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1 Monotone functions

We will talk about weak learning of monotone functions.

Definition 1 Fix a partial order � on the domain Ω. On the product domain Ωn, define � so that
x � y iff xi ≤ yi for all i. A function f : Ωn → R is monotone if x � y ⇒ f(x) ≤ f(y).

Now fix Ω = {±1}.
Question: How many monotone functions are there?
Lower bound: Consider the set A of points with bn2 c −1’s. For each assignment of these points to

{0, 1}, there is at least one way to extend this assignment to a monotone function. It is known that

|A| = Θ( 2n
√
n

). Therefore the number of monotone functions is at least 2
Θ( 2n√

n
)
.

In homework you will prove that one can learn monotone functions over the uniform distribution in
2Θ(
√
n) samples.

Today, you are given random samples and can weakly learn monotone functions on uniform distri-
bution much faster.

Theorem 1 For all monotone f , there exists g ∈ {±1, x1, . . . , xn} := S such that

Pr
X∈U

[f(x) = g(x)] ≥ 1

2
+ Ω(

1

n
).

Corollary 2 Algorithm for weakly learning monotone functions: for each g ∈ S, estimate agreement
with f to within Θ( εn ).

Proof [Proof of Theorem 1] The easy case is when f weakly agrees with ±1. Suppose this does not
happen. Then

Pr[f(x) = +1] ∈ [
1

2
−Θ(

1

n
),

1

2
+ Θ(

1

n
)] ⊆ [

1

4
,

3

4
].

Remaining of proof is conducted in Section 2.

Definition 2 Influence of i-th variable on f : {±1}n → {±1} is

Inf i(f) = Pr
x

[f(x) 6= f(x⊕i)],

where x⊕i is x with i-th coordinate flipped. Total influence is

Inf(f) =
∑

1≤i≤n

Inf i(f).

You will prove the following results in homework.

Theorem 3 If f is monotone, then Inf i(f) = f̂({i}).

Theorem 4 Majority function f(x) = sgn(
∑

xi) maximizes Inf(f) among all monotone functions.

How to understand influence of a monotone function: Think about the Hasse diagram of the poset
{±1}n. Let f be a monotone function {±1}n → {±1}. We can think of f as a coloring of the vertices,
where red means f(x) = +1 and blue means f(x) = −1. Monotonicity of f means there are no blue
vertices above red vertices. We have

Inf i(f) =
number of red-blue edges in i-th direction

2n−1

and

Inf(f) =
number of red-blue edges

2n
.
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2 Canonical path argument

Now let us prove Theorem 1 in the case Pr[f(x) = +1] ∈ [ 1
4 ,

3
4 ].

Plan:

1. Define a “canonical path” between every pair of red-blue nodes. (Note: must cross ≥ 1 red-blue
edge.)

2. Show upper bound on the number of canonical paths passing through any edge (in particular any
red-blue edge).

3. Conclude lower bound on the number of red-blue edges.

Part 1 Canonical path from x to y is by flipping bits left to right, where each flip is a step in path.
How many red-blue x-y pairs? At least 2n

4 ·
3·2n

4 = 3
1622n.

Part 2 Consider a red-blue edge a-b. Let k be the coordinate where ak 6= bk. An x-y pair with
canonical path going through it must have yi = bi for i ≤ k and xi = ai for i ≥ k. Therefore there are
at most 2n−1 such x-y pairs.

Part 3 Each red-blue canonical path uses ≥ 1 red-blue edge. So

(# red-blue edges) · (max # of c.p.s per edge) ≥ # red-blue c.p.s.

So

# red-blue edges ≥
3
1622n

2n−1
=

3

8
2n.

So there exists i such that

# red-blue edges in direction i ≥ 3

8n
2n.

So

Inf i(f) ≥
3

8n2n

2n−1
≥ 3

4n
.

Then
3

4n
≤ Inf i(f) = f̂({i}) = 2 Pr[f(x) = xi]− 1.

So

Pr[f(x) = xi] ≥
1

2
+

3

8n
.
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