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ABSTRACT

We propose a method for altering pixel statistics of one im-
age according to another (source) image. Given an input
or observed image (probably degraded by one or more un-
known processes), and a source image exhibiting the gen-
eral patch (group of pixels) properties expected in the input
image (before degradation), we seek to infer the original
image and the process that affected it to produce the ob-
served image. The foundation of our approach is to trans-
form known image patches with desired statistics to patches
found in the input image using a finite set of filters or trans-
formations. These transformations are unknown; thus they
also must be estimated. We cast this problem as an ap-
proximate probabilistic inference problem and show how it
can be approached using belief propagation and expectation
maximization. Experimental results for joint image restora-
tion and filter estimation are presented.

1. INTRODUCTION AND RELATED WORK

We describe an approach for altering image properties (statis-
tics) without modifying image content. The desired prop-
erties are specified by example, using a given source im-
age, whose patches define an empirical patch probability
distribution. The goal is to develop a general approach for
transforming an observed image into another with prefer-
able properties and at the same time for estimating the one
or more transformations (e.g.,linear filters) that relate the
observed and source image patches.

Many signal processing tasks are special cases of the
above problem. Examples in image processing include: im-
age de-noising, where we seek to remove unwanted noise
from a given image to achieve a visually clearer one; and
image super-resolution, where given a low-resolution im-
age, the goal is to estimate a high-resolution version of that
same image. More generally, the problem is to discover
what the original latent image (signal) looked like before it
underwent the effect of some unknown (or partially known)
process. In this paper, we provide an approach for recov-
ering the latent image and the unknown process, given the

observed image and example images that roughly exhibit
the desired properties.

A large variety of methods have been proposed to ap-
proach specific related problems, e.g.,[1, 2, 3, 4, 5, 6]. The
approach presented here is more closely connected to [3, 2,
1] in the sense that the joint distribution of the latent image
(i.e.,image to be estimated) is represented as a Markov Ran-
dom Field (MRF) with pairwise potentials. Our approach
is also motivated by [4] from the computer graphics litera-
ture. However, there are critical differences. First, we use
an unsupervised framework. In some cases it is possible to
have several example pairs of degraded and original images.
Using these examples, the unknown process could be esti-
mated more easily (supervised learning). However, in many
cases these example pairs do not exist. Previous work was
based on supervised learning, we focus on the latter (unsu-
pervised) problem. Second, it is sometimes assumed that
the degrading process is known (e.g.,a blurring process). In
this work, we do not assume we know this process and in-
tend to uncover it. These two differences are up to some
point related. Third, we derive new algorithms for estimat-
ing both the latent image and the transformations.

2. IMAGE TRANSLATION MODEL

2.1. Definitions and Setup

We will represent an image as a set of overlapping patches.
Let Y be the input or observed image, formed by a set of
patches yp, with p ∈ P , P = {1, .., P} and yp ∈ <S . Here,
S is the number of pixels in each patch (this assumes one
real value per pixel; however S could also account for rep-
resentations using multiple channels or also filter responses
instead of pixels). Consider also a latent image X , with
patches xp ∈ <T ; X will be the image to be inferred or
estimated. Let µ denote a known image (or images) here
referred to as the source or dictionary image. Assume that
the set of patches in µ are a representative sample which
possesses the patch statistics that we wish X to display.

Consider a set of patch transformations (i.e.,patch trans-
lators) Λ = {Λl}l={1,...,L}, where Λl : <S → <T . In our
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Fig. 1. Chain graph representing the model joint probability dis-
tribution.

model, the task of a single Λl is to transform a latent patch
into an observed patch. These transformations are initially
unknown, and we will try to estimate them. This loosely
accounts for discovering the set of processes that altered the
observed Y (e.g.,blurring) from its original version. Here
we assume that this original image share the patch proper-
ties found in µ. The image may have been altered by mul-
tiple processes, perhaps patch dependent. We will assume
a finite number of processes. The random variable lp will
represent the index of the processes that transformed patch
xp and l = (l1, ..., lP ).

