Implementation notes on
A simple online adaptation of Lempel Ziv
compression with Random access Support

Akashnil Dutta, Reut Levi, Dana Ron, Ronitt Rubinfeld

July 6, 2012

We present a Java implementation for the randomized algorithm formulated
in [1]. To keep the code in context of the theoretical description, we hereby
elaborate on some of the practical challenges we needed to solve in order
to translate our work into the implementation. In the implementation we
included minor changes from our theoretical description in order to deal
with the case in which the total size of the input stream is unknown during
the encoding, and also included some optimization for encoding information
to improve the compression ratio. First we will describe the implementation
choices made for the general LZ78 algorithm without random access and then
those specific to our modification.

Choice of alphabet

For practical reasons of memory addressing and file formatting, we set our
alphabet to consist of 256 characters corresponding to the byte encoding in
files. Accordingly, each appended character b in the LZ78 phrases are 8-bits
long. One issue with a large alphabet) is that the memory allocation for
each node in the trie may take up ©(|>_|) space to keep the children in an
array. We solved the problem by using a hashmap instead, taking up space
proportional to the number of children only.

Variable address size and phrase encoding

The output of the encoder is a sequence of phrases, each with pointer(s) to
preceding phrases. We used the sequence id i of the i-th phrase to refer

to the ¢-th phrase and 0 to refer to the null phrase at the root. Hence the
back pointer(s) at phrase ¢ can be one of i possibilities. These numbers were
encoded in binary with [lgi] bits and appended to the binary output stream.
Finally the output stream is broken down to 8-bit words and written in the
file as a sequence of bytes. To read the i-th bit in the stream we read the
|7/8]-th byte and find the corresponding bit from there.

Random access to read the i-th phrase

One notable property of our encoding is that there is no delimiter to indicate
the start of the phrases or the number of bits used to encode addresses.
However, our (Random access) decoding algorithm requires us to read the
contents of the i-th phrase given the index 7 in constant time.

The decoder knows the address size to encode the i-th phrase. Hence it is
sufficient to calculate the starting position p(i) of phrase i in the bit stream,
which is the sum of the lengths of all preceding phrases. To find that quickly,
we first pre-compute p[2'] for all required values of ¢. Since all phrase lengths
are constant from phrase 2¢ to 27!, we can obtain

p[2t] — p[2t—1] + (t + 8) . 2t—1
This only needs to be computed once. To find p(i) generally,
p(i) = p[2U8 U] + ([gi] + 8) - (i — 2Ueil)?

This formula applies to the LZ78 algorithm without random access in which
case every i-th phrase is [lgi| + 8 bits long. We will subsequently describe
how this extends to our random access algorithm with minor modification.

Selecting and encoding special phrases

In order to save space and improve efficiency, we also did not use any delim-
iters in the compressed stream to indicate which phrases are special. Instead
we used a deterministic pseudo-random function to decide if phrase 7 is spe-
cial. The seed for the generator is known to both the encoder and decoder in
advance. Hence the encoder and decoder can agree on this information with-
out any communication via the transmitted stream. If strong randomization

'In modern processors, there are usually ways to find 2¢ in one CPU instruction and
|lgi] in lglg instructions, sufficient for all practical purposes.|2]

is required, the seed for the generator may be transmitted in the beginning
of the compressed stream.

Additionally, for the addressing to work out, we need the cumulative number
of special phrases up to some phrase i. To facilitate this calculation, we
selected the special phrases ensuring that there is exactly one special phrase
among the phrases [ki + 1,ki + 2,--- k(i + 1)] where k is a constant, such
that there are approximately one special phrase every k phrases. We used a
pseudo-random function R which uses seed S to evaluate

R(i,S) € {ki+ 1,ki+2,--- k(i + 1)}

This makes it easy to find the number of special phrases up to phrase i, which
is either |i/k] or [i/k] depending on R(S, [i/k]). We also know the number
of bits used for encoding special phrase 7, given <. Hence we can determine
the cumulative number of bits used for encoding special phrases up to phrase
7 in an way analogous to the previous case. This lets us determine the starting
position of i-th phrase in the output stream.

Bit encoding in special phrases

We also used variable number of bits to encode the special phrases. Since
the maximum size of the position or the depth field for i-th phrase is not
well known to the decoder, we had to use a large number of bits, 2[lgi]
and [lgi] respectively. Although these numbers may be much smaller, it is
the theoretical maximum corresponding to the case when the input stream
consists of continuous repeat of one character.

However, for addressing special-parent and special-ancestor we used less num-
ber of bits by addressing it as the i-th special phrase instead of as i-th phrase.
This requires only [lg(i/k)] bits instead of [lgi| and is sufficient to locate
the special phrase.

