Homework 2

Lecturer: Ronitt Rubinfeld

Due Date: September 29, 2020

Turn in your solution to each problem on a separate sheet of paper, with your name on each one.

1. Testing the monotonicity of a list - the case of bits: Given a function $f:[n] \rightarrow$ $\{0,1\}$. Given $0<\epsilon<1$, show an algorithm that runs in $O(1 / \operatorname{poly}(\epsilon))$ queries to f, with the following behavior:

- If f is monotone, then the algorithm always outputs "pass".
- If f is ϵ-far from monotone, then the algorithm outputs "fail" with probability at least $3 / 4$.

2. How much can adaptivity help?

- Assume that your computational model is such that a query returns a single bit. In such a model, show that any algorithm making q queries can be made into a nonadaptive (i.e., where the queries do not depend on the results of any previous queries) tester that uses only 2^{q} queries.
- Canonical forms for graph property testers for the adjacency matrix model. Define a graph property to be a property that is preserved under graph isomorphism - i.e., if G has the property and G^{\prime} is isomorphic to G, then G^{\prime} must also have the property. Show that any adaptive algorithm for property testing which makes q queries, can be made nonadaptive algorithm using only $O\left(q^{2}\right)$ queries.

3. Property testing of the clusterability of a set of points. Given a set X of points in any metric space. Assume that one can compute the distance between any pair of points in one step. Say that X is (k, b)-diameter clusterable if X can be partitioned into k subsets (clusters) such that the maximum distance between any pair of points in a cluster is b. Say that X is ϵ-far from (k, b)-diameter clusterable if at least $\epsilon|X|$ points must be deleted from X in order to make it (k, b)-diameter clusterable.

Show how to distinguish the case when X is (k, b)-diameter clusterable from the case when X is ϵ-far from $(k, 2 b)$-diameter clusterable. Your algorithm should use polynomial in $k, 1 / \epsilon$ queries. It is possible to get an algorithm which uses $O\left(\left(k^{2} \log k\right) / \epsilon\right)$ queries.

