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1.1 Markov chains

Markov chains have state space S = {1,2,..., N} and transition matrix P. We
start at

po = (P(Xo=1),P(Xo=2),...,P(Xo = N)). (L.1)
In addition,
(P(Xp =1),..., P(X, = N)) = g P" (1.2)
and

1.2 Classification of states
Definition 1.1. For i,5 € S, we write
1. i — j if 3m € Z4 such that P, (i,7) > 0,
2. i ¢ j if Imy, mo € Z, such that P, (4,5) > 0 and P, (j,¢) > 0.

The former implies that i is reachable from j, and the latter implies that j
is also reachable from 3.

Lemma 1.2 (Transitivity)
If i +» j, and j < k, then i < k.

The state space S can be partitioned into S = SiUSyU---U 5’1, where S;
are disjoint, nonempty, communication classes. FEach of these classes has the
property that all vertices 4, 7 have ¢ <> 57

Example 1.3 (Communication classes)

How many communication classes?

(2)
oSG

One communication class, since all states are reachable from all others.
How about for gambler’s ruin? There are three classes: 0, N, and the rest.

Since Markov chains are directed graphs, communication classes are just
maximal connected subgraphs.

Definition 1.4. A Markov chain is called irreducible if it has only one com-
munication class.

Definition 1.5. Let S be a communication class, and let Xo € S. IfPr{X,} ¢
S — 1, then S is called transient, and all states s € S are transient states.
Otherwise, S is recurrent.
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If there is any out degree of S, then S is transient.

Definition 1.6. For each s € S, we define T = {n € Z}? such that P,(s,s) > 0.
Then, d = ged(Ty UTo U --- UT,) is the period of the Markov chain. If d = 1,
then this Markov chain is aperiodic.

Example 1.7

If we are given sets {2,4,6,8, ...}, then the period is 2. For gambler’s ruin,
the chain is aperiodic.

In fact, if there is any loop (node to self) in the graph, then the Markov
chain is aperiodic.

Proposition 1.8

If there exists a € Z,, such that all entries of P* are strictly positive, then
the Markov chain is irreducible and aperiodic.

Proof. 1f P,(i,7) > 0,Vi, 4, then there is only one communication class, and it
is irreducible by definition. In addition, a € Ty, and (a + 1) € Ty as well, and
ged(a,a + 1) = 1, so this is aperiodic. O

Theorem 1.9 (Convergence theorem)

If all entries of P* are strictly positive, for some a, then there exists a unique
invariant distribution 7, and for any initial distribution g, poP® — .

Example 1.10 (Phone call)

Suppose we have a phone that is either free or busy.

(Vs 1) (L)

The invariant distribution for this is 7 = (2/3,1/3).

Example 1.11 (Symmetric random walk with reflective boundaries)

Take gambler’s ruin, except at the ends, we bounce back with p = 1. This
has a stationary distribution 7 = (1/2N,1/N,...,1/N,1/2N).

Example 1.12 (Lazy random walks)

The point is lazy, so it doesn’t like moving.

pliyi+1)=1/4 pli,i)=1/2 plii—1)=1/4 (1.5)

3 The professor used J.
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Pset 2 is due next lecture. Office hours March 6, 2-3p.

2.1 Markov chain convergence

We prove theorem 1.9 from the previous lecture.

If P™ converges to some matrix, as n — oo, then the theorem holds.
Pl . (2.1)

Then for any g,

m(1) ... m(n)
woP" = g = (m(0),w(1),...,m(n)). (2.2)
m(1) m(n)
Now assume that moP = 7o, Then 7y = mP = moP? = ... mP", which only

works if P is invariant (7).

Let d = min,; ; Py(i,7) > 0, gn,; = max; P,(i,7), and s, ; = min; P, (4, j).
We need to prove that g, ; — s, ; — 0. Essentially, this means that the elements
of P™ converge.

Lemma 2.1

9n,j — Sn,j — 0 as n — oo.

Proof of lemma. We write out the matrix entry form of P*"*1) and see that

Ya(n+1),j = Z Pyxxx - Piq < (1 - d)gx;cac,j + dSm;J'. (2.3)
k

TODO: fill in all the indices... The professor uses a lot of indices I can’t see, so
basically, all the largest numbers are multiplied by smallest numbers sometime
during the matrix multiplication, so the larger numbers shrink and smaller
numbers grow.