Consider the operator set Γ, each element Γk produces
a patch when applied to an image. We will use this set to
perform topological transformations of the patches in µ. In
this paper Γk is restricted to perform just patch extraction
(i.e.,obtain a square patch µp ∈ <T ). This definition is used
for generality, since in practice Γk could achieve other class
of topological transformations such as rotation and shearing
(not considered here). We use the random variable t to de-
note the t− th element of the set Γ, and t = (t1, ..., tP ) to
represent the topological transformations for all patches in
the image.

2.2. Probabilistic Model

We defined our model to have joint probability distribution
represented by the chain graph of Fig. 1, which can be fac-
torized as the product of local conditional probabilities as-
sociated with the directed edges and positive potential func-
tions associated with the undirected edges [7, 8]:

p(Y ,X , l, t|Γ,Θ, µ) =
∏

p∈P

p(yp|lp, tp,Γ,Θ, µ)

∏

p∈P

P (tp|xp)
∏

p∈P

P (lp)
1

Z

∏

c∈C

ψc(xp∈c), (1)

with {c ∈ C} denoting the set of latent image patches that
belong to clique c in the MRF at the upper layer in Fig. 1, C
the set of cliques in the MRF sub-graph, and ψc the clique
potential functions.

Fig. 2. Input (Y), inferred (X ), and source (µ) images.

In this paper, every image patch yp follows a conditional
Gaussian distribution given the patch transformation index
lp and the topological transformation tp:

p(yp|lp, tp,Γ,Θ, µ) = N (yp; Λlp(Γtp
µ),Ψp), (2)

where Θ = {Λ,Ψ} denotes the distribution parameters and
Ψ = {Ψp}p∈P . We set Λi to be linear filters; however since
the inferred patches are not the result of a linear function
of the observed image patches, this is different than simply
transforming the image patches linearly. Instead, by this we
are imposing a constraint on the flexibility on each of the L
transformations (it may be advantageous to also allow for
non-linear filters).

We consider p(x) to be a pairwise Gaussian MRF, with
potentials proportional to the inverse distance d between
two patches; d is computed only on overlapping areas in
the associated patches, in a way similar to [3].

Finally, we link our discrete transformation random vari-
able with the continuous latent random variable X by:

p(tp|xp) =

{

1 if xp = Γtp
µ

0 otherwise.
(3)

A transformation tp will have non zero conditional proba-
bility if its patch xp is equal to the patch taken from the
dictionary µ using transformation tp (here we assume that
the set Γ is such that it produces unique patches).

3. ALGORITHMS FOR LEARNING / INFERENCE

The chain graph in Fig. 1 contains an undirected sub-graph
with loops; even if all the filter parameters Θ were known,
inference (computing the marginal conditional distribution
over patches in X given Y) is computationally intractable
in general, with complexity O(|K||P|), with |K| the num-
ber of possible states that each patch xp can take. However,
there exist approximation algorithms; one of them, based on
alternating optimizations [9], is Expectation Maximization
(EM). EM requires computing posterior distributions over l

and t, that in turn requires computing conditional marginal
distributions for each node of the undirected portion of our
chain graph; as we have seen, this is computationally in-
tractable. We divide this section into (1) inferring the latent
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Fig. 3. Top: input image Y , Passing Clouds by George Inness (left), inferred image (middle) and the corresponding (thresholded) preferred
filter labels (right), note how the filter location matches with the different noise processes in the input image; bottom: one of the source
images, The Coming Storm (left) and same image after two estimated filters (1,3) were applied (middle and right), corresponding to
pixelation and correlated noise.

image (usually referred to as inference) and (2) estimating
the model parameters (usually referred to as learning).

3.1. Inference and Approximate E-step

We assume that the reader has some familiarity with the EM
algorithm (see e.g.,[10]). We view the E-step as equivalent
to computing the posterior:

P (lq , tq|Y) ∝

∫

X

∑

l\lqt\tq

∏

p∈P

p(yp|lp, tp)P (tp|xp)p(X )dX ,

but we cannot solve this integral; thus we are forced to find
an approximate way to perform the E-step.

