1 Monotone functions

We will talk about weak learning of monotone functions.

Definition 1 Fix a partial order \(\preceq \) on the domain \(\Omega \). On the product domain \(\Omega^n \), define \(\preceq \) so that \(x \preceq y \) iff \(x_i \leq y_i \) for all \(i \). A function \(f : \Omega^n \rightarrow \mathbb{R} \) is **monotone** if \(x \preceq y \Rightarrow f(x) \leq f(y) \).

Now fix \(\Omega = \{ \pm 1 \} \).

Question: How many monotone functions are there?

Lower bound: Consider the set \(A \) of points with \(\lfloor n/2 \rfloor - 1 \)'s. For each assignment of these points to \(\{0, 1\} \), there is at least one way to extend this assignment to a monotone function. It is known that \(|A| = \Theta(2^{n^{1/2}}) \). Therefore the number of monotone functions is at least \(2^{\Theta(n^{1/2})} \).

In homework you will prove that one can learn monotone functions over the uniform distribution in \(2^{\Theta(n^{1/2})} \) samples.

Today, you are given random samples and can weakly learn monotone functions on uniform distribution much faster.

Theorem 1 For all monotone \(f \), there exists \(g \in \{ \pm 1, x_1, \ldots, x_n \} := S \) such that

\[
\Pr_{x \in \mathbb{U}}[f(x) = g(x)] \geq \frac{1}{2} + \Omega(\frac{1}{n}).
\]

Corollary 2 Algorithm for weakly learning monotone functions: for each \(g \in S \), estimate agreement with \(f \) to within \(\Theta(\epsilon n) \).

Proof [Proof of Theorem 1] The easy case is when \(f \) weakly agrees with \(\pm 1 \). Suppose this does not happen. Then

\[
\Pr[f(x) = +1] \in \left[\frac{1}{2} - \Theta(\frac{1}{n}), \frac{1}{2} + \Theta(\frac{1}{n}) \right] \subseteq \left[\frac{1}{4}, \frac{3}{4} \right].
\]

Remaining of proof is conducted in Section 2.

Definition 2 Influence of \(i \)-th variable on \(f : \{ \pm 1 \}^n \rightarrow \{ \pm 1 \} \) is

\[
\text{Inf}_i(f) = \Pr_x[f(x) \neq f(x^{\oplus i})],
\]

where \(x^{\oplus i} \) is \(x \) with \(i \)-th coordinate flipped. **Total influence** is

\[
\text{Inf}(f) = \sum_{1 \leq i \leq n} \text{Inf}_i(f).
\]

You will prove the following results in homework.

Theorem 3 If \(f \) is monotone, then \(\text{Inf}_i(f) = \hat{f}(\{i\}) \).

Theorem 4 Majority function \(f(x) = \text{sgn}(\sum x_i) \) maximizes \(\text{Inf}(f) \) among all monotone functions.

How to understand influence of a monotone function: Think about the Hasse diagram of the poset \(\{ \pm 1 \}^n \). Let \(f \) be a monotone function \(\{ \pm 1 \}^n \rightarrow \{ \pm 1 \} \). We can think of \(f \) as a coloring of the vertices, where red means \(f(x) = +1 \) and blue means \(f(x) = -1 \). Monotonicity of \(f \) means there are no blue vertices above red vertices. We have

\[
\text{Inf}_i(f) = \frac{\text{number of red-blue edges in } i\text{-th direction}}{2^{n-1}}
\]

and

\[
\text{Inf}(f) = \frac{\text{number of red-blue edges}}{2^n}.
\]
2 Canonical path argument

Now let us prove Theorem 1 in the case $Pr[f(x) = +1] \in [\frac{1}{4}, \frac{3}{4}]$.

Plan:

1. Define a “canonical path” between every pair of red-blue nodes. (Note: must cross ≥ 1 red-blue edge.)

2. Show upper bound on the number of canonical paths passing through any edge (in particular any red-blue edge).

3. Conclude lower bound on the number of red-blue edges.

Part 1 Canonical path from x to y is by flipping bits left to right, where each flip is a step in path.

How many red-blue x-y pairs? At least $\frac{2^n}{4} \cdot \frac{2^{2n}}{4} = \frac{1}{16} 2^{2n}$.

Part 2 Consider a red-blue edge a-b. Let k be the coordinate where $a_k \neq b_k$. An x-y pair with canonical path going through it must have $y_i = b_i$ for $i \leq k$ and $x_i = a_i$ for $i \geq k$. Therefore there are at most 2^{n-1} such x-y pairs.

Part 3 Each red-blue canonical path uses ≥ 1 red-blue edge. So

\[(\# \text{ red-blue edges}) \cdot (\text{max # of c.p.s per edge}) \geq \# \text{ red-blue c.p.s.}\]

So

\[\# \text{ red-blue edges} \geq \frac{3 \cdot 2^n}{2^{n-1}} = \frac{3}{8} 2^n.\]

So there exists i such that

\[\# \text{ red-blue edges in direction } i \geq \frac{3}{8n} 2^n.\]

So

\[\text{Inf}_i(f) \geq \frac{3}{8n} 2^n \geq \frac{3}{4n}\]

Then

\[\frac{3}{4n} \leq \text{Inf}_i(f) = \hat{f}([i]) = 2 Pr[f(x) = x_i] - 1.\]

So

\[Pr[f(x) = x_i] \geq \frac{1}{2} + \frac{3}{8n}.\]