Now we show that the smallest element increases.

Sa(n+1),5 = ZP(I(%’ k) Puyi(k,5) > (1 - d)san,j + dgan,j- (2.4)
k

So
Ga(n+1),5 — Sa(n+1),j = (1-2d) (gn,j - Sn,j) (2.5)

Lemma 2.2

In+1,j < Gn,j and Sp415 > Sp ;.
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Proof of lemma. P™t™ multiples rows and columns, which sum to 1, with ele-
ments each greater than 0. So gp41,; < 1:Gn,; +0 = gn;, and also s,41,; > Spj

for the same reason. So here, gnt1,; — Sn+1,j < gn,j — Sn,;- (This only doesn’t
work in generality since they may be equal). O

O

Question 2.3. Couldn’t we just have used eigenvalues, one A = 17 Well yes,
but this is more general, for arbitrary dimensions. In general, they may also be
more invariant distributions.

2.2 Implications of convergence
We make the following observations.

e If THMC is irreducible and aperiodic, then Ja, such that P has all entries
strictly positive. If J C Z, and ged(J) = 1, and J is closed under addition,
then J forms a group of the periods?

Corollary 2.4
Suppose we have function f: S — R. Then

E li Zn: f(Xi)] (W) £ (@) ) + ... (2.6)

since when n — oo, the Markov chain does not change from 7.

Corollary 2.5 (Ergodic theorem)

Let f =E [ 3" | f(X;)]. Then as a generalization of the convergence
theorem,

%Zf(Xi) = f. (2.7)

Now consider a few more things.

e Let 1 be an indicator function for state 7. Then E [1 3. 1x,—.] — m(r),
or the number of visits to state r is proportional to nm(r).

e Now let 7 be the return time, which is the time it takes to hit X; after
the first time. Suppose Xy = r, and 7(r) = min{i > 1, X; = r} Then
E[r] = F(lr).

We can just use these facts on psets. However, we must show that the
Markov chain is irreducible and aperiodic, and find the invariant distribution
(and of course, show that it is a Markov chain).
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3.1 Markov chains (continued)

Today we continue Markov chains.

Example 3.1 (Ehrenfest Urn model)

There are two urns of balls. At each step, an urn is selected and one ball is
transferred to the other urn. The states are the number of balls in urn 1,
k ={0,...,n}. The transition probabilities are

Pr{k k4 1) = 2K

(3.1)

Pr{k,k—1} =

k a2

We observe that the urns are the same, so m(k) = w(n — k). By definition of
a stationary distribution,

w7k —1)Pr{k—1,k} + m(k+ 1) Pr{k+1,k} = n(k), (3.3)

for k=1,...,n — 1. We will show that (k) = 5= (}) is a solution.

m(k —1)Pr{k —1,k} +n(k+ 1) Pr{k+1,k}

B n! n—k+1 n! k+1
S G-kt n T GErDm—k—D n
n!
= W= =" ®) (3.4)

This concept is similar to the second law of thermodynamics.

3.2 Simple random walks in Z

Let {eg,..., €} be ii.d. random variables,
1 =1/2
€ = p=1 (3.5)
1 p=1/2,

and let S,, be the sum of the first n random variables.

S
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How many paths are there from (0,0) to (n,z)? Well if we take p steps up
and ¢ steps down,

n=p+q
r=p-—gq.

Then the number of paths is equal to

Ny s = { é’?) = (o) (’fm N ielx <n .
To quantify this, we introduce our best friend.
Theorem 3.2 (Stirling's formula)
Most useful approximation ever,
nl ~ 27m(%)” (3.7)
Using Stirling’s Pr {S,, = 0} approaches 1/y/7n. Then we find that
E [# of returns to 0] = i Pr{S, =0} = . (3.8)
n—1

3.3 Counting paths examples

Example 3.3 (Burning houses)

Imagine that there is a river, a firetruck, and a burning house. The firetruck
must visit the river before rescuing the house. How do we determine the
fastest route?

Solution. Reflect the firetruck across the river, connect the house and reflection,
and determine where that intersects the river.

Example 3.4

We have two points (a,a) and (b, ), such that «,8 > 0, b > a, and
a,b,a, B € Z. How many paths between a and b touch or cross the x axis?

