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Large Deviations

Today we are going to talk more about the probability that a random variable deviates
from its expectation. We have already seen examples where a random variable tends to
be close to its expectation and where it tends to be far from its expectation. We also saw
that the variance can be used to get some handle on a random variable. Today we will
cover some new tools.

1 Markov and Chebyshev’s Inequality

Markov’s theorem say that if a random variable is never negative, then it is unlikely to
greatly exceed its mean.

Theorem 1. If R is a non-negative random variable, then for all x > 0, Pr (R ≥ x) ≤ Ex(R)
x

.

In other words, if R is never negative and Ex (R) is small, then R will also be small
with probability near 1.

Proof. From the theorem of total expectation from recitation last week, we know

Ex (R) = Ex (R | R ≥ x) Pr (R ≥ x) + Ex (R | R < x) Pr (R < x)

≥ x Pr (R ≥ x) .

Hence, Pr (R ≥ x) ≤ Ex(R)
x

.

Markov’s theorem is often expressed in an alternate form, which is an easy corollary.

Corollary 2. If R is a non-negative random variable, then ∀c > 0, Pr (R ≥ c Ex (R)) ≤ 1
c
.

Proof. Set x = c Ex (R). Then we get Ex(R)
x

= 1
c

in the bound above.

For example, suppose R is the weight of a random person, and Ex (R) = 100. Sup-
pose we don’t know the distribution of R. We can still compute useful information, like
Pr (R ≥ 200) ≤ 1

2
, by using Markov’s bound. The interpretation here is that at most 1/2 of

the population have weight ≥ 200. If this were not the case, then the expectation would
be larger than 100, a contradiction.

Now, when we say that at most 1/2 of the population weighs over 200, this is a deter-
ministic fact if the average weight is 100. Thus, Markov’s theorem is about probabilities
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but it implies deterministic facts. This is because we have weighted all the sample points
with a certain probability, in this case, the uniform distribution. Probabilities are really
just weights, so it is natural to go back and forth. We turn N sample points into a random
variable by assigning each probability 1

N
.

Let’s revisit the Chinese Appetizer Problem and the Hat Check Problem. In the first
problem there are N people at a Chinese restaurant that spin a Lazy Susan with appetiz-
ers. As argued in earlier lectures, the expected number of people to get the right appetizer
is 1. Moreover, the Markov bound tells us that the probability N people get the right ap-
petizer is at most 1

N
, and in fact in this case it is tight! On the other hand, for the Hat

Check Problem, the probability all N people pick up their same hat is only 1
N !

, which is
much smaller.

Okay, now what if the random variable R can be negative? In this case Markov’s bound
does not apply. Indeed, consider R with Pr (R = 1000) = 1

2
and Pr (R = −1000) = 1

2
. Then

Ex (R) = 0, but Pr (R ≥ 1000) 6= 0.

Markov’s bound gives us an upper bound on the probability that a random variable
is large. It turns out, though, that there is a related result to get an upper bound on the
probability that a random variable is small.

Corollary 3. If R ≤ u for some u ∈ R, then for all x < u,

Pr (R ≤ x) ≤ u− Ex (R)

u− x
.

Proof. Note that Pr (R ≤ x) = Pr (u−R ≥ u− x). Now we can apply Markov’s bound on
the random variable u−R, which is non-negative.

Pr (u−R ≥ u− x) ≤ Ex (u−R)

u− x

=
u− Ex (R)

u− x

As an example, let’s look at quiz scores. Suppose R is the score of a random student,
and the maximum score obtainable is 100. Suppose Ex (R) = 75. Then

Pr (R ≤ 50) ≤ 100− 75

100− 50
=

1

2
,

by the previous corollary.

In some cases, like the Chinese Appetizer Problem, Markov’s theorem is tight, but in
other cases, like the Hat Check Problem, the bound is far from reality. Not surprisingly,
if you know more about the distribution, you can get better bounds. For example, if you
know the variance you can often get better bounds on the probability of deviating from
the mean by using a result known as Chebyshev’s Theorem.
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Theorem 4. For all x > 0 and for any random variable R,

Pr (|R− Ex (R) | ≥ x) ≤ Var [R]

x2
.

Chebyshev’s Theorem is very similar to Markov’s Theorem but uses the added info
supplied by the variance to get a better upper bound. In fact, the proof uses Markov’s
Theorem.

Proof.

Pr (|R− Ex (R) | ≥ x) = Pr
(
(R− Ex (R))2 ≥ x2

)
≤ Ex ((R− Ex (R))2)

x2
=

Var [R]

x2
.

A useful corollary is the following.

Corollary 5.

Pr (|R− Ex (R) | ≥ cσ(R)) ≤ 1

c2
.

Proof. Just set x = cσ(R) in the above.

Here is an example. Suppose R is the IQ of a random person. We assume R ≥ 0,
although this may in fact be false (remember Bobo?). Also assume Ex (R) = 100 and
σ(R) = 10.

