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1 Monotone functions

We will talk about weak learning of monotone functions.

Definition 1 Fiz a partial order =< on the domain Q. On the product domain Q", define =X so that
xRy iff x; <wy; for alli. A function f: Q" — R is monotone if v <y = f(x) < f(y).

Now fix 2 = {£1}.

Question: How many monotone functions are there?

Lower bound: Consider the set A of points with [ 5| —1’s. For each assignment of these points to
{0,1}, there is at least one way to extend this assignment to a monotone function. It is known that
|A| = 6(\2/—%) Therefore the number of monotone functions is at least 22V,

In homework you will prove that one can learn monotone functions over the uniform distribution in
20(vn) gamples.

Today, you are given random samples and can weakly learn monotone functions on uniform distri-
bution much faster.

Theorem 1 For all monotone f, there exists g € {£+1,21,...,xn}:= S such that

1 1
XP;YU[f(iU) =g(z)] > 5T Q(E)

Corollary 2 Algorithm for weakly learning monotone functions: for each g € S, estimate agreement
with f to within ©(%).
Proof [Proof of Theorem 1] The easy case is when f weakly agrees with £1. Suppose this does not

happen. Then . . . L3
Pr[f(z) = +1] € [5 - 0(-), 5T 9(;)] < [17 1]

Remaining of proof is conducted in Section 2.

1
n

Definition 2 Influence of i-th variable on f: {£1}" — {£1} is
Inf;(f) = Pr[f(2) # f(=*)],

where P is x with i-th coordinate flipped. Total influence is

Inf(f) = Y Infi(f).

1<i<n

You will prove the following results in homework.
Theorem 3 If f is monotone, then Inf;(f) = f({i}).
Theorem 4 Majority function f(z) = sgn(d_ x;) mazimizes Inf(f) among all monotone functions.

How to understand influence of a monotone function: Think about the Hasse diagram of the poset
{£1}". Let f be a monotone function {£1}" — {£1}. We can think of f as a coloring of the vertices,
where red means f(x) = +1 and blue means f(x) = —1. Monotonicity of f means there are no blue
vertices above red vertices. We have

number of red-blue edges in i-th direction

and

number of red-blue edges

Inf(f) = =



2 Canonical path argument

Now let us prove Theorem 1 in the case Pr[f(z) = +1] € [, 2].
Plan:

1. Define a “canonical path” between every pair of red-blue nodes. (Note: must cross > 1 red-blue
edge.)

2. Show upper bound on the number of canonical paths passing through any edge (in particular any
red-blue edge).

3. Conclude lower bound on the number of red-blue edges.

Part 1 Canonical path from z to y is by flipping bits left to right, where each flip is a step in path.

. 2" 32" _ 3 92n
How many red-blue x-y pairs? At least < - =4— = {527,

Part 2 Consider a red-blue edge a-b. Let k be the coordinate where ap # bg. An x-y pair with
canonical path going through it must have y; = b; for ¢« < k and x; = a; for ¢ > k. Therefore there are
at most 277! such z-y pairs.

Part 3 FEach red-blue canonical path uses > 1 red-blue edge. So

(# red-blue edges) - (max # of c.p.s per edge) > # red-blue c.p.s.

So
%2> 3 5
d-bl dges > = -2".
# re ue edges > on—1 3

So there exists ¢ such that

3
# red-blue edges in direction ¢ > 8—2".
n

So 3 9n 5
Inf;(f) > ;Z_l Z
Then 3 R
1, S nfi(f) = f({@}) = 2Pr[f(z) = =] — 1.
So 1 3
Prif(z) =ai] 2 5+ o