Approximating observed patch conditional distribu-
tions. Let us say that we have some estimate for the filters
Λl and Ψp (initially they may be random). For every p, we
can select the set Kp of K most likely topological transfor-
mations given the dictionary µ. This can be easily done for
each patch once P (tp|Y) (see below) is computed for every
topological transformation tp. This approximation is neces-
sary for computational reasons and can be made as exact as
desired. This approximation was used in [3]; it accounts for
cutting off the tails of the joint distribution P (tp|Y). How-
ever, it is still difficult to compute P (tp|Y)

Inferring the latent image. In computing P (tp, lp|Y)
one key problem is that of inferring a posterior marginal
distribution over xp (i.e.,marginalizing all the other patches
xq). One way to approximate this computation is by per-
forming loopy belief propagation in the MRF for X to com-

pute the posterior marginals over each xp. Loopy belief
propagation accounts for approximating p(xp|Y) by using
the belief propagation message passing updates mi→j [8]
for several iterations, in our model written as follows:

mi→j(xj) =
∑

xi=si

P (xi|ti)ψij(xi,xj)
∏

k∈N (i)\j

mk→i(xi)

bi(xi) = P (xi|ti)
∏

k∈N (i)

mk→i(xi),

with N (i) the neighbors and si the candidates for xi.
These updates guarantee that upon convergence the marginal

probabilities p(xp|Y), obtained by simply normalizing bp(xp),
would be at least at a local minimum of the corresponding
Bethe free energy [11] of the (conditional) MRF. The do-
main of xp is in practice discrete since the probability dis-
tribution is concentrated only at the candidate patches given
by Klp. Thus, every full iteration has complexity O(K2).
Using this approximation, the E-step is then given by:

P (tp, lp|Y) ∝
∑

xp

p(xp|Y)P (tp|xp)P (lp)p(yp|lp, tp). (4)

Even though loopy belief propagation is not exact (clearly,
since this problem cannot be solved exactly) and not guar-
anteed to converge, some recent work supports this approx-
imation [12, 13]. Other approximations include [14, 15, 1].

3.2. Learning the Filter Parameters

The M-step consist of optimizing the expected value of the
model joint distribution under P (tp, lp|yp) with respect to



the model parameters Λl and Ψp. This can be done by com-
puting first derivatives, as in a MAP estimate setting. For
linear filters Λk, we can obtain closed form solutions for
their update, likewise for the patch variances Ψp. The up-
date is similar to the weighted linear regression solution.
For non-linear filters, we would need to use non-linear op-
timization methods.

4. EXPERIMENTS

We illustrate the inference and learning capabilities of our
algorithm on a few image reconstruction tasks (due to print-
ing resolution limitations, images are better viewed directly
on the computer screen). We use PCA to encode the patches
to account for numerical stability, speed, and storage con-
straints. In Fig. 2, a brick wall image was degraded by dif-
ferent processes (blurring, pixelation, non-linear shift, cor-
related and uncorrelated noise) using GIMP (a known im-
age manipulation tool). We use a small, similar brick im-
age as our source µ to obtain the restored image shown.
This task is perhaps simplified by the repetitive brick pat-
tern; a few brick examples are enough for a good image
restoration. Thus, in Fig. 3 we show the results of a more
challenging experiment. The input image Y is a painting
corrupted by different types of noise in some regions and
severely blurred/pixelated in other regions. We took advan-
tage of the on-line availability of other paintings by the same
painter (displaying a similar style); by using these source
images, we were able to infer an image that is very close
to ground truth. The different estimated filters learned to
operate in localized areas. The application of the learned
filters are shown in the second row of Fig. 3. Our last ex-
periment is in image superresolution. Given a downsampled
image, the objective is to obtain a high resolution equivalent
of it by accounting for the missing high frequency details.
Our model can be readily employed to provide a solution
for superresolution, without explicitly specifying the special
properties of this particular task. In Fig. 4 given a severely
degraded image Y , we used several high resolution images
of various female models as sources to improve the high
frequency details in Y . The estimated filters were blurring-
type filters. Other useful applications include artistic tasks
such as image style translation and texture transfer [16].

5. CONCLUSIONS

We presented a general method for image processing that
uses example statistics from source images to reconstruct or
transform an input (degraded) image and that at the same
time estimates the single or multiple degradation processes
undergone by this image. This approach has many uses
in image restoration, reconstruction, and coding, and also
in artistic applications such as non-photorealistic rendering,
texture generation, and style transfer. Our method does not

Fig. 4. Input image (left) and inferred image (MAP)(right).

require to manually or explicitly specify the type of task re-
quired, but it allows to employ examples for this purpose.
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