Let’s compute Pr (R ≥ 200). By Markov’s Theorem, this is at most 1/2. However, by
Chebyshev’s Theorem,

Pr (R ≥ 200) = Pr (R− 100 ≥ 100)

= Pr (R− Ex (R)) ≥ 10σ(R)

≤ Pr (|R− Ex (R) | ≥ 10σ(R))

≤ 1

102
=

1

100
.

Thus, we’ve used the standard deviation, some extra information about the distribution,
to derive a much better bound. Notice in the proof that we used Pr (R− Ex (R) ≥ 10σ(R)) ≤
Pr (|R− Ex (R) | ≥ 10σ(R)). This always holds, though a common mistake is to assume
that Pr (R− Ex (R) ≥ 10σ(R)) = 1

2
Pr (|R− Ex (R) | ≥ 10σ(R)) , which holds, e.g., if the

distribution is symmetric about the mean. This is by no means true in general.

However, if as in the example above, you only care about 1-sided error, then you can
do slightly better than Chebyshev’s Theorem, but not a lot better.
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Theorem 6. For any random variable R,

Pr (R− Ex (R) ≥ cσ(R)) ≤ 1

c2 + 1
,

and
Pr (R− Ex (R) ≤ −cσ(R)) ≤ 1

c2 + 1
.

Proving this theorem is a bit trickier, and we won’t do it in class. In general, this is the
best you can say given only the expected value and standard deviation. Returning to the
IQ example, we get Pr (R ≥ 200) ≤ 1

101
, which is a slight improvement.

Here’s another example. Say we give an exam. What fraction of the class can score
more than 2 standard deviations away from average? If R is the score of a random stu-
dent, the answer is

Pr (|R− Ex (R) | ≥ 2σ(R)) ≤ 1

4
.

For one-sided error, the fraction that could be 2 standard deviations or more high is at
most 1/(22 + 1) = 1/5. This holds no matter what the test scores were, and is again a
deterministic fact derived using probabilistic tools.

2 Chernoff Bounds

The bounds we get using the Markov Theorem and the Chebyshev Theorem are some-
times very good, and sometimes very bad. Now we’re going to turn to a special case of a
random variable which arises in practice. The special case is when the random variable is
the sum of lots of other random variables that are mutually independent, and the bound
on the probability of deviating from the mean is known as the Chernoff bound. Chernoff
was a professor here, and at the time of discovery did not put much importance on his
bounds, which were much later applied by many others in many situations.

Theorem 7 (Chernoff Bounds). Let T1, . . . , Tn be any mutually independent random variables
such that ∀j, 0 ≤ Tj ≤ 1. Let T =

∑N
j=1 Tj . Then for any c > 1,

Pr (T ≥ c Ex (T )) ≤ e−α Ex(T ),

where α = c ln c + 1− c > 0.

In general this is a much better bound than you get from Markov or Chebyshev. The
probability from Markov is 1/c. The bound from Chebyshev is only slightly better. With
Chernoff, the bound is exponentially small in c ln c times the expected value. This is a
huge difference.

For example, using Chernoff Bounds, Pr (T ≥ 2 Ex (T )) ≤ e−38 if Ex (T ) = 100. In this
case Markov would only give 1/2, and the one-sided extension of Chebyshev would only
give 1/(22 + 1) = 1/5.
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Of course, Chernoff Bounds do not apply to all distributions. They only work when
R is the sum of random variables defined on the interval [0, 1]. But this is a pretty broad
class, and includes, for example, the binomial distribution. In fact, the Tj form a much
broader class since the Tj need not have the same distribution, and their distribution can
be arbitrary on the interval [0, 1], rather than just Bernoulli.

Another nice thing about the Chernoff Bound is that the bound does not directly de-
pend on the number of random variables being summed, and you can show that even
small deviations are unlikely.

For example, suppose 10 million people play “Pick 4”. This is a lottery game where
you pick a 4-digit number and you win if you get an exact natch. Then the probability
of winning is just Pr (Win) = 1

10000
, and the expected number of winners is 10 million

divided by a thousand, or 1000.

Suppose each of the 10 million players pick mutually independent random numbers.
Then by Chernoff Bounds, we know Pr (≥ 2000 winners) ≤ e−.38·1000 = e−380. Moreover,
Pr (≥ 1100 winners) ≤ e−4.8 < .01, so only a 1% chance that the number of winners is 10%
over the expectation. Note that the Markov and Chebyshev Theorems are useless here.

So let’s prove the theorem. Then we’ll apply it to load balancing. The proof of the
theorem is similar to the proof of Chebyshev’s Theorem. As in the proof of Chebyshev,
we’ll use Markov’s Theorem, but in this case, we exponentiate the deviation instead of
squaring it before applying Markov’s Theorem. The proof is clever and a bit tricky. We
don’t expect you to be able to derive such a proof on your own in this class.

Proof. Define Rj = Tj − Ex (Tj) for j = 1, 2, . . . , N . Then

−Ex (Tj) ≤ Rj ≤ 1− Ex (Tj) ,

and Ex (Rj) = 0. We have,

Pr (T ≥ c Ex (T )) = Pr (R ≥ (c− 1) Ex (T ))

= Pr
(
cR ≥ c(c−1) Ex(T )

)
≤

Ex
(
cR

)
c(c−1) Ex(T )

Markov’s Bound.