Solution. There is a bijection between the paths from a to b and the paths from
a’ to b, where a’ is a reflected across the x axis. Simply reflect across the x axis
at the first point the a’ — b line crosses the z axis. There are

b—a
<<b—>+<ﬂ—a>) (3.9)
2

paths that satisfy the constraint.
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Corollary 3.5

The number of paths from a — b which do not touch the z axis is equal to
the number of paths from ¢ — b minus the number of paths from a’ — b.

Corollary 3.6

The number of paths from (1,1) — (n,x) which are strictly above the x
axis is anl’zfl — anl,erl'

Example 3.7
How many paths from (1,1) — (5,1) do not touch the z axis?

Solution. Trivially we could draw them and see that there are 2. Using the

formula,
4 4
Nyo— Nap = (2) — <3) =6—4=2. (3.10)

Example 3.8 (Dyck paths)
How many paths from (1,1) — (2n + 1,1) do not touch the z axis?

Solution. We again use the formula and see that

2n 2n 1 2n
Nopo— Nopo = — = — . 3.11
2n,0 n,2 (n) (n+1> n+1<n> ( )

In particular, we have discovered Catalan numbers! This is also equivalent to
the number of Dyck paths from (0,0) — (2n,0).
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4.1 More simple random walks in Z

Recall from last lecture that the number of paths from (0,0) — (n,2) = Ny

N _{(p;q)_(”:“) mEeZ |zl <n
n,r —

s

(4.1)
0 otherwise.

The number of paths from (a, ) — (b, 8) which do not touch the z axis is
Nb—a,ﬁ—a - Nb—a,B+a~ (42)

At the end of the course, we will model Brownian motion with such a simple
random walk.

“We will suffer all this combinatorics. . .”—abufetov
Finally, we also found Catalan numbers in Dyck paths.

Theorem 4.1 (Ballot's theorem)
The number of paths from (0,0) — (n,z) such that s; > 0, Vi is

X
anl,a:fl - anl,erl = ENn T

s

Proof. The left side is equal to the number of paths from (1,1) — (n,z) since
from (0,0), we can only go up to (1,1). For the right side, let us take p steps up
and ¢ steps down, such that x =p —¢,n = p+ q. Then

<p+q—1) B (p+q—1) _ (p+q—1)!(

p—1 p (p—1)1?

) (4.3)

O

1 1
qa p

Example 4.2 (Application of Ballot's theorem)
Of the paths from (0,0) — (3, 1), only one satisfies the non-negativity.

Si

Proposition 4.3
The number of paths of length 2n, such that s; > 0,Vi # 0, is

1

Nop 11 = 5 V2n0-
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Proof. The number of paths satisfying this condition is

Z# paths (so =0,81 > 0,...,82,-1 > 0, 59, = 27)

r=1

oo
= E Nop—1,2n-1 — Nop—1,2n+1

r=1

= (Nap—1,1 — Nap—13) + (Napn—1,3 — Nan—15) + - ..

= Nop_1,1

since we have a telescoping series.

Corollary 4.4

The number of paths that do not return to 0 in the first 2n steps, (so =

0,51 #07~-~752n—1 #0,3271 ZQT) is
1
2. §N2n,0 = Nan0,

since points are all positive or all negative.

For n = 2, we can have the positive or negative versions of the following.

Si Si

Si

Proposition 4.5

The number of paths that start from 0 and return to 0 at 2n is

1

4Nop_20 — Nopo = Nopo
2n —1
We demonstrate with n = 3,2n = 6.
By AN
) 1

And we also have the negative versions of these.
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4.2 Applications to probability

Recall that € are distributed i.i.d. Bernoulli. Let

N: 1
fign = Pr{Ss, = 0} = 22;;0 ~— 0
and 1
fon = Pr{return to 0} = 2717_1;12”.
Corollary 4.6

We can derive that fo, = pon_2 — peo, from proposition 4.5.

Corollary 4.7
The probability that a simple random walk returns to 0 is

)
Zfi — 1
=0

since we have another telescoping series.

So the expected return time is

Efro) =S 2nfon = Z\/% s 00 = O(v/A).

10
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We had an exam and a snow day, so we continue discussing simple random walks
now.

5.1 Last return

Let 7 = max; {S2; = 0}, which is the last return to 0 for ¢ € 0,1,...,2n. So

Nor oNoy—
Pr{r=2k}= —%’0222: k0 2k hon—2k -

Bashing with Stirling’s,
1

1
ﬁ\/w(n— k)

Pr{r =2k} ~ (5.1)

Proposition 5.1
Nog.o - Nap—2k,0 is the number of paths that last return to 0 at 2k.

