Homework 4

Lecturer: Ronitt Rubinfeld

Due Date: October 11, 2017

Homework guidelines: As in previous homeworks.
The following problems are not for turning in.

1. (Quadratic non-residuosity) Let Z_{n}^{*} be the group of integers that are relatively prime with n. An element $s \in Z_{n}^{*}$ is said to be a quadratic residue modulo n if there exists $r \in Z_{n}^{*}$ s.t. $s \equiv r^{2} \bmod n$. Give a private-coin interactive proof system for the language of pairs (s, n) such that s is not a quadratic residue modulo n.
2. You are given a 2 -SAT formula $\phi\left(x_{1}, \ldots, x_{n}\right)$. Consider the following algorithm for finding a satisfying assignment:

- Start with an arbitrary assignment. If it's satisfying, output it and halt.
- Do s times:
- Pick an arbitrary unsatisfied clause
- Pick one of the two literals in it uniformly at random
- Complement the setting of the chosen literal
- If the new assignment satisfies ϕ, output the assignment and halt.

Show that if you pick s to be $O\left(n^{2}\right)$, and ϕ is satisfiable, you will output a satisfying assignment with probability at least $3 / 4$.

The following problem is to be turned in.

1. Give a deterministic poly (n)-time algorithm that, given n, finds a coloring of the edges of the complete graph K_{n} by two colors such that the total number of monochromatic copies of K_{4} is at most $\binom{n}{4} 2^{-5}$.