Thus,

Ex
(
cR

)
= Ex

(
cR1+R2+···+RN

)
= Ex

(
ΠN

j=1c
Rj

)
= ΠN

j=1 Ex
(
cRj

)
independence of the Tj and thus Rj.

We need the following facts.

Fact 1. If −m ≤ z ≤ 1−m, then cz ≤ c−m(1 + m(c− 1)) + z(c1−m − c−m).
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This follows from the fact that the right-hand-side describes a line which intersects the
curve cz (here z is the variable) at z = −m and z = 1 − m. Moreover, since cz is convex,
the curve is entirely below this line.

Fact 2. 1 + m(c− 1) ≤ em(c−1).

This follows from the Taylor expansion 1 + x ≤ ex.

Resuming the proof, set m = Ex (Tj) and z = Rj . Then

Ex
(
cRj

)
≤ Ex

(
c−mem(c−1) + (c1−m − c−m)Rj

)
= c−mem(c−1) since Ex (Rj) = 0

= em(c−1−ln c)

Thus,

Π Ex
(
cRj

)
≤ ΠeEx(Tj)(c−1−ln c)

= e(c−1−ln c)
P

Ex(Tj)

= e(c−1−ln c) Ex(T )

Concluding,

Pr (T ≥ c Ex (T )) ≤ e(c−1−ln c) Ex(T )

c(c−1)Ex(T )

= eEx(T )(c−1−ln c−c ln c+ln c)

= eEx(T )(−c ln c−1+c)

= e−α Ex(T ),

where α = c ln c1− c.

3 Load Balancing

Suppose we need to build a load balancing device to assign a set of N jobs B1, B2, . . . , BN

to a set of m servers S1, S2, . . . , Sm. If you are hosting a decent-sized website, N might be
about 100K and m might be about 10. Suppose the ith job Bj takes Lj time, 0 ≤ Lj ≤ 1
(say, in seconds). The goal is to assign the N jobs to the m servers so that the load is as
balanced as possible (i.e., so that the busiest server finishes as quickly as possible).

Suppose each server works sequentially through the jobs that are assigned to it and
finishes in time equal to the sum of job lengths assigned to the server. Let LTot =

∑N
j=1 Lj

be the total sum of job lengths. With perfect load balancing then, each server would take
LBal = LTot

m
time. Now if you know the Lj , this is a variant of the knapsack problem. It is

hard to get all the tasks perfectly balanced but good algorithms exist to get close.
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But we are interested in the case when you don’t know the job lengths until after you
make the assignments, which is often the case in practice. At first it seems hopeless. The
idea, however, is to assign the jobs randomly, i.e., to pick 1 of m processors uniformly
at random for each job. This is a very useful technique in computer science when you
don’t have enough information to solve a problem or a deterministic solution is too hard
to figure out.

Let’s see how it works in this case. Normally this kind of technique isn’t covered until
grad school, but we’re ready for it now! We’ll start by seeing how much load gets assigned
to the ith server Si.

Let Ri,j be the load on Si from job Bj . Then Ri,j = Lj if Bj is assigned to Si, and
is 0 otherwise. Note, 0 ≤ Ri,j ≤ 1. Let Ri be the total load on Si from all jobs. Then
Ri =

∑N
j=1 Ri,j . So,

Ex (Ri) =
N∑

j=1

Ex (Ri,j)

=
N∑

j=1

Lj/m

=
1

m
LTot

= LBal.

So the expected load on the ith server is what we would get if the load were perfectly bal-
anced. Because of mutual independence and that 0 ≤ Ri,j ≤ 1, we can apply Chernoff’s
Bound. Thus, Pr (Ri ≥ cLBal) ≤ e−αLBal , where α = c ln c + 1− c.

Now this holds for each i individually, but we need to make sure that none of the
servers has too much load. To do this, we need to bound the probability that the worst
server takes more than cLBal steps. This is just

Pr (R1 ≥ cLBal ∨R2 ≥ cLBal ∨ · · · ∨Rm ≥ cLBal) .

We can upper bound this by summing the probabilities,

≤ Pr (R1 ≥ cLBal) + · · ·+ Pr (Rm ≥ cLBal) ≤ me−αLBal .

For example, if we plug in c = 1.1 (10% above the optimal), α > .0048. Let N = 100K and
m = 10. Say the average job is 1/4 seconds. Then LTot = 25K, and LBal = 2500. Then,
Pr (∃ server with ≥ 10% extra load ) ≤ 10e−.0048·2500 < e−9.

Thus, our randomized algorithm got all 10 servers to within 10% of the optimal load
with very high probability. This gives a very nice performance, especially compared to
the worst case. The only way we do poorly is if we have a bad random assignment; that
is, this result holds no matter what the job lenghts are. This is a really useful and powerful
tool in computer science.
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