However, probabilities at individual points tend to 0, so we need to determine
the cumulative distribution. For 0 < a < 1,

Pr{m <2an} = Z Pr{r = 2k}

k=0
= TV k(n—Fk)
T Lin Tk k (5:2)

As n tends to oo, this summation becomes an integral.

« 1 2
——————— dxr = — arcsin«a
/0 m/x(l —x) ™ va

Theorem 5.2
As n tends to oo, Pr {7, < 2an} — 2 arcsin \/a.

s

For example, take o = 0.1. Then approximately 20.4% of length n paths last
return to 0 at 10% of n. It is very likely for last returns to be close to 0 or n,
and the least likely for last returns to occur in the middle.

I'm tired so I'll fill in the plots over spring break....... Fill in a u shaped plot

11
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5.2 Maximum value of simple random walks
We now consider paths with a given maximum value.
Proposition 5.3

The number of paths from (0,0) — (n,z) of length n, which touch the
g = line is Ny, 2p—,.

This is trivially true by bijection and reflection.
Proposition 5.4

The number of paths from (0,0) — (n, ) of length n such that maxy, Sy, = r
is Nn,2r—a: - Nn,2r+2—w

This is equivalent to the number of paths that touch y = r minus the number of
paths that touch y = r + 1. All paths going beyond must also touch y =r + 1.

Proposition 5.5
The number of paths of length n such that maxy Sy = r is

1
Z # paths (0,0) = (n,z) = max(Ny, ;5 Npry1),

=T

depending on parity.

This comes from the typical telescoping series.

Example 5.6

Let n =4,r = 1. How many paths are there?

Solution. There are max(Ny 1, Nao) = 4.

Theorem 5.7

As n tends to oo,

1 « 2
< B —2/2
Pr{Sk_a\/E}%zw/_ooe dt

by the central limit theorem.

12
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6.1 Maximum value, ctd.

Recall that we are dealing with a simple random walk of length n.

Theorem 6.1

By the central limit theorem, for @ > 0, — oo,
Pr {maxSk > a\/E} — L /+OO e/t
k - V2 Jo

This is equivalent to the sum

Nn,n + Nn,nfl + Nn,n72 +F Nn,roz\/ﬁ
2n ’

In particular, note that Ny, ,,—1 and all other “odd” terms are 0, since parity. In
words, that is

#[paths max n] + #[paths max n — 1] + - - - + #[paths max [a\/n]]
211

Proof. From central limit theorem,

o0 2
/ e /2 qt

Combinatorially, we can treat this quantity as
Nn,n + Nn,n—l + -+ Nn,grosschunkintegrul

However, we want to find

#paths max = n + #paths max=n—1...
271
max(Ny n; Ny 1) + max(Ny n; Npont1) - -
AL ’

but by parity, we notice that the IV, ,41 etc. terms are 0, so this value is twice
the central limit theorem result. O

6.2 Time above line

We wonder how much time a path spends above the x axis.

Lemma 6.2

Let Fyi be the number of paths which return to 0 for the first time at 2k.
Then

Nogo = Fop + Fop_aNo o+ For_aNag + -+ FoNog_2

13
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Each step of a path with length 2n is either on the positive or negative half
plane. We study paths of length 2n, (S1, Sa,...,S2,). Let Ny be the number
of “positive steps,” and N_ be “negative.” Observe that both N and N_ must
be even, as we must return to 0 to change sign. Let

Bok,2n = #[paths length 2n such that Ny = 2k.

Example 6.3
Find By 4. We draw out the possibilities. There are 4.

AP S

Proposition 6.4

We know that Bay, 2, = Napo = # of non-negative paths. Then %Ngmo =
# of positive paths, as we can just shift up-right and fill in the last step.

Proposition 6.5

Boagon = Nok,o - Nan—2k0

This can be proved by induction on n.

14
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7.1 Infinite-state Markov chains

We are given an unbounded but countable state space S = {0,1,2,...} € Z, with
a probability distribution {a(x)},>  a(x) = 1. A Markov chain X, X1,...
has transition probability

Pr{X,.1 = y|X, =2} =p(z,y), for z,y € S.*

So by total probability,

z€eS

An invariant distribution 7 has the property that

m(y) = > w(@)p(z,y).

zeS

Example 7.1

We have an infinite Markov chain where
p(i,i+1)=1,i> 0.

