection,
evaluation, and modification. Replanning occurs at runtime in response to a negative
evaluation of the effectiveness of the plan, or its execution. The plan treats
computational resources such as hardware, communication capacity, and code objects
(components) as resources that the plan can schedule and configure. See [1], [6],
[11], and [16].

In program as control system, the runtime software behaves like a factory, with

inputs and outputs, and a monitoring and control unit that manages the factory.
Evaluation, measurement and control systems are layered on top of the application,
and manage reconfiguration of the system. Explicit models of the operation, purpose
and structure of the application regulate the system’s behavior. This approach is more
complex than most control systems, because the effects of small changes are highly
variable, and because complex filtering and diagnosis of results is required, before
they can serve as feedback or feed-forward mechanisms. Despite the difficulties of
applying control theory to such highly non-linear systems, there are valuable insights
to be drawn from control theory, and also hybrid control theory, including for
example the concept of stability. See [6], [8], and [13].

The key factor in a self aware program is having a self-modeling approach.

Evaluation, revision and reconfiguration are driven by models of the operation of the
software that are themselves contained in the running software. Essentially, the
applications are built to contain knowledge of their operation, and they use that
knowledge to evaluate performance, to reconfigure and to adapt to changing
circumstances (see [9], [17], and [14]). The representation and meta-operation issues
make this approach to software engineering also intriguing as an approach to creation
of artificial intelligence.

Problems, Future Issues:

The hardest and most important problem for self adaptive software is evaluation.
There is great variability in the ease with which evaluation can be accomplished. The
hardest case, where we have an analytic problem without ground truth available, may
require us to use probabilistic reasoning to evaluate performance at runtime. There is
still much work to be done in determining what classes of application require what
forms of evaluation, which tools will provide better evaluation capability, and to what
extent such tools will need to be specific to particular application domains.

Because self-adaptive software is software that adapts and reconfigures at runtime.,

there are crucial issues of dynamism and software architecture representation to be
addressed in building development tools. Any piece of software that is revised on the
basis of problems found in the field can be thought of as adaptive, but with human
intervention and very high latency. Thus, we can think of these problems as generally
when and how we implement the functions of evaluating program performance,
diagnosing program problems and opportunities, revising the program in response to
problems/opportunities, and assuring that desirable program properties are preserved,
and who implements these functions. The single large step of changing the binding
time for these functions can provide a tremendous amount of help with these
problems. If we evaluate and diagnose performance immediately, at run time, and if
further we can revise the program in response to diagnostics, then we can build a
significantly adaptive functionality. In such a system, immediate evaluation,
diagnosis and repair can play an enormous role in testing behavior and assuring the
preservation of desirable features. It is much easier to introduce this kind of late
binding in dynamic languages and environments that already support significant late
binding. Similar concerns relate to explicit rendering of software structure or
architecture: reconfiguration causes one to pay close attention to modularity, and to
the unit of code that is considered configurable or replaceable. However, current
dynamic languages aren’t sufficient to the task, without the following improvements:

1. More introspective languages, and better understanding of how to use

introspection;
2. Improving the debug-ability of embedded, very high level, domain specific

languages;
3. Better process description – including better event handling and description, and

explicit consideration of real time;
4. Better structural descriptions – inclusion of architecture description languages in

programming languages (see [3], [4], [10], [11], and [12].

We will also have problems with runtime performance. It takes time to evaluate

outcomes of computations and determine if expectations are being met. Most often,
expectations will be met, and checking seems like pure overhead in those cases. On
the other hand, comprehensively evaluating what algorithms and implementations
will be used is an advantage if it means that we can select the optimal or near optimal
algorithm for the input and state context we have at runtime, rather than a preselected
design time compromise. Additionally, hardware performance keeps increasing, but
perceived software robustness does not. Even so, effort will need to go into finding

ways to optimize evaluation cycles, and develop hierarchical systems with escalating
amounts of evaluation as needed for a particular problem.

Performance is also a problem at software creation time. The kind of programming

that delivers code able to evaluate and reconfigure itself is difficult to build by hand.
We would therefore prefer automated code generation technology. Specifically, we
like approaches that generate evaluators from specifications of program requirements
and detailed designs.