Implementation details of the TC-spanner

Apart from the addressing scheme, we needed a construction of the Transitive
Closure spanner of the special phrase tree which does not require knowledge
of the maximum depth to find special-ancestors at any stage.

Recall that in our theoretical model of the line-graph spanner, we had blocks
of size [lgn] such that the i-th node in the block j contained a jump-pointer

to the i-th node in (5 — 2°)-th block. From an implementation perspective,
we found one small optimization on this by changing this jump-pointer to
the (i — 1)-th node in (j — 2%)-th block. This works because in our back-
tracking algorithm, every time a jump-pointer was used, the parent pointer
was taken at least once immediately following it. (For the first node in a
block we point to the last node two blocks before the current block to keep
consistency because the decoder should never need to jump one block at a
time twice.)

This also simplifies the back-tracking algorithm to the following:
1. If current depth is equal to desired depth, stop.

2. If depth of node in jump-pointer is more than desired depth, move to
node at jump-pointer and repeat from step 1.

3. Else move to node at parent-pointer and repeat from step 1.

This algorithm will find the desired depth d' from a node at depth d in
O(lgn) time. To see why that is true, notice that in each step in the process,
it is guaranteed that the in-block index in the next node is always one less
(modlgn) than the in-block index in current node. Within lgn steps all
lg n block indices will be visited in decreasing order. Within that sequence
of steps, the jump pointers will also be matching the binary representation
of the difference in block-indices between starting block and desired block.
Following this modified algorithm improves the number of steps from 4lgn
to 3lgn in the worst case since it takes at most 2Ign steps to make one
decreasing pass through the in-block indices during which time the algorithm
is guaranteed to navigate across the blocks to reach a node which is at most
lgn depth away from the target node.

Now we will modify this for an online version. Essentially the idea is to have
variable block sizes. We construct the spanner from depth 0 onwards one by
one. For an index i following block j, if 2! exceeds j, a new block is made
starting at that index.

In this case, because of variable block sizes, identifying the ¢-th node in
(7 — 2%)-th block is more difficult since the block sizes are variable. We use
recursion to solve this problem. i.e. we reuse the jump-pointers already
assigned to nodes at smaller depths.

Specifically, we find the depth of the (j —2°"1)-th block from the jump-pointer

4

in the (i — 1)-th node in block j (i.e. node at depth d — 1) and subsequently
the depth of ((j—2""1)—2""1)-th block from the jump pointer in the (i—1)-th
node in block (j — 2°71).

This still requires suitable assignment of base cases of induction and minor
details. The full description can be found in function anc() in the implemen-
tation which computes the depth of the jump-pointer of node at depth d given
d. This is stored in an array to efficiently compute new values using dynamic
programming without having to recalculate values in the recursion. The fol-
lowing table shows the values of the function, which indicates the depth of
the jump pointer from each node with the nodes grouped into blocks B; of
variable sizes.

e B {1—0 17 — 13 (45 — 44
. B 18011 46 — 41
032{2—>0 9]_9—)6 .Bl7 47—>34
20 — 2 48 — 19
e B3{ 31 | 192
e Bi{4—2 (21 — 16 ° ...
22 — 14 §
543 e By 93 40 475 — 467
476 — 461
o B 6 — 3 24 — 3
749 \ ATT — 448
) Ong 478-)421
8 — 4 25— 20 479 — 366
o Bs{ 9—4 e B, 017 480 — 265
10— 3 21— 12 | 481 — 83
28 =3
117) (482 — 474
e B;{ 125 o ... 483 — 468
13 = 3 484 — 455
45 — 40 o DBgo{ 485 — 428
14 — 10 . B 46 — 37 486 — 373
e Bg{ 15—38 16) 47 = 30 487 — 271
16 — 4 48 — 16 | 488 — 88

With this spanner structure, the back-tracking from node at depth 477 to
that at depth 50 proceeds as follows:

Depth ATT | 448 | 433 | 425 | 424 | 217 | 122 | 81 | 60 | 59 | 53

Block number | 88 |84 |82 |80 |80 |48 |32 |24]20|20]18

In-block index | 2 1 0 6 5 4 3 2 1 |0 |4

Table 1: Backtracking example

Notice that from depth 425 to depth 50, 61 block jumps were required. 61 =
111101, in binary. Hence the jumps have been taken at indices 5,4,3,2,0
respectively, corresponding to the 1 bit positions in 61.

[1] A. Dutta, R. Levi, D. Ron, R. Rubinfeld. A Simple online adapta-
tion of Lempel Ziv Compression with random access Support. Unpublished
manuscript, 2012

2] S. E. Anderson. Bit Twiddling Hacks http://graphics.stanford.edu/
~seander/bithacks.html#IntegerLog