As a graph,

This has no stationary distribution.

4 In addition, Pr { X1 = y|Xn = 2} = pr(z,v)-

15
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Example 7.2

Consider a Markov chain, similar to simple random walks.

p(i,i+ 1) =p(i,i —1) =1/2

p(0,0) =1/2
As a graph,
S 020202020
So

m(n)=m(n—1)/2+w(n+1)/2.
This is a bit harder, but we can say that 7(0) = (1), and thus
(1) =7(2)=---=7n(n—1) =n(n).

This isn’t very useful since we have an infinite number of states, so we can
say that there’s no invariant distribution.

These examples show two types of new behavior: there could be no conver-
gence like 7.1, or just no distribution like 7.2.

Definition 7.3. Let Xo, X1,... be a sequence of random variables. Let ran-
dom variable T be the stopping time, such that event {7 = n} depends on
Xo,Xl, . ,Xn only.

Definition 7.4. Given some state x € S, then the hitting time the first time
the Markov chain visits z, 7, = min {n, X,, = z}.

Proposition 7.5 (Strong Markov property)
Let Xo, X1,... be a Markov chain, and let 7 be a stopping time. Then

Pr {X7-+k = y|X7— = LZ?} = pk(xvy)

for any z,y € S.

Proof. By total probability,

Pr{X,ir =yl X, =2z} = Z Pr{r =n}Pr{X,tr = y| X, = 2}

n=1

= Pr{r =n}pi(z,y)
n=1
We can pull pg(z,y) out of the summation, and realize that >~ , Pr {7 =n} =

1, so all that is left is pg(z,y). O

Communications classes are the same as before. An irreducible Markov chain
is one with one communication class.

16
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Definition 7.6. A ITHMC® is recurrent if for some state x, Pr{X,, = z}
for infinitely many times n has probability 1. Otherwise, the Markov chain is
transient.

Proposition 7.7

If an irreducible Markov chain is recurrent, then Pr {X,, = y} for infinitely
many n is equal to 1, Vy.

Proof. For some x € S, event {X,, = x} happens infinitely often. By the
definition of a communication class, 3k, px(x,y) = € > 0. So if X,, = z, then
Pr{X,+x =y} = ¢, and y also occurs infinitely often. O

5 o . .
°infinite time-homogenous Markov chain

17
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8.1 Infinite-state Markov chains, ctd.

We continue discussion of infinite-state Markov chains.

Proposition 8.1

If for some state z € S, then
an(x, x) < 00
n
implies that the Markov chain is transient, while

an(:r,x) =00

implies that the Markov chain is recurrent.

Definition 8.2. If for any two states z,y € S, pp(z,y) = 0 as n — oo, then
this Markov chain is known as null recurrent, and it does not have an invariant
distribution. Otherwise, the Markov chain is positive recurrent, and it has a
invariant distribution.

Proposition 8.3

If a recurrent ITHMC has an invariant distribution, then it is positive
recurrent.

Proof. Take state y € S, with 7w(y) > 0. By the definition of an invariant
distribution,

m(y) = > w(@)p(z,y).

z€eS

That implies that after n steps, we are still at the same distribution.

w(y) =Y m(@)palz,y).

resS
There exists a finite set FF C S, |F| < oo, such that
Z 7(x) < em(y).
TeF

We take an n large enough so that

w(y) =Y w(@)palr,y) =Y m(@)palz,y) + Y

zeS zeF
type up lol O

Claim 8.4. A positive recurrent ITHMC has a unique invariant distribution.
For any y € S, p(z,y) — 7(y) (convergence theorem).

18
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8.2 Applications of Infinite-state MCs

For the rest of class, we will go through examples.

Example 8.5 (Simple random walk)

Here, S = Z and transition probabilities are 1/2 to each direction. How do
we characterize this Markov chain?

Solution. The probability of returning to 0 is
2n
p2n(0,0) = p"q" ( ) :
n
By Stirling’s, (2:) ~ 227/ /mn. Then

2(0,0) ~ ngno?n —— = 4p(1 — p))" —.
;m (0,0) ;p 2" = ;( p(1—p)) N

This sum converges if p # 1/2. Otherwise, it diverges since 4 - i = 1. Therefore,
it is transient if p # 1/2 and recurrent otherwise.