Advances in computer hardware provide challenging opportunities. Self adaptive

software runtime support also exploits opportunities identified by evaluators and
replanning operations to restore/improve functionality or performance. It is clear that
reconfigurable software could provide a useful top level application programming
level for reconfigurable hardware. In such a system, the hardware configuration
would simply be another resource to be scheduled and planned. Another opportunity
lies in helping to address the increasing mismatch between processor speed and
memory access speeds. One of the approaches being taken is to move portions of
processing out to memory modules, to reduce the requirement to move all data to
main microprocessor. Self adaptive and reconfigurable software can play a role in
dynamically determining the distribution of components in such highly parallel
architectures.

Negotiation

One of the ancillary problems to be addressed in any software system, (and the

primary problem of some systems), is resource allocation and resolution of resource
contention. The principal tool humans use for these problems is negotiation, and
active software aims at the same goal. The advantages of negotiation are that it is
inherently distributed, inherently multi-dimensional, and robust against changes in
circumstances. Although centralized, one dimensional (e.g. price) negotiation is
possible, it is neither necessary nor natural. Negotiated settlements need not
themselves be robust against changed circumstances, but then the answer is to simply
renegotiate, so no special exception handling is required.

Commercial business processes, logistics systems, and DoD weapon and C3

systems, all have hierarchical control, gatekeeping barriers, and incur delays based on
unnecessary human interaction. The hierarchical control induces a command fan-out
and data fan-in problem that seriously limits the ability of such systems to scale with
the problems they are designed to solve. In many cases we improve our ability to
manage such systems by distributing computing resources, but without making the
crucial application changes needed to make these applications genuinely distributed in
nature. Organization with compartmented groups inhibits the flow of information and
commands needed to rapidly respond to crises and an adversary’s moves. In addition,

passing data and commands across these organizational barriers includes further delay
as items are added to input queues of human action processors.

Logistics provides paradigm examples of systems that cannot afford centralized

control and decision making, nor afford artificial limits on scalability. Weapon
systems that must respond to attacks automatically, such as Aegis or Electronic
Countermeasures (ECM), are extreme examples that add a requirement of hard real-
time response. What is needed are locally competent and efficient mechanisms for
assessing situations and taking actions, which percolate information and intelligence
up to higher levels, I.e. a bottom-up approach to system operation. The bottom-up
approach emphasizes peer-to-peer communication, and negotiation as a technique for
resolving ambiguities and conflicts. This entails a fundamentally new approach to
how we build the complex systems of the future, (see [21]).

The new approach promises multiple benefits:

• Near linear scalable systems
• Highly modular, recombinant systems with distributed problem solving
• Removal of middle-man organizations in logistics and planning

The goal of Negotiation Software Agents (NSA) is to autonomously negotiate the

assignment and customization of dynamic resources to dynamic tasks. To do this we
must enable designers to build systems that operate effectively in highly decentralized
environments, making maximum use of local information, providing solutions that are
both good enough, and soon enough. These systems will have components that
communicate effectively with local peers, and also with information and command
concentrators at higher levels of situation abstraction. They will explicitly represent
goals, values, and assessments of likelihood and assurance, and reason about those
quantities and qualities in order to accomplish their task.

Negotiation systems will scale to much larger problem sizes by making maximum

use of localized, rather than global information, and by explicitly making decision
theoretic trade-offs with explicit time-bounds on calculation of actions. This new
technology will enable us to build systems that are designed to utilize, at the
application level, all the distributed, networked computational resources (hardware,
operating systems, and communication) that have been developed over the past two
decades. These advantages will be especially effective in cooperative action, since
the process of matching tasks and resources is naturally decentralized in the NSA
approach.

The first NSA task is development of the basic framework for bottom-up

organization. This includes three subtasks, the first of which is discovery of peer
NSAs, and their capabilities, tasks and roles. Second, NSAs must be able to determine
how to get access to data, information and authorizations, and they must have secure
authorization procedures. Finally, there must also be processes for coordination and
information sharing at levels above the peer NSAs.

 The second NSA task is reasoning based negotiation. Its subtasks are: handling
alternatives, tradeoffs, and uncertainty, including noting when new circumstances
conflict with current plans; enabling speedy, optimized and time-bounded reasoning
processes to allow for real-time response; and procedures for assuring that goals are
met.

