Lecture 21
Lecturer: Ronitt Rubinfeld
Scribe: Yuzhou Gu

1 Monotone functions

We will talk about weak learning of monotone functions.
Definition 1 Fix a partial order \preceq on the domain Ω. On the product domain Ω^{n}, define \preceq so that $x \preceq y$ iff $x_{i} \leq y_{i}$ for all i. A function $f: \Omega^{n} \rightarrow \mathbb{R}$ is monotone if $x \preceq y \Rightarrow f(x) \leq f(y)$.

Now fix $\Omega=\{ \pm 1\}$.
Question: How many monotone functions are there?
Lower bound: Consider the set A of points with $\left\lfloor\frac{n}{2}\right\rfloor-1$'s. For each assignment of these points to $\{0,1\}$, there is at least one way to extend this assignment to a monotone function. It is known that $|A|=\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)$. Therefore the number of monotone functions is at least $2^{\Theta\left(\frac{2^{n}}{\sqrt{n}}\right)}$.

In homework you will prove that one can learn monotone functions over the uniform distribution in $2^{\Theta(\sqrt{n})}$ samples.

Today, you are given random samples and can weakly learn monotone functions on uniform distribution much faster.

Theorem 1 For all monotone f, there exists $g \in\left\{ \pm 1, x_{1}, \ldots, x_{n}\right\}:=S$ such that

$$
\operatorname{Pr}_{X \in U}[f(x)=g(x)] \geq \frac{1}{2}+\Omega\left(\frac{1}{n}\right)
$$

Corollary 2 Algorithm for weakly learning monotone functions: for each $g \in S$, estimate agreement with f to within $\Theta\left(\frac{\epsilon}{n}\right)$.
Proof [Proof of Theorem 1] The easy case is when f weakly agrees with ± 1. Suppose this does not happen. Then

$$
\operatorname{Pr}[f(x)=+1] \in\left[\frac{1}{2}-\Theta\left(\frac{1}{n}\right), \frac{1}{2}+\Theta\left(\frac{1}{n}\right)\right] \subseteq\left[\frac{1}{4}, \frac{3}{4}\right]
$$

Remaining of proof is conducted in Section 2.
Definition 2 Influence of \boldsymbol{i}-th variable on $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is

$$
\operatorname{Inf}_{i}(f)=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x^{\oplus i}\right)\right]
$$

where $x^{\oplus i}$ is x with i-th coordinate flipped. Total influence is

$$
\operatorname{Inf}(f)=\sum_{1 \leq i \leq n} \operatorname{Inf}_{i}(f)
$$

You will prove the following results in homework.
Theorem 3 If f is monotone, then $\operatorname{Inf}_{i}(f)=\hat{f}(\{i\})$.
Theorem 4 Majority function $f(x)=\operatorname{sgn}\left(\sum x_{i}\right)$ maximizes $\operatorname{Inf}(f)$ among all monotone functions.
How to understand influence of a monotone function: Think about the Hasse diagram of the poset $\{ \pm 1\}^{n}$. Let f be a monotone function $\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$. We can think of f as a coloring of the vertices, where red means $f(x)=+1$ and blue means $f(x)=-1$. Monotonicity of f means there are no blue vertices above red vertices. We have

$$
\operatorname{Inf}_{i}(f)=\frac{\text { number of red-blue edges in } i \text {-th direction }}{2^{n-1}}
$$

and

$$
\operatorname{Inf}(f)=\frac{\text { number of red-blue edges }}{2^{n}}
$$

2 Canonical path argument

Now let us prove Theorem 1 in the case $\operatorname{Pr}[f(x)=+1] \in\left[\frac{1}{4}, \frac{3}{4}\right]$.
Plan:

1. Define a "canonical path" between every pair of red-blue nodes. (Note: must cross ≥ 1 red-blue edge.)
2. Show upper bound on the number of canonical paths passing through any edge (in particular any red-blue edge).
3. Conclude lower bound on the number of red-blue edges.

Part 1 Canonical path from x to y is by flipping bits left to right, where each flip is a step in path. How many red-blue $x-y$ pairs? At least $\frac{2^{n}}{4} \cdot \frac{3 \cdot 2^{n}}{4}=\frac{3}{16} 2^{2 n}$.

Part 2 Consider a red-blue edge $a-b$. Let k be the coordinate where $a_{k} \neq b_{k}$. An $x-y$ pair with canonical path going through it must have $y_{i}=b_{i}$ for $i \leq k$ and $x_{i}=a_{i}$ for $i \geq k$. Therefore there are at most 2^{n-1} such $x-y$ pairs.

Part 3 Each red-blue canonical path uses ≥ 1 red-blue edge. So

$$
(\# \text { red-blue edges }) \cdot(\max \# \text { of c.p.s per edge }) \geq \# \text { red-blue c.p.s. }
$$

So

$$
\# \text { red-blue edges } \geq \frac{\frac{3}{16} 2^{2 n}}{2^{n-1}}=\frac{3}{8} 2^{n}
$$

So there exists i such that

$$
\# \text { red-blue edges in direction } i \geq \frac{3}{8 n} 2^{n}
$$

So

$$
\operatorname{Inf}_{i}(f) \geq \frac{\frac{3}{8 n} 2^{n}}{2^{n-1}} \geq \frac{3}{4 n}
$$

Then

$$
\frac{3}{4 n} \leq \operatorname{Inf}_{i}(f)=\hat{f}(\{i\})=2 \operatorname{Pr}\left[f(x)=x_{i}\right]-1
$$

So

$$
\operatorname{Pr}\left[f(x)=x_{i}\right] \geq \frac{1}{2}+\frac{3}{8 n}
$$