[TODO fill in from picture]

Example 8.6 (Simple random walk in Z~¢)
Let S be the set of non-negative integers.

.m .n : : : etc.
W ] o) ] ]] .

plr,z—1)=¢q

where 0 bounces back. What is the invariant distribution?

Solution. The invariant distribution can be found as
m(x) =7(z+ 1)g+ w(z — 1)p.

This is a difference equation, with general solution

m(z) = c1 + ¢ <§>w.

The base condition is 7(0) = g7 (0) + g7 (1). Plugging in and bashing, we find
that there are 3 possible outcomes.

Case 1 If p > ¢, then 7(x) > 1, which is impossible. This is transient.
Case 2 If p = ¢, then 7(z) is also impossible. This is null recurrent.

Case 3 If p < ¢, then we have an invariant distribution

-t )
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Example 8.7 (d-dimensional lattice walk)

Let S = Z%, which is a d-dimensional lattice. Transition probabilities are
(v, v)) = %i' What is ps,(0,0)?

Solution. We have 2n/d steps of simple random walk in each dimension. The
probability of returning in each dimension is 1/4/7n/d. If the simple random
walks are independent, then the probability of returning is (1/1/7n/d)¢. For
large n, this can be made rigorous, though they are not actually independent.

(oo}

> pan(0,0) ~ > #

n=1

If d > 2, then this Markov chain is transient. If d = 1,2, then this is a
harmonic series that diverges, and this Markov chain is recurrent.
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9.1 Probability generating functions

Let X be a random variable that takes on values {—k,—k+1,...,0,1,...}.
Then the probability generating function is

fx(s)= Z Pr{X =n}s".

n=—=k

There are two useful properties of probability generating functions.

Proposition 9.1
If X; and X5 are independent, then fx, fx,(s) = fx,+x,(s)

Proof. If X; and X5 are independent, then

Pr{X; =21} Pr{Xs =23} = Pr{X; =21, X0 = 25}

We use this in the probability generating functions.

le (S)fX2 (S) = Z Pr {X1 = 711} s Z Pr {Xg = 7’L2} s™
TL]Z—kl ngz—kz
%) n+k

= Z 8”( Z Pr{Xlznl,ngn—n1}>
n:—kl—kz n1:—k1

= Y S"Pr{X;+ Xy =n}=fx,1x(s)
nifklfkg

We let no =n —ng. O

Proposition 9.2
The expected value can be found as E [X]| = (fx(s))|s=1-

Proof. This follows by definition.

o0

E[X]= Y nPr{X=n}

n=—k

= (Z Pr{X =n}s")|s=1

We look at some examples.
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Example 9.3 (Bernoulli)
Let X be a Bernoulli random variable € {—1,1}. Then

1 1
fx(s) = 5871 + 551.

The expectation is 0. If X; ... X, are i.i.d., then

1 — n
(D nbe, = 27(5 L)

Example 9.4 (Poisson)

k

Let X ~ Poisson(a). That is, Pr{X =k} = e"*%;. Then
oo k
70406 —Q _Qas
fX(s):ZS =€ e
k=0

The expectation is a. If X ... X, are i.i.d., then

fX+ +X :6(5*1)(a1+a2+_,,+an)
1+ + X, .

9.2 Branching processes

At time n, the process produces X, particles, each of which produces random
offspring and then dies.

/AN NN NN

In this class, we assume that each particle reproduces independently and
with the same distribution &, such that Pr{¢ =)} = p;,p; > 0> p; = 1. A
branching process is a THMC with transition probabilities

P(k,j) =Pr{ys +---+uyr =3j},

where y1, 92, ...,y are i.i.d. ~ &.

Pr{Xns =3} = Pri{X,=Fk Xni1 =j}

k=0

= Pr{X, =k}Pr{X,1 =j|X, =k}
k=0

=Y Pr{X, =k}Pr{y+-- +uy = j} (9.1)
k=0
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Theorem 9.5
[xnia(8) = fx, (fe(s))

Proof. Use equation 9.1 and propositions. O

Example 9.6
Let Po = 1/2,]72 = 1/2,X0 =1.