A promising approach to reasoning under uncertainty is to use explicit decision

theoretic methods, and develop heuristics and approximate decision theoretic
approaches. Use of market based trading ([18], [19] and [20]), and qualitative
probabilities are alternative approximate approaches. Satisficing and anytime
algorithms will also be useful.

Tolerant Software and Interfaces

As an alternative to the approach of increasing precision to make applications

“bullet-proof”, we envision that reliability will result from an ability to tolerate non-
critical variations from nominal specification. The concept of software tolerance
derives from a consideration of the concept of mechanically interchangeable parts,
and the role they played in the industrial revolution. In order for parts to be
interchangeable (and hence significantly speedup the assembly of mechanical
devices) there had to be a match between the ability to produce similar parts, and the
ability of the overall design to accommodate whatever differences remained among
the similar parts. Software systems today have highly intolerant designs, requiring
components that exactly match rigid requirements. While this mechanical view of
tolerance is useful, and has a direct analog in the area of component technology and
software reuse, there are other significant aspects to tolerance. For example, we often
don’t need mathematically exact answers to questions for which such answers are
possible. We often don’t need exhaustive searches when those are conceptually
possible but impractical. Tolerance involves a critical examination of acceptable
variation, and engineering methods and technology in support of building systems
with appropriate tolerance.

Tolerant software covers three related concepts:

1. Applications that don’t have to be 100% correct – these include algorithms

that are inherently probabilistic, applications where the answer is always
checked by humans, queries that are inherently inexact (e.g. “Show me a
selection of restaurants in Oxford.”)

2. Lower level software that is checked by higher level applications and system
software – examples are disk controllers, memory subsystems, UDP network
protocol (checked by TCP layer or application software).

3. Analogy of mechanical tolerance, and interchangeable parts – this in particular
includes software interfaces, word processor input formats, and middleware
(RPC,RMI,CORBA [15]) information exchange, for example.

Other examples include:
• a web search engine, in which 24 by 7 availability is more important than

being able to access the full database on every query;
• mailer software advertising a conference, or new product - not every potential

recipient needs to receive it;
• object oriented programming systems, which often have highly specific code

dispatched for arguments of specific types, and a more general (and less
optimal) code for dealing with the remainder of cases.

Tolerant interfaces

We said the concept of interface tolerance derives from a consideration of the

concept of mechanically interchangeable parts, and the role they played in the
industrial revolution. The place where this analogy comes closest in software systems
is in the interfaces between software modules or components, which play the role of
mechanical parts. Unlike the case of mechanical tolerances, based on standards and
static design principles, tolerant interfaces are active interfaces. Tolerant interfaces
know how they interface with other modules, know or can find out how other
modules handle their own side of interfacing, and can modify their own interface
behavior to meet the requirements of interfacing with other modules. Thus tolerant
interfaces can actively modify their interface behavior to meet interface requirements.
They may also need to be able to negotiate interface responsibilities with other
modules, in much the same way that modems today negotiate over the protocol they
will use during data communication.

Clearly, to have these capabilities, the code will need to contain and operate on

explicit descriptions of intent, specifications, design, program structure and mapping
of tasks to functions. Also, the code will need to contain a large number of alternative
interface implementations, or have access to such alternatives over network
connections.

Another important concept for tolerant interfaces is that of wrapped data (objects,

agents or smart data). Consider, for example, self-extracting compressed archives of
programs. The file contains the software needed to decompress, and install the
program at your site. Even now such installation programs accept some parameters
from the user, but more could be done in this regard. This type of approach is useful
in situations where you have data exchange where provider and consumer share
responsibility or capability to operate on the data.

Imagine a sensor-actuator application, in which image data is gathered by a sensor,

and delivered to a consumer that controls actuators. The sensor module sends data
wrapped/prefixed with code for interpretation of the data. The consumer needs to
change some operators or filters, in the context of the sensor’s interpretation code.

The sensor and consumer code cooperatively arrange interfaces and a configuration
suitable for the appropriate sharing of processing tasks and algorithms.

Tolerant software requires research on:
• Automated analysis and implementation of interface requirements
• data wrapping/prefixing
• calculation and mitigation of risks and consequences of software breakdown
• assurance/validity checking for tolerant combinations
• performance optimization

We mentioned earlier that the relationships of these components of active software

are not simple. Negotiation technology can clearly be used to help build active
tolerant interfaces, and tolerant interfaces are necessary for self adaptive software.

Physically grounded software

The most challenging software to write, debug, and maintain is software for
embedded systems. Traditionally, we produce such software by writing relatively low
level code, and counting cycles and memory usage in order to ensure real time
requirements. Behavioral assurance is very hard to obtain, requiring combinations of
difficult verification technology and exhausting (but not exhaustive) testing. This
approach to embedded software will not continue to work as systems get more
complex, more connected and require more functionality. In place of traditional
approaches, we are advocating Physically Grounded Software (PGS). PGS is
software that is thoroughly model based. It incorporates models of its environment,
of its operational theory, of its behavior and of crucial physical quantities, including
time, space, information and computational requirements. Those models will drive
the design of systems, generation of code, refinement and maintenance of systems,
and evaluation of behavior and behavioral guarantees.

We argue that computational power for embedded systems is becoming abundant.

We should use this power to ease the design problem of embedded systems. This will
require development of model driven simulations, for both design and runtime,
development of language support for computations about time, space and other
physical quantities, and special support for composition of such modules with
behavioral guarantees, which we are calling a framework.

The age of shoehorning complex embedded systems into feeble processors is

coming to an end. In avionics, for example, today's embedded software systems are
the glue which integrate the entire platform, presenting high level situation awareness
to the pilot. But since these systems must evolve constantly; our traditional
approaches of entangling concerns in order to meet space and time constraints has led
to unmaintainable software systems which are inconsistent with the goal of evolution.

Embedded systems that attempt to use software to integrate collections of systems,
such as integrated avionics, require a model-based approach to be comprehensible,
maintainable and evolvable. Model based approaches must further tie together
standard operational control and failure recovery via models that relate layered
systems dealing with behavior at different levels of generality and abstraction. In
particular, an overall mission oriented model, with goals and plans is required to
generate recovery actions. Subgoals and subtasks must recurse through the layers of
the embedded systems to assist in tying the relevant behavior models together.

PGS is a prerequisite for successful autonomous systems. The goals of

autonomous systems are reliable, safe, and cooperative operation of free-ranging
systems in the world. There are numerous examples of autonomous systems: agent-
based software that ranges over cyberspace performing information services including
retrieval and delivery of information [5]; autonomous air, land, or sea vehicles;
autonomous mobile robots in physical proximity to humans; automated plants and
factories; and automated maintenance and repair systems. Such systems need to
cooperate with each other and with humans.

Autonomous systems must also be reliable and robust enough to serve in real

world, changing environments. A gross metric for the safety and reliability of such
systems is that they be safe and reliable enough to actually be deployed and used
where unsafe, unreliable operation would cause physical or economic harm.
Reliability implies an element of goal driven operation, which requires the ability to
dynamically structure and utilize resources to achieve a desired external state change,
and the ability to handle uncertainty, and unpredicted situations. Robustness means
that a desired behavior or functionality is maintained under changing external and
internal conditions. Reliability and robustness assumes dynamic internal
organization, integrated self-monitoring, diagnostics and control, and fully integrated
design of the physical processes and information processing that forms the
autonomous system. An increasingly important requirement for autonomous systems
is cooperation. Cooperation is an ability to participate in the dynamic distribution of
goals (and tasks) and in the coordinated execution of required behaviors.

Embedded software should be developed against the backdrop of model based

frameworks, each tailored to a single (or a small set of) issues. A framework, as we
use the term, includes:

• a set of properties with which the framework is concerned,
• a formal ontology of the domain,
• an axiomatization of the core domain theory,
• analytic (and/or proof) techniques tailored to these properties and their domain

theory,
• a runtime infrastructure providing a rich set of services, and
• an embedded language for describing how a specific application couples into

the framework.

A framework thus reifies a model in code, API, and in the constraints and

guarantees the model provides. Frameworks should be developed with a principled
relation to the underlying model, and preferably generated from a specification of
the model. The specification of the model should be expressed in terms of an
embedded language that captures the terms and concepts used by application
domain experts.

The ontology of each framework constitutes a component of a semantically rich

meta-language in which to state annotations of the program (e.g. declarations,
assertions, requirements). Such annotations inform program analysis. They also
facilitate the writing of high level generators which produce the actual wrapper
methods constituting the code of a particular aspect.