TODO fill out the graph to be more fishy
We see that fx,(s) = s and fx,(s) = 2 + 2s%. Continuing,

Ix.(8) = fe(fs(fe (... fe(5))))-

Let A = lim,_, o Pr {X,, = 0} be the extinction probability. If E[s] < 1,
then A = 1.
Pr{X, =0} = fx,(0) = fe(fs(... f5(0)))

Something something f¢(s) : [0,1] = R. fe(1) =1, fe(0) =po > 0. fe(s) is
increasing and continuous,

TODO pgfplots this graph

Theorem 9.7
The extinction probability A is the smallest positive root of fe(s) = s.

Proof. Note that the limit A = lim, fg(n)(O) exists, since fén)(O) is increasing
and bounded by < 1. In addition,

fe(A) = fe(lim f(0)) = lim £ (0) = A.

n— oo n—oo

Finally, if A is the smallest positive root of fe(s) = s, then A > 0 and tends to
A. O

Example 9.8

Let po = 1/2,ps = 1/2. Then fe(s) = 1/2+ 1/2s% so s = 1 is the root to
fe(s) = s. This has extinction probability 1.
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Example 9.9

Let po = 1/4,p1 = 1/4,p2 = 1/2. Then fe(s) = 1/2 + 1/4s + 1/2s2, so
s =1,1/2 are the roots to f¢(s) = s. This has extinction probability 1/2,
the smaller root.
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10.1 Branching processes, ctd.

Recall that we have a distribution £ with Pr{{ =0} ,Pr{{ =1},...

Example 10.1

If Pr{€ =0} + Pr{¢ =1} = 1, then the next step there are either 1 or 0
offspring. This process dies out with probability 1.

Assume that Xy = 1. Recall that extinction probability
A= fe(A) = Pr{€ = 0} + Pr{¢ = 1} + - + Pr{ = k}.

This is because each particle dies out independently, so if there are k particles,
they need to all die out.

Theorem 10.2

IfE[¢] <1, then a = 1, and if E[¢] > 1, then f¢(s) = s has a unique
positive root a such that a < 1.

[INSERT PICTURE FROM LAST LECTURE]

Graphically, E [¢] is the slope at 1, so the left plot is for E [¢] = 1 and the
right is E [{] < 1.

We require that f¢(s) is a convex function, f¢(s) > 0.

fe(s) = % (Z Pr{¢ =k} sk>
k=0
= Pr{{=k}s"?
k=2

We can also prove the theorem analytically. First a useful claim about convexity.

Claim 10.3. If f(z) is convex, then the collection of points {(x,y) : y > f(x)}
is convex. That is, the intersection of this set with any line is a segment.

There are two cases to show.

Case 1 E[¢] = f{(1) < 1 implies that f{(s) < f{(1) < 1.

1
1— fe(s) :/ fe(s)dt <1—s
S
For all s < 1, this implies that fe(s) > s.
Case 2 E[¢] = f;(1) > 1 implies that

fe—e)=1—fi(l)-e<1—ce
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for small e. Thus, fe(s) < s when s is close to 1. Then f¢(0) =
Pr{{ =0} > 0, fe(s) > 0 for s = 0, so there should be some inter-
section, so fe(s) has a root strictly < 1. fe(s) is convex, so f¢(s) has at
most 2 roots, and 1 is a root, so we have found the only other root.

Note, this proof does not cover the case Pr {¢ = 1} and a = 0, but we are

handwaving.

Moving on,

Ix(8) = fx, (fe(s)) = fxo (fe(fe(- - fe(9))))

10.2 Conditional probability

Our next subject of study involves conditional probability and expectation,
which we introduce here.

Given two random variables X,Y, we know Pr{X = z,Y = y} for each pair
(z,y). The conditional probability
Pr{X =2,Y =y}

Pr{X =2}

Pr{Y =y|X =z} =

if Pr{X =z} # 0. In the continuous case, this is problematic since Pr {X = z}
is always 0. The usual expectation is a real number,

E(f(x,y)] =Y flz,y)Pr{X =2Y =y}.

zy
However, that is not true for conditional expectation.
Definition 10.4. Conditional expectation E [Y'|X] is a random variable

X%ZyPr{Y:mX:x}.
y

Example 10.5 (Dice)

Let X1, X2 be i.i.d. random variables distributed Pr {X; =i} = 1/6 for
i€{1,2,...,6}. It’s intuitive to see that E [X; + X3|X1] = E [X3] + X;.

Definition 10.6. The conditional expectation on several variables is

E[Y[X1,... . X)] =Y yPr{y =y[X;...X;}
Yy

for Pr{X;...X;} > 0.

There are several useful properties of conditional expectations. Let a,b € R
and X,Y be random variables.

Claim 10.7. E[a|X] =a
Claim 10.9. If X and Y are independent, then E [Y|X] =E [Y].
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Claim 10.10. E[Y f(z)|X] = f(2)E [Y|X]
Proof. We prove this by bashing simple math.
E[Yf(2)|X]=> yPr{Yf(x) =yf(z)}
= iyf(m) Pr{Y =y}
= f?x)ZyPr{Y =y}

Y

O
Claim 10.11. E[E[Y|X]] = E[Y]
Proof.
E[E[Y|X]] = %:Pr{X =2} Pr{Y¥ =y|X ==z}
:;ZyPr{Y :yy,sz}
:Znyr{Y=y} =E[Y]
y O

Claim 10.12. E [E [Y|X1,X2] |X1] =E [Y|X1}
Proof.

EE[Y[X1, Xl =Y Pri{Xo=a|X; =21} 3 Pr{¥V =y|X; =21, X5 = 25}

x1 Yy

Pr{Y =y, Xo = 22| Xy = 21}
= E Pr{X; =X =21}y — —
~ Pr{Xs = 22| X1 = 21}

=> yPr{Y =y|X; =11} =E[V|X]]
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11.1 Martingales

In this class, we study stochastic processes, where we are given a sequence
of random variables X, X1,.... A martingale is another type of stochastic
process which depends on past events to predict a current mean.

Definition 11.1. X, Xi,..., X, X,,4+1 is a martingale if for any k < n,

E [ Xtt1| Xk, Xi—1, .-, X1, Xo] = Xk.

Proposition 11.2
E [Mgio|My ... My] = My,

Proof.

My, =B [My 1| Mo ... My] = E [E [My141]]

FILL IT IN FROM PHOTO

Proposition 11.3
]E [Mk+k’|M0 .o Mk] = Mk

Proposition 11.4
E [Mg] = E [Mo]

Proof. E [My,|Mo] = My, so E[My] = E [E [My|M,]] = E [M,)]. O

Example 11.5

Let X5, Xs,...,X, be independent random variables, such that E [X;] =0
for any i. Then M, =, X; is a martingale.

Example 11.6

We play a game to gain 3 or -1 with equal probability each round, but we
must pay 1 to play a round. Let Xi, Xs,..., X, be independent random
variables; such that E [X;] = u for any ¢. Then M,, = X; +---+ X,, —nu
is a martingale.

Proof. Change variables with Xi = X; — p, which are independent. By the
previous example, M,, = Z?Zl X, is a martingale. O
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Example 11.7

Let X;,Xs,..., X, be iid. random variables, where E [X;] = 0 and
E [XE] =V, where V is a constant. Then M,, = (X;+Xo+---+X,,)?—nV
is a martingale.

Proof. Let S, => 1" | X;.

E [Mpi1|Mp] = E [Sy 4+ Xnt1 — (n+ 1)V][Sy]
=—(n+1)V+E[S2|S,] 4 2E [Sn Xy 41]5n]

The last term can be expanded.

E [X74]S0] = —(n+ 1)V + 82 +28,E [Xn41]Sn]) + E [X74 4]
=+ 1)V +S24+0+V
=82 - nV =M,
O
Example 11.8
Let X1, Xo,..., X, be i.i.d. random variables, and S,, = " | X;. Then

e Sp_
M, =52 M, = i_f, and M = ==, down to Si.

We can find that E [Sp_1|Sk] = 51Sk.

Example 11.9

Consider a branching process, Xo = 1, and £ is the offspring of one particle,
where E [¢] = p. X, is the number of particles at time n.

E [Xp4+1|Xs] = Xpnp. Basically every step we expect each particle to produce
1 particles, at each step.

“I don’t know! I need your help...”—abufetov, in a pouty voice

Then the martingale we are looking for is M, = if"

X
E [My,41|M,] =E [ UARND'e ]

un+1 n
_ uXn _ X,

- Mn+1 - /J,n

- n

29



Rachel Wu

13 May 1, 2018

12 April 27, 2017
12.1 Rip Liang is a bad influence
13 May 1, 2018

After a year I am returning to finish my notes!
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