Corresponding to each framework are analytic (or proof) tools that can be used to

examine the code which couples to this framework. Each such analytic framework
can show that a set of properties in its area of concern is guaranteed to hold as long as
the remaining code satisfies a set of constraints. The analysis of the overall behavior
of the system is, therefore, decomposed.

References

[1] I. Ben-Shaul, A. Cohen, O. Holder, and B. Lavva, ``HADAS: A network-centric
system for interoperability programming,'' International Journal of Cooperative
Information Systems (IJCIS),vol. 6, no. 3&4, pp. 293--314, 1997.
[2] ``Self adaptive software,'' December, 1997. DARPA, BAA 98-12, Proposer
Information Pamphlet, www.darpa.mil/ito/Solicitations/ PIP_9812.html.
[3]Garlan, David & Shaw, Mary. "An Introduction to Software Architecture," 1-39.
Advances in Software Engineering and Knowledge Engineering Volume 2. New
York, NY: World Scientific Press, 1993.
[4]Garlan, D.; Allen, R.; & Ockerbloom, J. "Exploiting Style in Architectural Design
Environments." SIGSOFT Software Engineering Notes 19, 5 (December 1994): 175-
188.
[5]Jennings, K. Sycara, and M. Wooldridge A Roadmap of Agent Research and
Development. In Autonomous Agents and Multi-Agent Systems, Vol. 1, No. 1, July,
1998, pp. 7 - 38.
[6] G. Karsai and J. Sztipanovits. A model-based approch to self-adaptive software.
IEEE Intelligent Systems,May/June 1999:46{53,1999.
[7]Kiczales G., Lamping J., Mendhekar A. et al. Aspect-Oriented Programming. In
proc. European Conference on Object-Oriented Programming, Finland, 1997.
[8] M. M. Kokar, K. Baclawski, and Y. Eracar. Control theory-based foundations of
self-controlling software . IEEE Intelligent Systems,May/June 1999:37{45,1999.
[9] R. Laddaga. Creating robust software through self-adaptation. IEEE Intelligent
Systems, May/June 1999:26{29,1999.

[10]Luckham, David C., et al. "Specification and Analysis of System Architecture
Using Rapide." IEEE Transactions on Software Engineering 21, 6 (April 1995): 336-
355.
[11] Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf.
An Architecture-Based Approach to Self-Adaptive Software. IEEE Intelligent
Systems and Their Applications, vol. 14, no. 3, pp. 54-62 (May/June 1999).
[12]Nenad Medvidovic and Richard N. Taylor. Exploiting Architectural Style to
Develop a Family of Applications. IEE Proceedings Software Engineering, vol. 144,
no. 5-6, pp. 237-248 (October-December 1997).
[13] D. J. Musliner, R. P.Goldman,M.J.Pelican, and K. D. Krebsbach, ``Self-Adaptive
Software for Hard Real-Time Environments,'' IEEE Intelligent Systems,vol. 14, no. 4,
pp. 23--29, July/August 1999.
[14] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi: "Metamodeling - Rapid
Design and Evolution of Domain-Specific Modeling Environments", Proceedings of
the IEEE Conference and Workshop on Engineering of Computer Based Systems,
April, 1999.
[15] Object Management Group, The Common Object Request Broker: Architecture
and Specification. Revision 2.2,February 1998. Available at:
http://www.omg.org/corba/corbaiiop.html.
[16] P. Robertson and J. M. Brady. Adaptive image analysis for aerial surveillance.
IEEE Intelligent Systems,May/June 1999:30{36,1999.
[17] J. Sztipanovits, G. Karsai: "Model-Integrated Computing", IEEE Computer,
April, 1997
[18] CA Waldspurger, T Hogg, B Huberman, JO Kephart, and WS Stornetta: Spawn:
A Distributed Computational Economy. IEEE Transactions on Software Engineering
18:103-117.
[19]Wellman, M: “Market-oriented programming: Some early lessons.” In Market-
Based Control: A Paradigm for Distributed Resource Allocation (S Clearwater, ed.).
World Scientific, 1996.
[20] Wellman, M: A market-oriented programming environment and its application
to distributed multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1-23, 1993.
[21] ``Autonomous Negotiating Teams,'' October, 1998. DARPA, BAA 99-05,
Proposer Information Pamphlet, www.darpa.mil/ito/Solicitations/ PIP_9905.html.

